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Tandem mass spectrometry is used to predict the chemical transformations of 2-pyrimidiny-
loxy-N-arylbenzyl amine derivatives. Compound 1, N-2-2-4,6- dimethoxypyrimidin-2-yloxy
benzylamino phenyl benzamide was selected as a model to present our idea. The CID reactions
of protonated 1 include an intramolecular SN2 reaction and a cyclodehydration reaction. Under
in-source CID conditions, deprotonated 1 undergoes a Smiles rearrangement reaction and then
dissociates to the ion at m/z 349. Theoretical computations were invoked to shed light on the
reaction mechanisms of 1 by the semiempirical PM3 method. These studies of gas-phase
reactions show the reactivity of some potential reaction centers in this molecule, which
inspired us to explore the solution phase analogous reactions of 1. Further experiments show
that 1 has two analogous reactions in acidic solution: the acid-catalyzed cyclodehydration
reaction and the acid-catalyzed Smiles rearrangement reaction. Moreover, 1 undergoes the
base-catalyzed Smiles rearrangement under basic conditions. The present study demonstrates
that mass spectrometry can play an important role in predicting the chemical solution phase
transformations of 2-pyrimidinyloxy-N-arylbenzyl amine derivatives. (J Am Soc Mass Spec-
trom 2006, 17, 253–263) © 2006 American Society for Mass Spectrometry
There is increasing interest and demand for simul-
taneously monitoring pesticides as well as related
degradation products (DPs) in the environment,

as the latter compounds can be even more toxic than the
former compounds. When released into the environ-
ment, herbicides are subjected to various biotic and
abiotic processes such as photolysis, oxidation, hydro-
lysis, and biodegradation leading to different transfor-
mation products with environmental behaviors and
toxicity different from those of the parent compounds
[1–5]. Chemical transformations catalyzed by acidic or
basic conditions are normally found in the environ-
ment. Mass spectrometry (MS) techniques, especially
methods involving tandem mass spectrometry, have
been widely used in many scientific fields as detection
systems and for structure elucidation. The study of
fragmentation pathways is particularly useful in the
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characterization of analytes and the identification of
specific transitions, since it permits their unequivocal
assignment [6 – 8]. Certain analogies between mecha-
nisms in the gas phase and in solution have been known
for a long time, and sometimes it is possible to correlate
the behavior of charged species formed in the gas phase
and in the solution phase [9 –13]. Therefore, mass spec-
trometry, especially tandem mass spectrometry, can
also act as an important gas-phase “physical organic” tool
for mechanistic studies of organic unimolecular reactions
under solvent-free conditions [14]. In fact, the modern
mass spectrometer has been termed as a “complete chem-
ical laboratory” by Beynon and coworkers [15].

2-Pyrimidinyloxy-N-arylbenzyl amine derivatives
were developed by the Shanghai Institute of Organic
Chemistry. These compounds have many favorable
properties, such as high herbicidal activity, a low dose
rate of application, and a high degree of degradation
[16]. For simplicity in discussion, compounds discussed
here are assigned a numbers (1 to 8) and their structures
are shown in Scheme 1. Previous mass spectrometric
studies of protonated 2-pyrimidinyloxy-N-arylbenzyl
amine derivatives revealed some interesting gas-phase

rearrangement/fragmentation reactions [17–19]. In
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particular, the gas-phase SNAr type rearrangement
inspired us to investigate the acid-catalyzed Smiles
rearrangement reaction of 2-pyrimidinyloxy-N-arylben-
zylamine derivatives in solution phase [20]. These re-
sults show that the gas-phase reactions of the proton-
ated (or deprotonated) 2-pyrimidinyloxy-N-arylbenzyl
amine derivatives initiated by collision induced disso-
ciation (CID) have similarities with the analogous solu-
tion phase reactions. Thus, we want to show whether it
is possible to predict chemical transformations in solu-
tion by using tandem mass spectrometry.

