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The use of negative ion monitoring mode with an atmospheric pressure ion mobility
orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare
agent (CWA) degradation products from aqueous phase samples has been determined.
Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample
introduction and ionization. Certified reference materials (CRM) of CWA degradation prod-
ucts for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the
chemical warfare convention (CWC) treaty verification were used in this study. A mixture of
six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA,
and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and
EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS
instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, Ko
values, and signal intensities for each of the CWA degradation products are reported. (J Am
Soc Mass Spectrom 2006, 17, 241–245) © 2006 American Society for Mass Spectrometry
Chemical warfare agents by convention are clas-
sified as lethal nerve, vesicant, blood, or pulmo-
nary agents. Nerve agents, G-series (Sarin (GB),

Cyclosarin (GF), Soman (GD), Tabun (GA), and V-series
(VE, VG, VM, VX), all disrupt neurological regulation
within biological systems through the inhibition of the
enzyme acetylcholine esterase [1]. Vesicant agents (also
known as bifunction alkylating agents) sulfur mustards
(H, HD, HS), lewisite (L), nitrogen mustard gas (HN),
and phosgene-oxime (CX) are the agents typically re-
sponsible for detrimental reactions with deoxyribonu-
cleic acid (DNA) and intracellular glutathione (GSH)
[2]. Blood born agents, such as prussic acid (AC) or
cyanogen chloride (CK), prevent tissue utilization of
oxygen by inhibition of the enzyme cytochrome oxidase
[3]. Pulmonary agents, chlorine gas (C), chloropicrin
(PS), diphosgene (DP), and phosgene (CG,) all react
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with water to form hydrochloric acid and carbon mon-
oxide to cause pulmonary edema [4]. Environment
neutralization of these CWA typically involves the
degradation of the parent compounds to yield various
hydrolysis products [5–7]. The G-series nerve agents,
which include GB, GF, GD, and GA, rapidly hydrolyze
to form various alkyl phosphonic acids [8], whereas
V-series nerve agents VE, VG, VM, and VX degrade to
not only form alkyl phosphonic acids but phosphono-
thioic acids and various alkyl amino ethanol com-
pounds [9]. The common sulfur and arsenic containing
vesicants H, HD, HS, and L typically degrade to pro-
duce various sulfides, thiodiglycols, sulfones, and vinyl
arsonous products, respectively [10]. Blood-born agents
such as AC initially hydrolyze to formamide, and
subsequently to ammonium formate, while CK readily
hydrolyzes to hydrogen chloride and unstable cyanic
acid. The cyanic acid further decomposes to carbon
dioxide and ammonia [11]. Lastly, the pulmonary
agents C, PS, DP, and CG as mentioned above hydro-
lyze into hydrochloric acid, hydrochlorous acid, carbon

monoxide, and carbon dioxide [12].
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In general, CWA hydrolysis and degradation prod-
ucts have been found to exhibit a higher degree of
stability and persistence in the environment than their
corresponding parent agents [5]. Direct detection of
these CWA degradation products has provided a con-
venient and indirect detection method for the presence
or past presence of CWA. The degradation products of
CWA are typically polar and nonvolatile in character,
readily dissolving in aqueous environments. A host of
stand alone analytical techniques in an assortment of
forms [7, 13–19] have been employed for the analysis of
these CWA degradation products with varying degrees
of success. More recently; however, the development of
an atmospheric pressure ion mobility spectrometer
(AP-IMS) interfaced to a orthogonal reflector time-of-
flight mass spectrometer (TOFMS) has demonstrated
the capability through a variety of sample introduction
and ionization modes to rapidly (�1 min) and sensi-
tively (�100 ppb by weight for most compounds tested)
detect, identify, and quantify aqueous vapor and aero-
sol phase CWA degradation products, respectively [20 –
22]. More importantly, with the prior development of
the AP-IMS [23] with resolving powers similar to that of
typical capillary gas chromatography and better than
that of typical HPLC separations has facilitated the
AP-IMS-TOFMS [simply referred to here as IM(tof)MS]
the option to eliminate traditional chromatographic
separations altogether and rely solely upon the rapid
separation capabilities of the high-resolution AP-IMS
before mass spectrometric analysis via the TOFMS.
Although rapid detection of aqueous vapor and aerosol
phase CWA degradation products have been demon-
strated with IM(tof)MS technology in the positive ion
monitoring mode, negative ion monitoring mode using
IM(tof)MS has not been previously explored. It is,
however, interesting to note that negative ion monitor-
ing mode detection applications utilizing atmospheric
pressure field asymmetric ion mobility mass spectrom-
etry (FAIMS-MS) have been investigated, but not for
compounds involving CWA degradation product re-
search. Likewise, CWA degradation products have
been studied using FAIMS but not in combination with
MS [24]. Therefore, this paper seeks to explore the
feasibility of using IM(tof)MS technology for the detec-
tion of CWA degradation products in negative ion
monitoring mode. This improvement in IM(tof)MS de-
velopment greatly expands the capacity of IM(tof)MS
technology to significantly decrease the potential for
false positive responses when screening for CWA.

