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Anabolic steroids are structurally similar compounds, and their product-ion spectra obtained by
tandem mass spectrometry under electrospray ionization conditions are quite difficult to interpret
because of poly-ring structures and lack of a charge-retaining center in their chemical structures.
In the present study, the fragmentation of nine anabolic steroids of interest to the racing industry
was investigated by using triple quadrupole mass spectrometer, Fourier transform ion cyclotron
resonance (FT-ICR) mass spectrometer, and a linear ion trap instrument. With the aid of an expert
system software (Mass Frontier version 3.0), accurate mass measurements, and multiple stage
tandem mass spectrometric (MSn) experiments, fragmentation pathways were elucidated for
boldenone, methandrostenolone, tetrahydrogestrinone (THG), trenbolone, normethandrolone and
mibolerone. Small differences in the chemical structures of the steroids, such as an additional
double-bond or a methyl group, result in significantly different fragmentation pathways. The
fragmentation pathways proposed in this paper allow interpretation of major product ions of other
anabolic steroids reported by other researchers in a recent publication [19]. The proposed
fragmentation pathways are helpful for characterization of new steroids. The approach used in this
study for elucidation of the fragmentation pathways is helpful in interpretation of complicated
product-ion spectra of other compounds, drugs and their metabolites. (J Am Soc Mass Spectrom
2006, 17, 477–489) © 2006 American Society for Mass Spectrometry

Anabolic steroids are synthetic substances related to
the male sex hormones (androgens), and are used
for the treatment of metabolic disorders in man

and animals. These agents can be illegally used to enhance
performance in human and animal sports including horse
racing� [1–3].� The� misuse� of� anabolic� steroids� is� well
documented; for example, the scandal of the “designer”
drug� tetrahydrogestrinone� (THG)� [4].� Anabolic� steroids
are prohibited for use by athletes in competition by the
International�Olympic�Committee� (IOC)� [5],� classified�as
controlled substances by the United States Drug Enforce-
ment Agency, included under the Drugs of Misuse Act by
the United Kingdom, and banned by the European Union

for�use�in�agricultural�animals�[6,�7].�Methods�for�qualita-
tive and quantitative analysis of anabolic steroids based
on gas chromatography integrated with mass spectrome-
try (GC-MS) or liquid chromatography coupled with mass
spectrometry�(LC-MS)�have�been�reported�[8�–12].�Essen-
tial to the published LC-MS methods is selected reaction
monitoring (SRM) based on tandem mass spectrometric
(MS/MS) product ions. Interpretation of product-ion
spectra of anabolic steroids and exploration of their colli-
sion-induced dissociation (CID) pathways are of impor-
tance to mass spectrometric characterization of new “de-
signer” steroids, and helpful in understanding specificity
of product ions of anabolic steroids for their detection,
identification, and confirmation.

While interpretation of mass spectra obtained under
electron ionization (EI) conditions is well understood and
documented�[13,�14],�interpretation�of�product-ion�spectra
of [M � H]� ions acquired under atmospheric pressure
ionization (API) MS/MS conditions is generating new
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interest. Fragmentation pathways are reported for testos-
terone�and�testosterone�hydroxyl�analogs�[15],�oxosteroid
Girard�derivatives�[16,�17],�and�steroid�oximes�[18]�under
ESI conditions. Recently, Thevis et al. reported electros-
pray ionization tandem mass spectrometric characteriza-
tion of chemically modified steroids including 21 gestri-
none� and� testosterone� analogs� [19].� In� this� paper,
formation of major product ions of selected anabolic
steroids under ESI (�) MS/MS conditions are interpreted
and fragmentation pathways are proposed for those ste-
roids of which fragmentation pathways have not been
previously reported.

Experimental

Chemicals

Boldenone, methandrostenolone, trenbolone, testosterone,
normethandrolone, nandrolone, mibolerone, and methe-
nolone (Scheme 1, where the numbers in boldenone

structure show the numbering convention for anabolic
steroids and D in testosterone-d3 molecule is the abbrevi-
ation for deuterium) were purchased from Steraloids
(Newport, RI), and testosterone-d3 [77546-39-5] was ob-
tained from Sigma (St. Louis, MO). Tetrahydrogestrinone
(THG) was kindly donated by Dr. Thomas Tobin at
Maxwell Gluck’s Equine Center of University of Ken-
tucky, Lexington, KY. Ammonium formate (certified),
HPLC grade methanol and water were obtained from
Fisher Scientific (Pittsburgh, PA). Formic acid was pur-
chased from EM Science (Gibbstown, NJ).

Stock formate buffer comprising 1.0 mol/mL ammo-
nium formate and 1.0 mol/mL of formic acid was
prepared from the dry chemical powder and concen-
trated formic acid. The pH of the buffer was 3.4.
Working formate buffer solution (2 mmol/L each of
ammonium formate and formic acid) was prepared by
dilution of the stock formate buffer with HPLC grade
water.
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Scheme 1. Chemical structures of anabolic steroids used in this study.
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Stock solution (1.0 mg/mL) of each analyte was
prepared by dissolving the individual dry chemical
powder in HPLC grade methanol, and stored at 4 °C.
Working solution of each analyte at concentration of 1.0
�g/mL in methanol/formate buffer (2 mmol/L) (50/
50, vol/vol) was prepared by dilution of the stock
solution with the methanol/formate buffer mixture,
and stored at 4 °C.