Compound 1, N -2-2-4,6-dimethoxypyrimidin-2-
yloxy benzylamino phenyl benzamide, was selected as
a model to present our idea: using tandem mass spec-
trometry to predict chemical transformations of this
compound. First, the gas-phase reactions of protonated
and deprotonated 1 and its related compounds are fully
discussed. Second, some theoretical computations are
carried out to support the proposed mechanisms of
these gas-phase reactions. From the studies of the
gas-phase reactions of 1, the intrinsic reactivity centers
in this molecule are revealed, and their potential reac-
tivity trends are clarified. Based on these results, we
follow the strategy “from gas phase to condensed
phase” to explore and examine the analogous reactions
of 1 in solution. Further solution phase experiments
reveal that Compound 1 undergoes two analogous
reactions in mild acidic solution: the acid-catalyzed
cyclodehydration reaction and the acid-catalyzed Smiles
rearrangement reaction. In addition, the base-catalyzed
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discussed in this article (Compounds 1–8).
Smiles rearrangement of 1 was observed under moder-
ately basic conditions. The gas-phase reactions of 2 and
3 are examined to support the proposed mechanisms in
the gas-phase reactions of Compound 1. Herein, the
association and difference between the gas-phase reac-
tion mechanisms and their solution phase analogs are
discussed and pointed out.

Experimental

Materials and Reagents

Compounds 1–8 were synthesized and verified by
NMR, IR, and MS. DHB was purchased from Sigma
Aldrich Co., St. Louis, MO.

MALDI-SORI-CID Experiments

The MS/MS experiments were performed using a
Fourier transform ion cyclotron resonance mass spec-
trometer (Ionspec, Irvine, CA) equipped with a 4.7 T
actively shielded super-conducting electromagnet
(Cryomagnetics, Oak Ridge, TN) by sustained off-
resonance irradiation collision-induced dissociation
(SORI-CID) [21, 22]. The MALDI source used an
ND:YAG laser (355 nm, New Wave, Fremont, CA).
The mass isolation window was set as 0.8 m/s to
eliminate unwanted ions and the off-resonance irra-
diation frequency was set to 800 Hz; the amplitude of
the SORI pulse was the adjustable parameter used to
control the degree of fragmentation ranging from 0.8

NN

O

HN

MeO OMe

HN O

F

Cl

NN

O

HN

MeO OMe

Cl

O

H
N

F

NN

O
H
N

MeO OMe

O

OH

NN

N

MeO OMe

HN

O

OH

3 4

6

8

yrimidinyloxy-N-arylbenzylamine derivatives
OMe

t 2-p
to 1.8 Vb-p with N2 as collision gas.



pathw

255J Am Soc Mass Spectrom 2006, 17, 253–263 TANDEM MS TO PREDICT CHEMICAL TRANSFORMATIONS
ESI In-Source CID Experiments

The ESI in-source CID experiments are performed with
a quadrupole mass spectrometer (Agilent Technologies,
Palo Alto, CA) [23]. The capillary voltage was set to
�3600 V for positive ion mode and �4000 V for
negative ion mode. The nebulizing gas flow rate and
curtain gas pressure were 10 ml/min and 35psi. The
fragmentation voltage was set as 150–250 V to give
suitable energy for dissociation.

Computational Methods

All theoretical calculations were carried out by the
semiempirical PM3 method with Spartan molecular
modeling software. The structures of ion species on the
potential energy surface of the gas-phase reactions are
optimized by semiempirical PM3 without imposing any
constraints, and the heats of formation of the optimized
structures were calculated. All optimized structures
were subjected to vibrational frequency analysis [24,
25]. The optimized structures were shown by software
Gauss View (version 3.07, Gaussian Inc, Pittsburgh, PA).