Experimental

Chemicals and Solvents

The six G-series nerve related CWA degradation products
(ethyl methyl phosphonic acid (EMPA), isopropyl methyl
phosphonic acid (IMPA), ethyl hydrogen ethyl phosphonate
(EHEP), isopropyl hydrogen ethyl phosphonate (IHEP), cy-

clohexyl methyl phosphonic acid (CHMPA), and pinacolyl
methyl phosphonic acid (PMPA) used in this study were
obtained from Cerilliant (Round Rock, TX) as 1 �g/mL (1000
ppm) certified reference materials (CRM) in methanol. These
CRMs are used as analytical standard solutions for the
detection of Schedule 1, 2, or 3 toxic chemicals or their
precursors as stated in the CWC verification and related
analysis annex [25]. Stock solutions for these CWA simu-
lants/degradation products were prepared in ESI solvent
(90.0% methanol, 10.0% water) at concentrations of 100
�g/mL (100 ppm). Further dilutions of these stock solutions
with ESI solvent ranged from 0.01 to 100 �g/mL (10 ppb to
100 ppm), depending upon the experiment. The HPLC
grade ESI solvents (methanol, water) were purchased from
J. T. Baker (Phillipsburgh, NJ).

Instrumentation

The fundamental components (ESI source, AP-IMS drift
tube, pressure interface, TOFMS analyzer, and data
acquisition system) of IM(tof)MS technology as used in
this study were constructed over a period of time in
collaboration with Washington State University and
Ionwerks Incorporated, where only the positive mode
of operation have been previously described in detail
[20 –23, 26]. Thus, in light of previous work, only a brief
outline of the experimental sequence in negative ion
monitoring mode of operation is provided. A continu-
ous flow (1.0 �l/min) of solvent was electrosprayed in
the negative ion monitoring mode with a needle voltage
drop of �4.1 KV with respect to the target screen of the
APIMS. The APIMS was separated into two regions a
desolvation (8.0 cm long) and a drift (18.0 cm long) that
were maintained at a temperature of 225 °C. Desolvated
negatively charged ions from the electrospray process
drifted through the APIMS tube under a weak uniform
electric field (�430 V/cm), which facilitated separation
based upon differing analyte mobility constants. A
counter current flow of preheated nitrogen drift gas
was introduced at the end of the drift region at a rate of
1.0 L/min. Ions, upon exiting of the APIMS drift tube
(689 torr), traversed a pressure interface (1.2 torr) where
ions were transported through a series of lenses into the
TOFMS (4 � 10�6 torr) for analysis.

Data acquisition for this experimental sequence con-
sisted of a timing mechanism that was comprised of a
real-time two-dimensional (2-D) matrix of simultaneous
mobility drift and mass flight times. Ions were typically
gated for 200 �s into the drift region at a frequency of 25.0
Hz. This allowed for a maximum of 40 ms for AP-IMS
mobility data to be acquired. The TOFMS extraction
frequency was set to 50.0 kHz, which provided a mass
spectrum that consisted of ions with flight times up to 20
�s. Therefore, within each 40 ms mobility time window
there were effectively 2.00 � 103 TOF extractions. The
AP-IMS Bradbury-Nielsen ion gate, TOFMS extractor, and
TOFMS time-to-digital converter were all triggered by a
personal computer (PC) based timing controller. Synchro-
nization of this electronic hardware was facilitated by the

use of a dual Pentium III workstation running Ionwerks
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[27] three-dimensional (3-D) acquisition software. Experi-
mental data acquisitions were run in triplicate for a typical
run-time of 15.0 min per sample to provide clear ion
statistics. This ensured that the effects of ionization effi-
ciency and ion transmission were not a limiting factor
when determining limits of detection. Once acquired,
spectral compilations of data were then exported into
Research Systems IDL virtual machine 6.0 software for
processing [28].