Mass Spectrometry

Thermo-Finnigan TSQ Quantum AM triple stage quad-
rupole mass spectrometer, Thermo-Finnigan LTQ FT
Fourier transform ion cyclotron resonance (FT-ICR)
mass spectrometry in which the Thermo-Finnigan LTQ
linear ion trap mass spectrometer was used as an inlet
system for the FT-ICR mass spectrometer, and Thermo-
Finnigan LTQ linear ion trap mass spectrometer
(Thermo Electron Corp, San Jose, CA) were used in this
study. All the instruments were equipped with ESI
sources and operated in positive ion mode. TSQ Quan-
tum AM was calibrated with polytyrosine-1,3,6
(Thermo Electron Corp.) that comprised Tyr, (Tyr)3, and
(Tyr)6, by following the instructions of the instrument
manual; the FT-ICR instrument and the LTQ linear ion
trap were calibrated with calibration mixture of caffeine,
L-methionyl-arginyl-phenylalanyl-alanine (MRFA), and
Ultramark 1621 (Thermo Electron Corp.). TSQ Quantum
AM instrument was operated at unit mass resolution
(FWHM set to 0.7 for both Q1 and Q3). Resolution of the
FT-ICR instrument was set to 50,000 (FWHM), and its
mass accuracy was better than 2 ppm with external
calibration, according to the manufacturer. For the LTQ
instrument, isolation width of 1.5 was used for MS/MS
and multiple stage tandem mass spectrometric (MSn)
experiments. The ion transfer capillary temperature was
set at 225 °C for each mass spectrometer. The other ESI
source parameters for each instrument were optimized for
infusion flow rate of 10 �L/min. For CID experiments on
the TSQ Quantum AM instrument, Argon was used as the
collision gas, and collision energy applied in the form of
electric potential was used to effect fragmentation. For
CID experiments on both the LTQ and FT-ICR instru-
ments, helium (dampening gas) was used as the collision
gas, and normalized collision energy (expressed in per-
centage), which is a measure of the amplitude of the
resonance excitation RF voltage applied to the endcaps of
the linear ion trap, was used to bring about fragmentation.
Data acquisition and analysis were accomplished with
Xcalibur software versions 1.3 and 1.4 (Thermo Electron
Corp.).

Product-ion spectrum of each anabolic steroid was
acquired by syringe infusion of 1.0 �g/mL of the
analyte at 10 �L/min into the ESI source of each mass
spectrometer. A good quality spectrum was obtained by
averaging the acquired data over a period of 1 min.

Generation of Possible Fragmentation Pathways

Possible fragmentation pathways for each anabolic ste-
roid were generated by an expert-system software,
Mass Frontier version 3.0 (Thermo Electron). Mass
Frontier uses a mathematical approach for the simula-
tion of unimolecular ion-dissociation reactions, but it
does not have a function to assess the stability of
product ions from thermodynamic data or rates of
reaction. As a result, the software generated many
possible fragmentation pathways for an [M � H]� ion,
and many possible fragmentation routes for a pathway.
Most of the possible product ions predicted by Mass
Frontier for the [M � H]� ion were not visible in its
experimental product-ion spectrum. Only a few of the
predicted product ions were present in the experimen-
tal product-ion spectrum. A fragmentation pathway
generating a product ion present in the experimental
spectrum was manually picked, then reasonable and
the most possible fragmentation routes in the pathway
were chosen and manually finalized.

Results and Discussion

ESI (�) Product-Ion Spectra

The�product-ion�spectra�of�the�anabolic�steroids�(Figure
1)� acquired� on� the� triple� stage� quadrupole� instrument
are different from each other despite only minor
changes in chemical structure. For example, boldenone
and testosterone have quite different product ion pro-
files but differ only by double-bond, as do testosterone
and normethandrolone, trenbolone and THG. In short,
the�product-ion�spectra�of�boldenone�(Figure�1a),�meth-
androstenolone� (Figure� 1b),� testosterone� (Figure� 1f),
and�methenolone�(Figure�1j)�are�featured�by�dominance
of a few abundant product ions in each spectrum,
indicating generation of these product ions from each of
the relevant precursor ions by energetically favored
fragmentation pathways. The product-ion spectra of the
remaining steroids are crowded with many product
ions, suggesting that the precursor [M � H]� ions have
undergone many competitive fragmentation pathways.