Results and Discussion

Gas Phase Reactions of Protonated 1
and Related Compounds

Based on our previous report, protonated 1 contains
two product ions: the K ion at m/z 245 and the T ion at
m/z 439 [17]. The mechanisms for the formation path-
ways of the K ion at m/z 245 and the T ion at m/z 439 are
shown in Scheme 2; theoretical calculations and addi-
tional experiments will be performed to support the
proposed mechanisms.

Scheme 2. Proposed dissociation
Generation of the K series ions is the most character-
istic fragmentation pathway for protonated 2-pyrimidi-
nyloxy-N-arylbenzyl amine derivatives. A benzyl mi-
gration reaction with intramolecular SN2 mechanism
was proposed to explain this process [17, 26, 27]. Since
the solvation effect and hydrogen bond effect does not
affect gas-phase reactions, the intrinsic nucleophilicity
of the tertiary amine of pyrimidine facilitated such SN2
reaction. Herein, theoretical computations are invoked
to confirm the rationality of this process. Protonated 1
(the protonation location is arylbenzylamine) is used as
a model to explain the formation process of the K ion at
m/z 245 with a neutral loss of (2-aminophenyl)(phenyl)
methanone (simplified to “A”). The optimized struc-
tures of ion species are shown in Figure 1 and the
schematic potential energy surface for this intramolec-
ular SN2 reaction is shown in Figure 2. The energy
barrier for the intramolecular SN2 reaction path is 38.8
kcal/mol and the relative energy of the products is 2.2
kcal/mol. The angle of the N-C-N in the structure of the
SN2 transition-state is 160.4°, which is consistent with
the typical SN2 reaction model.

When the benzamide moiety is protonated, the cy-
clodehydration of protonated 1 induces the gas-phase
benzoimidazole-forming reaction and gives rise to the T
ion at m/z 439. Theoretical calculations reveal that the
gas-phase cyclodehydration reaction involves three
steps. First, the neutral arylbenzylamine acts as a nu-
cleophile to attack the protonated carbonyl of amide to
form the intermediate 1 (IM1) via a nucleophilic addi-
tion transition-state (TS1). Then the proton transfers
from the amine to the hydroxyl group to form the
intermediate 2 (IM2) via a proton migration transition-
state (TS2). In the last step, the dehydration of IM2
generates the T ion at m/z 439 with the benzoimidazole
moiety via a dehydration transition-state (TS3). The

ays of protonated 1 in SORI-CID.
structures of ion species on the potential energy surface
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of this gas-phase cyclodehydration reaction are shown
in Figure 3 and the schematic potential energy surface is
shown in Figure 4. The relative energy of the cyclode-
hydration reaction products is �6.1 kcal/mol, which
demonstrates that this gas-phase cyclodehydration re-
action is thermodynamically favorable.

An SN1 mechanism might also be used to explain the
formation process of the ion at m/z 245, and a direct
dehydration from protonated amide might also be used
to explain the formation process of the ion at m/z 439.
The corresponding mechanisms involved are proposed
and shown in Scheme 3. According to this mechanism,
the “K ion” at m/z 245 has an open-ring structure (ORK
ion) and the “T ion” at m/z 439 has an open-ring
structure (ORT ion). The calculated heat of formation

Figure 1. Semi-empirical PM3 optimized structures of the ion
species along the gas-phase benzyl migration reaction of proton-
ated 1 (the benzylamine is protonated). The mechanism is pro-
posed to be an intramolecular SN2 reaction. Heats of formation are
given in kcal/mol and the lengths of the chemical bonds are given
in Å.

Figure 2. The schematic potential energy surface for the gas-

phase benzyl migration reaction.
for the optimized structure of the ORK ion is 146.8
kcal/mol, which is much higher than that of the K ion
with the closed-ring structure (104.3 kcal/mol). There-
fore, the K ion with the closed-ring structure is much
more stable than the ORK ion and the corresponding
benzyl migration pathway is more favorable. The cal-
culated heat of formation for the ORT ion is 192.7
kcal/mol, which is higher than that of the closed-ring
structure ion (159.7 kcal/mol). Therefore, the T ion with
the closed-ring structure ion is much more stable than
the ORT ion and the corresponding cyclodehydration
pathway is more reasonable.