Results and Discussion

A standard aqueous phase reference solution contain-
ing all six G-series CWA degradation products (EMPA,
IMPA, EHEP, IHEP, CHMPA, and PMPA) were elec-
trosprayed (9:1, methanol:water) at a rate of 1 �l/min
into the IM(tof)MS instrument in negative ion monitor-
ing mode. Figure 1 shows the 2-D IM(tof)MS separation
of an acquisition (15.0 min) of a solution (10 ppm)
conducted at an AP-IMS temperature of 225 °C. The 2-D
IM(tof)MS spectrum as seen in Figure 1 is also accom-
panied by a combination of both the extracted mobility
(shown on the side of the 2-D spectrum) and mass
(shown above the 2-D spectrum) spectra. Here, the ESI
background solvent ions were identified as 1: chloride
(35Cl)�, 2: chloride (37Cl)�, 3: nitrate (NO3)�, 4: water
cluster ((H2O)4-OH)�, and the ions from the CWA
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Figure 1. The IM(tof)MS of a 10 ppm liquid phase mixture
containing all six G-series CWA degradation products are shown
in negative ion monitoring mode by both the 2-D mobility-mass
spectrum and extracted mobility-mass spectra. Here the ESI
background solvent ions were identified as 1: Chloride (35Cl)�, 2:
Chloride (37Cl)�, 3: Nitrate (NO3)�, 4: Water cluster ([H2O]4-
OH)�, and the ions from the CWA degradation products were
identified as 5: Fragmentation products methyl phosphonic acid
(MPA-H)�, 6: Phosphate (H2PO4)�, 7: Fragmentation products
ethyl phosphonic acid (EPA-H)�, 8: Phosphoric acid ester
(CH3HPO4)�, 9: Ethyl methyl phosphonic acid (EMPA-H)�, 10:
Isopropyl methyl phosphonic acid (IMPA-H)�, 11: Ethyl hydro-
gen ethyl phosphonate (EHEP-H)�, 12: Isopropyl hydrogen ethyl
phosphonate (IHEP-H)�, 13: Cyclohexyl methyl phosphonic acid
(CHMPA-H)�, 14: Pinacolyl methyl phosphonic acid (PMPA-H)�.
degradation products were identified as 5: fragmenta-
tion products methyl phosphonic acid (MPA-H)�, 6:
phosphate (H2PO4)�, 7: fragmentation products ethyl
phosphonic acid (EPA-H)�, 8: phosphoric acid ester
(CH3HPO4)�, 9: ethyl methyl phosphonic acid (EMPA-
H)�, 10: isopropyl methyl phosphonic acid (IMPA-H)�,
11: ethyl hydrogen ethyl phosphonate (EHEP-H)�, 12:
isopropyl hydrogen ethyl phosphonate (IHEP-H)�, 13:
cyclohexyl methyl phosphonic acid (CHMPA-H)�, 14:
pinacolyl methyl phosphonic acid (PMPA-H)�. Notice
that the mobility spectrum alone yielded CWA degra-
dation products that have similar mobilities, such as
PMPA and CHMPA. This made it difficult to determine
significant resolution of these two ions from the com-
plete mixture by ion mobility alone. Further examina-
tion of Figure 1 also established that the mass spectrum
alone could not resolve all of the CWA degradation
products. This was due to ions (IMPA-H)� and (EHEP-
H)� having the same mass flight times. However, the
combination of ion mobility and mass spectrometry in
tandem, i.e., IM(tof)MS, provided a powerful 2-D mode
of acquisition for the identification and quantification of
all aqueous CWA degradation products at once, mak-
ing it possible to clearly determine each of the parent
ions, respective fragments, signal intensity, mobility
drift, and mass flight times produced from within a
single experimental run.