Accurate Masses for Product Ions

To aid interpretation of the product-ion spectra, accurate
mass measurements were conducted on product ions of
the anabolic steroids using the FT-ICR instrument. The
product-� ion� spectra� of� the� anabolic� steroids� (Figure� 2)
acquired on the FT-ICR instrument look quite different
from those acquired on the triple quadrupole instrument
(Figure� 1).� This� result� is� not� surprising� at� all,� since� ion
activation on the linear ion trap part of the FT-ICR is
different from that on a triple stage quadrupole instru-
ment. In CID on an ion trap, only precursor ions are
activated, while in CID on a triple quadrupole, product
ions can be activated by subsequent collisions and may
undergo further fragmentation. As a result, observed from

479J Am Soc Mass Spectrom 2006, 17, 477–489 FRAGMENTATION PATHWAYS OF ANABOLIC STEROIDS



CID on an ion trap are usually the first generation of
product ions at high mass end, while from CID on a triple
quadrupole instrument, observed are final and stable
product ions at low mass end. It should be pointed out
that although some dominant product ions that were
observed on the triple stage quadrupole instrument, such

as�the�product�ion�of�m/z�121�(Figure�1b)�from�methandro-
stenolone and the product ions of m/z 109 and m/z 97 from
testosterone� (Figure� 1f),� have� low� ion� abundance� in� the
corresponding product-ion spectrum acquired on the FT-
ICR�instrument�(Figure�2b�and�2e),�yet�high�mass�accuracy

100 150 200 250 300
m/z

0

50

100

0

50

100

0

50

100

R
e
la

tiv
e
 A

bu
n
da

n
ce

0

50

100

0

50

100
121.0

135.0
173.0

187.093.0 269.1 287.1

121.0
149.0

173.0 283.1107.0 301.1187.0 227.0

241.1
313.1295.1159.0 239.1

266.1197.1157.0107.1

199.0
271.1253.1

227.1
197.0157.0133.0107.0

97.1
109.1

292.2
109.2 274.3190.2 216.2159.0

(a)

(b)

(c)

(d)

(e)

100 150 200 250 300
m/z

0

50

100

0

50

100

0

50

100

R
e
la

tiv
e
 A

bu
n
da

n
ce

0

50

100

0

50

100
121.0

135.0
173.0

187.093.0 269.1 287.1

121.0
149.0

173.0 283.1107.0 301.1187.0 227.0

241.1
313.1295.1159.0 239.1

266.1197.1157.0107.1

199.0
271.1253.1

227.1
197.0157.0133.0107.0

97.1
109.1

292.2
109.2 274.3190.2 216.2159.0

(a)

(b)

(c)

(d)

(e)

100 150 200 250 300
m/z

0

50

100

0

50

100

0

50

100

R
e
la

tiv
e 

A
bu

nd
an

ce

0

50

100

0

50

100
97.0 109.0

289.1

253.1123.0 187.1159.0 213.1

271.1213.1109.0
231.1 289.1161.0

197.0135.0
95.0

109.0 275.1239.1
145.0

199.1147.0
82.9 201.1

303.1121.0 177.0 285.1
95.0 245.1227.1163.0

211.0

187.1 303.2
83.1

205.1145.1 1.7621.501 161.1 225.1

(f)

(g)

(h)

(i)

(j)

100 150 200 250 300
m/z

0

50

100

0

50

100

0

50

100

R
e
la

tiv
e 

A
bu

nd
an

ce

0

50

100

0

50

100
97.0 109.0

289.1

253.1123.0 187.1159.0 213.1

271.1213.1109.0
231.1 289.1161.0

197.0135.0
95.0

109.0 275.1239.1
145.0

199.1147.0
82.9 201.1

303.1121.0 177.0 285.1
95.0 245.1227.1163.0

211.0

187.1 303.2
83.1

205.1145.1 1.7621.501 161.1 225.1

(f)

(g)

(h)

(i)

(j)

Figure 1. Product ion spectra of ten anabolic steroids acquired
on the triple quadrupole instrument. Shown from top to bottom
are the spectra of boldenone (a), methandrostenolone (b), THG (c),
trenbolone (d), testosterone-d3 (e), testosterone (f), normeth-
androlone (g), nandrolone (h), mibolerone (i), and methenolone
(j). Collision energy was 15 eV for boldenone, methandro-
stenolone, THG, and methenolone; 20 eV for trenbolone and
mibolerone; 16 eV for testosterone-d3 and testosterone; 18 eV for
normethandrolone; 17 eV for nandrolone. The major product ions
of mibolerone not annotated are m/z 175, m/z 109, and m/z 107
(Figure�1i).
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Figure 2. Accurate mass product-ion spectra of eight anabolic
steroids acquired on the FT-MS instrument (with wideband acti-
vation). Shown from top to bottom are the spectra of boldenone
(a), methandrostenolone (b), THG (c), trenbolone (d), testosterone
(e), normethandrolone (f), mibolerone (g), and methenolone (h).
Collision energy was 31% for boldenone, 30% for methandro-
stenolone, 32% for THG, 40% for trenbolone, 38% for testosterone,
35% for normethandrolone, 37% for mibolerone, and 34% for
methenolone.
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was� still� achieved� on� those� product� ions� (Table� 1).� To
demonstrate the confidence in mass accuracy achieved on
the FT-ICR instrument, the accurate m/z values of the [M
� H]� ions of THG, trenbolone, testosterone, normeth-
androlone,� mibolerone,� and� methenolone� (Figure� 2c–�h)
are�listed�in�Table�1.�The�mass�accuracies�for�the�[M���H]�

ions were within 0.2 ppm.