Theoretical computations show that the energy bar-
rier for the gas-phase cyclodehydration reaction is

Figure 3. Semi-empirical PM3 optimized structures of the ion
species along the gas-phase cyclodehydration reaction pathway of
protonated 1 (the amide is protonated).

Figure 4. The schematic potential energy surface for the gas-

phase cyclodehydration reaction.
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lower than the benzyl migration reaction. The results
can be used to explain the reason why the relative
abundance of the ion at m/z 439 is higher than that of the
ion at m/z 245. Alkali metal cationization has been also
explored as an alternative to protonation by changing
the site of charge localization and to promote different
fragmentation processes. However, alkali metal (Li�,
Na�, and K�) adduct ions of 1 do not yield informative
fragment ions. Thus, it is concluded that a proton is
important to trigger the reactions in the gas-phase and
this clue suggests that this compound might undergo
analogous reactions under acid-catalyzed conditions.

Similarly, the SORI-CID spectrum of protonated 4,
shown in Figure 5a, gives the K ion at m/z 263 and the
T ion at m/z 491. Compound 4 has the fluorine and
chlorine substituents in the molecule. Thus, these sub-
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Figure 5. The positive ion SORI-CID spectra of

(b) protonated 5 at m/z 520; (c) protonated 6 at m/z 5
stituents can be regarded as markers to support the
dissociation process. The SORI-CID spectrum of pro-
tonated 5, shown in Figure 5b, contains only one
product ion at m/z 259. An acyl migration reaction is
proposed to explain the formation process of the prod-
uct ion at m/z 259, and the corresponding mechanism is
shown in Scheme 4. The ion at m/z 259 has a cyclic
amide structure, which is similar to that of the K ion, so
herein it is called a K= ion. This acyl migration reaction
can be regarded as additional proof for the intrinsic
nucleophilicity of the tertiary amine of pyrimidine in
the gas-phase reaction. The mechanisms of gas-phase
benzyl migration and acyl migration reactions are sim-
ilar to the mechanism of the “histidine effect”, which
refer to the nucleophilic attack of the imidazole nitrogen
of the histidine side-chain to the protonated amide
bond to form the cyclic (non-oxazolone derivative)
C-terminal fragments [28, 29]. The computation for the
acyl migration reaction, the accurate mass determina-
tion results and the X-ray crystal data of 2 and 3 can be
seen in the Supplementary Material section in the
online version of this article.

nated 4, 5, 6, and 7: (a) protonated 4 at m/z 509;

Scheme 4. Proposed dissociation pathways of protonated 5 in
SORI-CID.
proto

09; (d) protonated 7 at m/z 509.
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The aminoacyl group in 6 and 7 is at a meta-position
and para-position, respectively. Therefore, 6 and 7 are
used to examine substituent effects in the reactions of

Scheme 5. Proposed dissociation
Scheme 6. Proposed dissociation pathw
protonated 2-pyrimidinyloxy-N-arylbenzyl amine de-
rivatives. The SORI-CID spectrum of protonated 6 is
shown in Figure 5c, and the proposed dissociation

ays of protonated 6 in SORI-CID.
ays of protonated 7 in SORI-CID.
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pathways are shown in Scheme 5. The SORI-CID spec-
trum of protonated 7 is shown in Figure 5d, and the
proposed dissociation pathways are shown in and
Scheme 6. There are two notable changes in the disso-
ciation pattern when the aminoacyl group does not
locate in the ortho-position. First, the protonated 6 and 7
undergo the Smiles rearrangement when a proton mi-
grates from arylbenzylamine to the aminoacyl group.
Second, the protonated 6 and 7 dehydrate via a gas-
phase retro-Ritter mechanism [30, 31]; therefore, the

Figure 6. The negative ion in-source CID spectra of deproto-
nated 1 and 3, (a) deprotonated 1; (b) deprotonated 3.
Scheme 7. Proposed formation pathway of the ion a
extent of the dehydration of protonated 6 and proton-
ated 7 is a minor process compared with that of
protonated 1.