Tabulated values for each of the CWA degradation
products analyzed in this study are shown in Table 1.
Here, the ions (M � N)�, masses, drift times, reduced
mobility constants (Ko), and signal intensities are re-
ported. All six G-series CWA degradation products
produced both proton-loss parent ions, (M � H)� and
functional-group loss collision induced dissociation
(CID) fragments upon transition of the IM(tof)MS pres-
sure interface. More specifically, when fragmentation
occurs between the pressure interface (1.2 torr) and the
vacuum of the TOFMS (4 � 10�6 torr) the CID frag-
ments observed possess the same mobility drift times as
their respective parent ions. For example, PMPA pro-
duced both a parent (PMPA-H)� and a methyl phos-
phonic acid CID fragment (PMPA-H-C6H12)� ion with
different mass flight times but identical mobility drift
times. The fragment ion resulted from a collision in-
duced rearrangement loss of the C6 alkene. Likewise,
IHEP produced both a parent (IHEP-H)� and a ethyl
phosphonic acid CID fragment (PMPA-H-C3H6)�

which only differed by their respective mass flight
times. This trend was observed for all of the phosphonic
acids; in each case CID of the (M � H)� parent ion
yielded fragment ions with losses of alkenes from the
alkoxy groups due to CID rearrangements. As a side
note, CWA-chloride adducts were not observed even
for cases using elevated concentrations of CWA degra-
dation products. The resulting Ko values obtained for
the examined CWA degradation products are, to our
knowledge, the first ever published results for these
compounds in the negative ion mode. Moreover, the
comparison of these experimentally determined Ko val-

ues to some of those found in literature for positive
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mode [20], as shown in Table 1, helps to not only further
validate the use of the IM(tof)MS instrument for the
accurate identification of CWA degradation products
but also to provide an insight as to how negatively
charged ions behave as they move through the APIMS
drift space. For example, both EMPA and IMPA exhib-
ited a close similarity between their positive and nega-
tive mode Ko values, even though they were run on
different occasions. Lastly, as might be expected, most
CWA degradation products exhibited relatively similar
signal intensities, mainly due to what appears to be
common efficiency of proton extraction from hydroxyl
(OH�) functional groups. It should be noted that IHEP
showed the highest signal intensity followed by
CHMPA and PMPA, respectively.

Conclusions

The main advantage of IM(tof)MS technology over IMS
or MS technology alone is its ability to provide rapid
2-D data acquisition spectra with the capacity to elec-
tronically couple and decouple CID to generate ion
fragmentation patterns. This in turn facilitates the iden-
tification of mobility selected parent ions, permitting
rapid compound identification and significantly reduc-
ing the number of false positive responses [21]. Here,
the employment of the IM(tof)MS in negative ion mon-
itoring mode has shown the detection capacity (accu-
racy, precision, and robustness) to be used for a com-
plex aqueous phase mixture of CWA degradation
products. Using this approach, it was possible to clearly
determine each of the parent ions, respective CID
fragments, signal intensity, mobility drift, and mass
flight times produced from within a single experimental
run. The significance of this study now opens the door
to IM(tof)MS technology as a means to conclusively
detect Schedule 1, 2, and 3 toxic chemicals or their
precursors as stated in the CWC verification and related

Table 1. CWA degradation products identified by this study; io

Ions (M � N)a Mass (Da) D

EMPA (M-H)� 123.08
(M-H-C2H4)� 95.02

IMPA (M-H)� 137.10
(M-H-C3H6)� 95.02

EHEP (M-H)� 137.10
(M-H-C2H4)� 109.03

IHEP (M-H)� 151.13
(M-H-C3H6)� 109.03

CHMPA (M-H)� 177.17
(M-H-C6H10)� 95.02

PMPA (M-H)� 179.18
(M-H-C6H12)� 95.02

amobility information not applicable for CID fragment ions.
bKo Values are in cm2V�1s�1.
cpositive mode literature Ko values20 .
dsignal intensity.
epercent relative standard deviation (RSD) for three experimental runs
fcombined signal intensity from CHMPA and PMPA fragmentation.
analysis annex [25] in either positive ion monitoring
mode [20 –22, 26] or negative ion monitoring mode,
thereby increasing the reliability of identification and
decreasing the potential for false positive responses.
While this study was limited to the detection of a single
class of G-series aqueous phase CWA degradation
products in negative IM(tof)MS ion monitoring mode,
the analytical principles demonstrated in this study are
expected to be applicable to a wide range of compounds
such as inorganic anions, explosives, sugars, and other
analytes which can produce negative gas-phase ions.
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