Approach to Proposing Fragmentation Pathways

Unlike fragmentation of odd-electron molecular ions (M�

·) generated under EI conditions, which can be initiated by
an unpaired electron, fragmentation of even-electron [M
� H]� ions generated under ESI conditions is generally
initiated by the positive charge. Interpretation of product-

ion spectra of the anabolic steroids and elucidation of their
fragmentation pathways are quite difficult because they
do not contain a charge-retaining center such as a nitrogen
atom in their molecules and there are several rings in their
chemical structures. To overcome this difficulty, Mass
Frontier was used in addition to accurate mass measure-
ments and MSn experiments, to aid in the elucidation of
fragmentation pathways. The approach is briefly ex-
plained here: first, automatic generation of possible frag-
mentation pathways for an anabolic steroid by Mass
Frontier; second, manual selection of an appropriate frag-
mentation pathway by comparing accurate m/z value of
an experimental product ion of the steroid with that
predicted by Mass Frontier; finally, manual finalization of
the fragmentation routes in the appropriate pathway

Table 1. Accurate masses for product ions of the anabolic steroids and their elemental compositions and number of rings plus
double bonds (RDB)

m/z (Th)
measureda

Elemental
compositionb

RDB
calculatedc

m/z (Th)
predictedd � m/z (Th)e � m/z (ppm)e

Product ions

Boldenone 135.1169 C10H15 3.5 135.1168 0.0001 0.74
121.0649 C8H9O1 4.5 121.0648 0.0001 0.83

Methandrostenolone 149.1326 C11H17 3.5 149.1325 0.0001 0.67
121.0649 C8H9O1 4.5 121.0648 0.0001 0.83

THG 266.1666 C19H22O1 9.0 266.1665 0.0001 0.38
241.1587 C17H21O1 7.5 241.1587 0.0000 0.00
239.1431 C17H19O1 8.5 239.1430 0.0001 0.42
225.1274 C16H17O1 8.5 225.1274 0.0000 0.00
213.1274 C15H17O1 7.5 213.1274 0.0000 0.00
211.1118 C15H15O1 8.5 211.1117 0.0001 0.47
197.0961 C14H13O1 8.5 197.0961 0.0000 0.00
159.0805 C11H11O1 6.5

Trenbolone 227.1431 C16H19O1 7.5 227.1430 0.0001 0.44
199.1118 C14H15O1 7.5 199.1117 0.0001 0.50

Testosterone 109.0649 C7H9O1 3.5 109.0648 0.0001 0.92
97.0649 C6H9O1 2.5 97.0648 0.0001 1.03

Normethandrolone 231.1744 C16H23O1 5.5 231.1743 0.0001 0.43
213.1638 C16H21 6.5 213.1638 0.0000 0.00

109.0648
Mibolerone 245.1900 C17H25O1 5.5 245.1905 �0.0005 �2.0

177.1275 C12H17O1 4.5 177.1279 �0.0004 �2.3
121.1013 C9H13 3.5 121.1017 �0.0004 �3.3
109.1013 C8H13 2.5 109.1017 �0.0004 �3.7

Methenolone 187.1481 C14H19 5.5

[M � H]� ionsf

Trenbolone 271.1693 271.16926 0.00004 0.15
THG 313.2162 313.21621 �0.00001 �0.03
Testosterone 289.2162 289.21621 �0.00001 �0.03
Normethandrolone 289.2162 289.21621 �0.00001 �0.03
Mibolerone 303.2319 303.23186 0.00004 0.13
Methenolone 303.2318 303.23186 �0.00006 �0.20

am/z measured � experimental values obtained using the FT-ICR instrument.
bElemental composition derived from the measured m/z with tolerance of 2 ppm (mass accuracy by the FT-ICR instrument is better than 2 ppm).
Actually, when valence rules and candidate compositions encompassing C0–21H3–31O0–2 (covering the maximal numbers of carbon, hydrogen and
oxygen atoms in the precursor ions) are considered, the nearest alternative composition is 99 ppm apart.
cRDB calculated � the number of RDB calculated from the elemental composition.
dm/z predicted � the m/z value predicted for the product ion by the proposed fragmentation pathway or the m/z value derived from the elemental
composition of the anabolic steroids.
e� m/z � m/z measured � m/z predicted.
fAccurate masses are listed for the [M � H]� ions with known elemental composition to show confidence in mass accuracies achieved in the present
study.
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using knowledge of even-electron (EE�) ion fragmenta-
tion. For example, an experimental product ion of bold-
enone�is�of�m/z�121.0649�(Figure�2a),�while�Mass�Frontier
predicted two possible product ions of m/z 121.0648 and
121.1012 for the same nominal mass. The predicted prod-
uct ion of m/z 121.0648 was in agreement with the exper-
imental product ion of m/z 121.0649, and thus, the possible
pathways predicting the product ion of m/z 121.0648 were
chosen. It should be pointed out that there were several
predicted pathways leading to generation of the product
ion of m/z 121.0648. Even for a particular pathway, there
are several possible fragmentation routes for generation of
the m/z 121.0648 ion. The fragmentation pathways and
routes were further examined and chosen according to the
following criteria: (1) inductive cleavage occurs at a car-
bon atom with the most branches or strains; (2) stability of
transition-state carbonium ions follows the order CR3