Gas Phase Reactions of Deprotonated 1
and Related Compounds

The conjugative effect of two neighboring aromatic
rings makes the enolization of amide group of Com-
pound 1 more favorable. The enol form of 1 with an
active hydroxyl group can be ionized with ESI in the
negative ion mode [32]. The in-source CID mass spec-
trum of deprotonated 1 is shown in Figure 6a. The
formation process of the ion at m/z 349 from deproto-
nated 1 cannot be rationalized without invoking a
skeletal rearrangement before the fragmentation. A
gas-phase anionic type Smiles rearrangement mecha-
nism is proposed to explain the formation of the ion at
m/z 349. The mechanism is shown in Scheme 7 [33, 34].
The in-source CID spectrum of deprotonated 3 is shown
in Figure 6b. Interestingly, the structure of deproto-
nated 3 is the same as the structure of the RE ion
(mentioned in Scheme 7) and in-source CID of depro-
tonated 3 gives the same product ion at m/z 349, which
offers convincing evidence for the anionic type gas-
phase Smiles rearrangement mechanism of deproto-
nated 1.

The Smiles rearrangement reaction is known mainly
through a base-catalyzed rearrangement mechanism,
which involves a Meisenheimer complex [33–38]. The
goal of our calculations for this interesting gas-phase
anionic type Smiles rearrangement is to show the pos-
sible existence of some transition states and reaction
intermediates and their relative energies. Firstly, the
proton migrates from benzylamine to the enol anion to
give the benzylnitrogen anion, which attacks the 2-po-
sition carbon of pyrimidine as the nucleophile to form
the Meisenheimer complex via an aromatic nucleophilic
t m/z 349 from in-source CID of deprotonated 1.
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Figure 7. Semi-empirical PM3 optimized structures of the ion species involved in the formation
process of the ion at m/z 349 from deprotonated 1. The deprotonated 1 undergoes gas-phase Smiles
rearrangement to RE ion via Meisenheimer complex and then dissociate to the ion at m/z 349.
Figure 8. The schematic potential energy surface for the fragmentation pathway of deprotonated 1.
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addition transition-state (TS1). Secondly, the cleavage
of the COO bond in the Meisenheimer complex gives
rise to the RE ion via an elimination transition-state
(TS2) [39, 40]. Finally, the RE ion fragments into the ion
at m/z 349 with a neutral loss of 6-methylenecyclohexa-
2,4-dienone (MEC) through a retro-Michael transition-
state (TS3) [19, 40]. The optimized structures of ion
species involved in the fragmentation pathway of dep-
rotonated 1 are shown in Figure 7, and the schematic
potential energy surface is shown in Figure 8. Analysis
in Figure 8 shows that the formation of the Meisenhei-
mer complex and RE ion is favorable thermodynami-
cally.

Compound 8 has a carboxyl group and can be easily
ionized with ESI in the negative ion mode. The in-
source CID spectrum of deprotonated 8 contains the
product ions at m/z 274 and m/z 230, which is shown in
Figure 9. Analysis in Figure 9 shows that deprotonated
8 also undergoes a gas-phase Smiles rearrangement and
then dissociates to the ion at m/z 274 and further to the
ion at m/z 230 by loss of CO2.