�

(tertiary) � CHR2
� (secondary) � CH2R

��(primary)�[20];
(3) formation of a product ion is highly dependent on its
stability, and the stability depends on whether a positive
charge on the product ion is stabilized by resonance
and/or inductive effects. Given the above criteria, the
most likely pathway and routes for generation of the
experimental product ion of m/z 121.0649 from boldenone
were chosen and finalized (Scheme 2). In Scheme 2, “i”
indicates inductive cleavage, rH1,2 represents the rear-

rangement of a hydrogen atom to an adjacent carbon atom
with concurrent � site rearrangement of the charge, and
rHR stands for the rearrangement of a hydrogen atom to a
remote site with concurrent � site rearrangement of the
charge. Fragmentation pathway for generation of the
product ion of m/z 135.1169 from boldenone was similarly
proposed (Scheme 2). Using the same elucidation proce-
dure, we proposed fragmentation pathways for the other
anabolic steroids. It should be noted that the [M � H �
18]� and [M � H � 36]� ions in the product-ion spectra of
the� anabolic� steroids� (Figure� 1)� obviously� resulted� from
loss of one or two H2O molecules from the [M � H]� ions
and thus, the corresponding fragmentation pathways are
not presented in this paper.

Boldenone and Methandrostenolone

In the fragmentation pathway proposed for boldenone
(Scheme 2), it is reasonable to assume that protonation
occurs at the 3-carbonyl oxygen atom in the [M � H]�

ion because the carbonyl group is in conjugation with
two pairs of double bonds. The positive charge on the
3-carbonyl oxygen atom (Scheme 2a) may transiently
locate on either the 1- or 5-carbon atom (Scheme 2c or b)
because�of�resonance�[13].�The�charge�on�either�position
leads to cleavage of the bond between the 9,10-carbon
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atoms because the 10-carbon atom is the most branched
and strained; concurrent formation of the phenyl ring is
energetically favored. The charge-induced � bond
cleavage and concurrent formation of a double-bond,
such as the fragmentation step from 2b or c to d in
Scheme�2�are�reasonable�[13,�21].�The��-position�charge-
transfer from the 9-carbon atom (Scheme 2d) to the
6-carbon atom (Scheme 2g) is driven by stabilization of
the charge at the 6-carbon atom (similar to benzyl
cation). The transition-state species with the charge on
the 9-carbon atom (Scheme 2d) undergoes two different
and competitive routes to produce the final major
product ions of m/z 121.0648 (a stable ion similar to
benzyl cation with its charge stabilized by resonance
[13])�and�of�m/z�135.1168�(also�stabilized�by�resonance).
In the fragmentation pathway, formation of the phenyl
ring in the transition-state species (Scheme 2d) together
with stability of the final product ions accounts for their
dominance in the product-ion spectrum. The loss of an
H2O molecule from the boldenone [M � H]� ion may
occur at any step in the fragmentation pathway, as
verified by the product-ion spectra of boldenone [M �
H]� and [M � H � H2O]� ions acquired on the linear
ion trap (not shown). The product-ion spectra showed
that the product ions of m/z 121 and m/z 135 are
generated from the [M � H]� ion and from the [M � H
� H2O]� ion as well. Besides, the product-ion spectra
also showed that the product ion of m/z 251 from loss of
two H2O molecules from boldenone [M � H]� ion is
almost not seen, suggesting that loss of the second H2O
molecule from the [M � H]� ion is negligible. In
comparison, loss of the second H2O molecule from the
testosterone [M � H]� ion is abundant as seen by the
ion of m/z 253 in the product-ion spectra of the [M �
H]� ion and the [M � H � H2O]� ion (not shown).
These results support the proposed formation of the
phenyl ring in the transition-state species (Scheme 2d)
since only the hydroxyl group attached to a phenyl ring
is difficult to eliminate in low-energy CID.

The proposed structures for the two major product
ions of boldenone agree with the elemental composition
and� number� of� RDB� (Table� 1)� derived� from� their
experimental accurate masses. For example, the elemen-
tal composition for the predicted product ion of m/z
121.0648 (Scheme 2f) is C8H9O1, which is the same as
that for the experimental product ion of m/z 121.0649
(Table�1).�The�RDB�value�for�the�predicted�product�ion
of m/z 121.0648 is 4, and agrees with the calculated RDB
value of 4.5 for the experimental product ion of m/z
121.0649 (the RDB of 4.5 ends in 0.5 and thus, indicates
an even-electron ion; the true RDB value is 4 after
subtraction�of�0.5�[13]).

Methandrostenolone has similar chemical structure
and, thus, has similar fragmentation pathways. The
only difference between methandrostenolone and bold-
enone is the presence of additional 17-methyl group in
the former, and this accounts for the product ion of m/z
149.1326 of methandrostenolone.

THG and Trenbolone

In the product-ion spectrum of THG acquired on the
triple� stage� quadrupole� instrument� (Figure� 1c),� there
were six major product ions of m/z 266, m/z 241, m/z 239,
m/z 225 (not annotated), m/z 197, and m/z 159. The
formation of the first five ions was interpreted by the
fragmentation pathway proposed in this study (Scheme
3). Protonation of THG primarily occurs at the 3-
carbonyl oxygen atom since the carbonyl group is in
conjugation with the conjugated double-bond system.
The charge on the 3-carbonyl oxygen atom in the [M �
H]� ion can be delocalized on the 12-carbon atom
because the 3-carbonyl group is in conjugation with the
4,9,11-double-bond system. In addition, the 13-carbon
atom is the most branched and strained. As a result, the
bond between the 13,17-carbon atoms cleaves and a
double-bond between the 12,13-carbon atoms forms,
resulting in the transition-state species (Scheme 3b).
This species undergoes further fragmentation, yielding
the final product ions of m/z 241 (Scheme 3d) and m/z
213 (Scheme 3g). The former (Scheme 3d) is stable
(similar to benzyl cation). The fragmentation routes
proposed for generation of these two product ions agree
with evidence from MS/MS and MS/MS/MS experi-
ments of the THG [M � H]� ion on the linear ion trap,
showing that the product ion of m/z 241 was generated
from the [M � H]� ion but not from the [M � H �
H2O]� ion. Besides, the elemental composition and RDB
value for the predicted product ions are in accordance
with�the�experimental�accurate�masses�(Table�1).

In addition to protonation at the 3-carbonyl oxygen
atom in THG, protonation may also occur at the 17-
hydroxyl oxygen atom. The [M � H]� ion with proto-
nation at the 17-hydroxyl oxygen atom generates the
product ions of m/z 266, m/z 239, m/z 225, and m/z
197 (Scheme 3). In the fragmentation step from the
transition-state species 3k to 3l, a hydrogen atom at the
13-methylene group is rearranged to the 17-carbon
atom, the carbon atom of the 13-methylene group
becomes positively charged, and then the charge causes
cleavage of the bond between the 13,17-carbon atoms
and formation of the 13-double-bond that is driven by
stabilization of the conjugated double-bond system. The
transition-state species (3l) undergoes different and
competitive fragmentation routes to produce the final
product ions of m/z 239, m/z 225, m/z 211 and m/z 197.
The proposed fragmentation routes for generation of
these product ions are supported by product-ion spec-
trum (not shown) of the [M � H � H2O]� ion of THG
showing generation of those four product ions from the
[M � H � H2O]� ion. Theoretically, the 3-carbonyl
oxygen atom has higher proton affinity than the 17-
hydroxyl oxygen atom because the former is conjugated
with the 4,10,11-double-bond system and, thus, much
higher population of [M � H]� ion with protonation at
the 3-carbonyl oxygen atom than at the 17-hydroxyl
oxygen atom is expected under ESI conditions. How-
ever, even though population of [M � H]� ion with
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protonation at the 17-hydroxyl oxygen atom is quite
low, product ions from this [M � H]� ion were exper-
imentally observed, as described above. A possible
explanation for this experimental result is that the
ionizing proton is mobile upon collisional activation
and thus, can protonate the 17-hydroxyl oxygen atom.
Furthermore, the 17-ethyl group in THG molecule
makes the 17-carbon atom highly strained and thus,
fragmentation can be initiated at this carbon atom.

The�product�ion�of�m/z�266�from�THG�(Figure�1c)�is
interesting since its generation from the [M � H]� ion
cannot be interpreted by Mass Frontier. It is a radical
ion (an odd-electron ion) as indicated by the even
number of its RDB value derived from its experimen-
tal�accurate�mass� (Table�1).�The� fragmentation�route
for generation of this product ion had to be manually
proposed�(Scheme�3�).�Based�on�the�RDB�value�(Table
1),�structure�for�the�radical�ion�of�m/z�266�is�proposed
(Scheme 3v). On the fragmentation route from the
transition-state species (Scheme 3k) to the final prod-
uct ion (Scheme 3v), either the 13- or the 17-ethyl
group may eliminate according to the results of
Thevis�et�al.�from�deuterium-labeled�THG�[19].�Gen-
eration of the product ion of m/z 266 via loss of H2O
molecule and ethyl radical group from the [M � H]�

ion is supported by the results from deuterium-
labeled�THG�[19]�and�EI�spectrum�of�THG�[22].

The� production� of� m/z� 159� from� THG� (Figure� 1c)
cannot be interpreted by Mass Frontier, and it is not
generated from further fragmentation of the product
ion of m/z 266 as concluded from product-ion spectrum
(not shown) of the ion of m/z 266 of THG.

According to the fragmentation pathway proposed
for THG in this study, the major product ions of m/z 241
and m/z 213 from gestrinone, dihydrogestrinone and
d4-THG, and the major product ions of m/z 227 and m/z
199 from altrenogest and propyltrenbolone reported
[19]�can�be�interpreted.