Figure 9. The in-source CID spectrum of deprotonated 8.
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and the base-catalyzed transformation pathway of 1
Predicting Chemical Transformations of Compound
1 in Solution

Previous studies have demonstrated that it is possible
to correlate the behavior of the reactions of closed-shell
organic ions in the gas phase and in solution [9 –12]. The
study of gas-phase reactions of protonated and depro-
tonated 1 allows us to investigate intramolecular or-
ganic reactions of these ion species under solvent-free
conditions. These tandem mass spectrometric results
provide information about the intrinsic intramolecular
chemical reactivities of this compound, which include
the aromatic substitution of the C-2 position of pyrim-
idine with nucleophiles and the condensation of ami-
noacyl group with ortho-position benzylamine. Our
strategy “from gas phase to condensed phase” means to
collect and summarize the chemical information of the
compound in the mass spectrometric process to provide
valuable clues of possible chemically analogous trans-
formations or reactions of the compound in solution.
Since the gas-phase CID reactions of 1 occur under
protonation or deprotonation conditions, further exper-
iments in solution are performed to explore the analo-
gous reactions of 1 under acidic or base-catalyzed
conditions.

Analogous Reactions of Compound 1 in Solution

Investigation of the chemical transformations of 1 in the
solution phase began under strong acidic and basic
conditions, which seems unfavorable because of com-
plicated degradation reactions. When 1 reacted in a
mild acidic solution (acetic acid:acetone, 1:1) at 25 °C
with agitation, Compounds 2 and 3 were obtained
as final products (2:3, 74.2%:21.7%, detected by
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HPLC-MS). The mechanisms of two competitive reac-
tions are shown in Scheme 8. Path a is proposed to be an
acid-catalyzed Smiles rearrangement reaction. In this
reaction pathway, the pyrimidine ring is activated by
protonation towards the nucleophiles under acidic con-
ditions, since the protonation of the vicinal nitrogen in
pyrimidine withdraws electrons from the C-2 position
[20, 38]. Path b is an acid-catalyzed cyclodehydration
process [41, 42], and the mechanism is similar to that of
its gas-phase analogous reaction; such cyclodehydra-
tion strategy has been reported as a convenient route to
synthesize benzimidazoles [42].

It is proposed that the failure to observe the analo-
gous reactions of the gas-phase benzyl migration reac-
tion in solution is caused by solvent effects or protona-
tion on the nitrogen in the pyrimidine ring. The
protonation effect and the hydrogen bond interaction
effect withdraw electrons from the nitrogen in the
pyrimidine, which decreases the nucleophilicity of the
nitrogen of pyrimidine in solution. Therefore, such an
intramolecular SN2 reaction was not observed in solu-
tion.

In a mild basic solution (saturated K2CO3 solution,
methanol:acetone, 1:1) at 25 °C with agitation for two
days, 1 rearranged to 3. Path c is a base-catalyzed Smiles
rearrangement reaction and the mechanism is also
shown in Scheme 8 [36, 37]. The transformation process
of 1 in basic solution is similar to the dissociation
pathway of deprotonated 1 in the gas-phase.

Fortunately, the single crystal X-ray structures of 2
and 3 were obtained and shown in Figure 10. As a
result, the predictions based on experimental results of
tandem mass spectrometry are confirmed by the exper-
iments in solution, which show that the solution-phase
reactions and the gas-phase analogs occur via the same
“real reactive ion species”.

Conclusions

The present study reports a significant association be-

Figure 10. The X-ray crystal structures o
tween gas-phase reactions and the analogous reactions
of 1 in solution. The CID cyclodehydration of proton-
ated 1 into the corresponding protonated 2 appears to
proceed in a fashion similar to the corresponding pro-
cess induced by acid-catalyzed conditions in solution.
The CID anionic type Smiles reaction of deprotonated 1
into deprotonated 3 also has its solution phase counter-
part: the base-catalyzed Smiles rearrangement. Based on
the above information, the gas-phase reactions of 1 and
its solution phase transformation pathways are clari-
fied. Overall, the tandem mass spectrometric results
provide valuable clues and insights for their solution
reactions. As a high-throughput and green chemistry
method, without consuming large amounts of organic
solvents, using tandem mass spectrometry to predict
the chemical transformations of drugs and pesticides in
solution will become a promising technique in degra-
dation studies for drugs and pesticides.
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