Trenbolone generated two major product ions of
m/z 227 and m/z 199 on the triple stage quadrupole
instrument� (Figure� 1d),� and� they� can� be� interpreted
by the fragmentation pathway proposed for THG
(specifically, the fragmentation routes leading to gen-
eration of the product ions of m/z 241.1587 and m/z
213.1274 from THG, respectively, in Scheme 3). The
product ions of m/z 227 and m/z 199 were generated
from the [M � H]� ion but not from the [M � H �
H2O]� ion, as concluded from the MS/MS and MS/
MS/MS spectra of trenbolone [M � H]� ion acquired
on the linear ion trap. In comparison with THG, no
abundant product ion generated from trenbolone [M
� H]� ion with protonation at the 17-hydroxyl oxy-
gen atom was observed using the triple quadrupole
instrument. This result can be explained with consid-
eration of the slight difference between chemical
structures of trenbolone and THG. In trenbolone,
absence of the 17-ethyl group that is present in THG
causes any transition-state species with the charge on
the 17-carbon atom to be less stable. As a result,

fragmentation of trenbolone via the [M � H]� ion
with protonation at the 17-hydroxyl oxygen atom is
not a favorable fragmentation route.

Testosterone, Normethandrolone, Nandrolone,
and Mibolerone

Testosterone is similar to normethandrolone and nan-
drolone in chemical structure (Scheme 1), but it has a
unique�product�ion�of�m/z�97�(Figure�1f)�that�is�absent�in
the product-ion spectra of normethandrolone and nan-
drolone�(Figure�1g�and�h).� In�addition,� testosterone-d3

has�the�same�product�ions�of�m/z�97�and�m/z�109�(Figure
1e)� as� does� testosterone,� indicating� that� these� product
ions do not contain the 16-CHD2 and 17-CDOH region
of the molecule. The MS/MS/MS spectrum (not shown)
of testosterone indicates that the product ions of m/z 97
and m/z 109 originate from [M � H]� ion instead of [M
� H � H2O]� ion. Based on these evidences plus
accurate masses of the product ions, fragmentation
pathway of testosterone (not shown) was proposed for
generation of the product ions of m/z 97 and m/z 109.
Although the proposed fragmentation pathway is in
agreement with the results (elemental composition and
RDB) from accurate mass measurements of the product
ions, it is not in accordance with the results from
product-ion spectra of testosterone deuterium-labeled
at�various�positions�reported�by�Williams�et�al.�[15].�The
fragmentation pathway proposed by Williams et al. for
generation of the product ion of m/z 109 from testoster-
one, involving the unusual rearrangement of a hydro-
gen atom from the 6-carbon atom to the 10-carbon atom
[15],�seems�correct.�This�result�indicates�the�importance
of deuterium labeling in fragmentation pathway stud-
ies, and reveals failure of Mass Frontier to predict the
right fragmentation pathway for testosterone. The fail-
ure of Mass Frontier in this case shows its limitation in
predicting fragmentation pathways for compounds in-
volving unusual hydrogen rearrangements (Mass Fron-
tier version 4.0 uses a database of published fragmen-
tation pathways in an attempt to overcome this
limitation).

Normethandrolone, nandrolone, and mibolerone do
not undergo the fragmentation pathway of testosterone
for generation of the product ion of m/z 109, proposed
by� Williams� et� al.� [15],� because� they� lack� a10-methyl
group in their molecules that is present in testosterone
molecule and necessary for that fragmentation pathway
to� occur� [15].� The� product� ion� of� m/z� 109� of� normeth-
androlone, nandrolone, and mibolerone must be gener-
ated by other fragmentation pathways. The fragmenta-
tion route for generation of this product ion (m/z 109)
from normethandrolone was proposed together with
those for generation of the product ions of m/z 231 and
m/z 213 (Scheme 4). In the initial [M � H]� ion (Scheme
4a), the charge on the 3-carbonyl oxygen atom can
transiently locate on the 5-carbon atom, and by induc-
tion the charge on the 5-carbon atom leads to formation

485J Am Soc Mass Spectrom 2006, 17, 477–489 FRAGMENTATION PATHWAYS OF ANABOLIC STEROIDS



of the transition-state species (Scheme 4b). It should be
pointed out that the electron-donating 17-methyl group
helps to stabilize the positive charge on the 17-carbon
atom in the transition-state species (Scheme 4f and n)
and, thus, makes possible generation of the product
ions of m/z 231 and m/z 213. The proposed fragmenta-
tion routes for generation of the product ions of m/z 213
and m/z 231 agree with the results from MS/MS,
MS/MS/MS, and MS/MS/MS/MS spectra (not shown)
of normethandrolone acquired on the LTQ instrument.
The spectra indicate that the product ion of m/z 231 was
generated from [M � H]� ion instead of [M � H �
H2O]� ion while the product ion of m/z 213 was
produced from [M � H � H2O]� ion but not from [M �
H � 2H2O]� ion. In addition, the elemental composition
and RDB value for the predicted product ions of m/z 231

(Scheme 4g) and m/z 213 (Scheme 4o) are in accordance
with�those�for�the�experimental�product�ions�(Table�1).

According to this fragmentation pathway for
normethandrolone, the major product ions of m/z 231,
m/z 213, and m/z 109 from norethisterone and the major
product ions of m/z 245, m/z 227, and m/z 109 from
norgestrel�and�norbolethone�reported�[19],�can�be�inter-
preted.

Nandrolone has the same product ion of m/z 109 as
does normethandrolone, and fragmentation pathway
generating this product ion from nandrolone is the
same as that from normethandrolone (Scheme 4).
Unlike normethandrolone, nandrolone does not have
a 17-methyl group in its molecule and, thus, does not
undergo the fragmentation of normethandrolone in-
volving the transition-state 17-carbonium species
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(Scheme 4f and n) because the electron-drawing
17-hydroxyl group in nandrolone causes any 17-
carbonium species to be unstable. As a result, nan-

drolone does not have the product ions relevant to
the product ions of m/z 231 and m/z 213 from
normethandrolone.
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Mibolerone is similar to normethandrolone in chem-
ical structure, but the additional 7-methyl group in its
structure results in alternative fragmentation routes
(Scheme 5) from those for normethandrolone (Scheme
4). In Scheme 5, rHB represents charge site hydrogen
rearrangement. In mibolerone molecule, because of the
existence of the electron-donating 7-methyl group, the
transition-state species (Scheme 5c) with the charge on
the 7-carbon atom becomes competitive and thus, leads
to generation of the product ion of m/z 95 (Scheme 5d)
that was experimentally observed. In addition, because
of the existence of the electron-donating 7-methyl
group, fragmentation routes via cleavage of the bond
between the 6,7-carbon atoms come into play to gener-
ate the transition-state species (Scheme 5k) and the final
product ions of m/z 245 (Scheme 5n) and m/z 109
(Scheme 5s). It should be noted that the transition-state
species (Scheme 5t) is stable according to McLafferty
and� Turecek� [13],� and� loss� of� a� carbon� monoxide
molecule from an even-electron ion such as the
transition-state species (Scheme 5t) is even easier than
loss of an H2O molecule according to the Field’s rule
and�their�proton�affinity�values�[13].�It�is�surprising�that
the minor difference between the chemical structures of
mibolerone and normethandrolone results in quite dif-
ferent and distinct fragmentation pathways. The pro-
posed fragmentation route leading to generation of the
product ion of m/z 245 is supported by MS/MS and
MS/MS/MS spectra (not shown) of mibolerone [M �
H]� ion indicating that this product ion was generated
from [M � H]� ion but not from [M � H � H2O]� ion.
The elemental composition and RDB value for the
predicted product ions of m/z 245 (Scheme 5n), m/z 177
(Scheme 5h), m/z 121 (Scheme 5z1), and m/z 109
(Scheme 5s) agree with those for the experimental
product�ions�(Table�1),�respectively.

Methenolone

Methenolone is slightly different in chemical structure
from “boldenone type” and “testosterone type” of ste-
roids discussed above, and its product-ion spectrum is
distinctly different from those of boldenone and testos-
terone types of steroids. The fragmentation pathway for
generation of the major product ion of m/z 187 from
methenolone was proposed but not presented because
it was not in agreement with the results from product-
ion spectra of 5�-androst-1-en-17�-ol-3-one (1-
testosterone) and deuterium-labeled metenolone (me-
thenolone)�[19].�The�fragmentation�pathway�for�gener-
ation of the m/z 187 ion from 1-testosterone and methe-
nolone�proposed�by�Thevis�et�al.�[19],�involving�methyl
rearrangement and retro-Diels-Alder reaction, seems
correct. The failure of Mass Frontier to predict the right
fragmentation pathway for methenolone shows its lim-
itation in predicting fragmentation pathways for com-
pounds involving methyl rearrangements or special
rearrangements such as retro-Diels-Alder reaction.

Conclusion

Although very similar in chemical structure, the ana-
bolic steroids gave rise to quite different product-ion
spectra unique for each steroid under ESI (�) MS/
CID/MS conditions. These spectra were interpreted,
and fragmentation pathways of the anabolic steroids
were proposed with the aid of Mass Frontier, accurate
mass measurements by the FT-ICR instrument and MSn

experiments with the linear ion trap. Mass Frontier is
helpful in generating possible fragmentation pathways
that would otherwise be very difficult to manually
perform. However, the software cannot specify a defi-
nite fragmentation pathway for a steroid, and manual
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selection of the reasonable pathway is, therefore, neces-
sary. Furthermore, Mass Frontier (Version 3.0) has its
limitation: it is not able to take into consideration
unusual hydrogen rearrangement, methyl rearrange-
ment, and special rearrangement such as retro-Diels-
Alder reaction.

Small differences in chemical structures of the ste-
roids, such as an additional double-bond, methyl, or
ethyl group, result in significantly different fragmenta-
tion pathways. For example, the additional 1-double-
bond in boldenone, compared with testosterone, makes
the fragmentation pathway for boldenone distinctly
different from that for testosterone. The methyl group
at the C-10 position in testosterone has a remarkable
effect on fragmentation, compared with its absence in
normethandrolone, nandrolone, and mibolerone. The
additional methyl group at the C-7 position in mibo-
lerone, compared with normethandrolone, results in
significant differences between fragmentation path-
ways for mibolerone and normethandrolone.

The proposed fragmentation pathways are useful in
understanding fragmentation of structurally similar ste-
roids as well as uniqueness of the formation of their
product ions. The approach used in this study is helpful
for future studies on fragmentation pathways of other
compounds, drugs, and their metabolites.
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