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An optimized analytical expression profiling strategy based on gel-free multidimensional
protein identification technology (MudPIT) is reported for the systematic investigation of
biochemical (mal)-adaptations associated with healthy and diseased heart tissue. Enhanced
shotgun proteomic detection coverage and improved biological inference is achieved by
pre-fractionation of excised mouse cardiac muscle into subcellular components, with each
organellar fraction investigated exhaustively using multiple repeat MudPIT analyses. Func-
tional-enrichment, high-confidence identification, and relative quantification of hundreds of
organelle- and tissue-specific proteins are achieved readily, including detection of low
abundance transcriptional regulators, signaling factors, and proteins linked to cardiac disease.
Important technical issues relating to data validation, including minimization of artifacts
stemming from biased under-sampling and spurious false discovery, together with sugges-
tions for further fine-tuning of sample preparation, are discussed. A framework for follow-up
bioinformatic examination, pattern recognition, and data mining is also presented in the
context of a stringent application of MudPIT for probing fundamental aspects of heart muscle
physiology as well as the discovery of perturbations associated with heart failure. (J Am Soc
Mass Spectrom 2005, 16, 1207–1220) © 2005 American Society for Mass Spectrometry

Cardiomyopathies are diseases of the heart which
impair cardiac muscle function that can progress
to heart dilatation and cardiac failure. Heart

failure represents a leading cause of morbidity and
death globally. Due to the poor prognostic outcome of
late stage disease, innovative preventive and therapeu-
tic measures are needed urgently for the early detection,
categorization, and treatment of at-risk patients [1].
These developments will require a more complete mo-
lecular understanding of the molecular basis of normal
heart function and the pathophysiological effects of
impaired cardiac function associated with disease.
The trigger for cardiac contraction is the elevation of

myoplasmic Ca2� concentrations, mediated by Ca2�-
release channels (ryanodine receptors; RyRs) that tap

the Ca2� store in the lumen of the sarcoplasmic reticu-
lum (SR) and plasma-membrane Ca2� channels (dihy-
dropyridine receptors; DHPRs) that tap the high con-
centrations of Ca2� in the extracellular space [2]. The
trigger for relaxation is the lowering of myoplasmic
Ca2� concentration by the combined activity of the
sarco(endo)plasmic reticulum Ca2�-ATPase (SERCA),
the plasma membrane Ca2�-ATPases (PMCAs), and
Na�/Ca2� exchangers (NCXs). In humans, the activity
of SERCA2 (the cardiac specific isoform) determines the
rate of removal of�70% of cytosolic Ca2� [2, 3], thereby
determining the rate of relaxation of the heart, and
influencing cardiac contractility by determining the size
of the luminal Ca2� store that is available for release in
the next beat. Proper regulation of Ca2� flux is central to
normal heart function. This regulation is perturbed in
most, if not all, cardiomyopathies.
Cardiac function is regulated on a beat-to-beat basis

through the sympathetic nervous system [3]. When
demand arises, the heart can respond to stress and
increase blood flow to peripheral tissues within sec-
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onds. This is due to the large cardiac reserve in humans;
the slow basal heart beat rate and submaximal contrac-
tility at rest are increased markedly after the release of
adrenaline into the blood [3]. Adrenaline and other
�-agonists initiate an important stimulatory signal-
transduction pathway in the heart by binding to and
activating �-adrenergic receptors present on the cell
outer membrane. The signal proceeds through Gs pro-
teins, leading to the formation and accumulation of
cyclic AMP by adenylate cyclase. Elevations in cAMP
concentration cause activation cAMP-dependent pro-
tein kinase (PKA), which then phosphorylates and
alters the function of key cardiac proteins regulating
overall cardiac function. Prominent among these pro-
teins is phospholamban (PLN), a small, reversibly phos-
phorylated transmembrane protein that is located in the
cardiac SR [4]. Depending on its phosphorylation state,
PLN binds to and regulates the activity of SERCA2a
(the cardiac specific isoform). The dephosphorylated
form of PLN inhibits SERCA activity by reducing its
affinity for Ca2�. This inhibition is overcome by phos-
phorylation of PLN by either protein kinase A (PKA),
calcium-calmodulin kinase (Cam-kinase), or protein ki-
nase C (PKC) which, by relieving Ca2�-pump inhibi-
tion, enhances relaxation rates and contractility [4].
Hypertrophic cardiac disease, caused by ischemic

heart disease or tissue damage stemming from myocar-
dial infarction, often progresses into dilated cardiomy-
opathy [5]. The cellular mechanisms that underlie this
progression are poorly understood. Cardiac hypertro-
phy, hypertension and heart failure are linked to im-
paired cardiomyocyte function, and one form of impair-
ment stems from perturbed Ca2� regulation [2]. A
better understanding of the full complement of proteins
perturbed in cardiac tissue during progression to heart
failure induced by impaired Ca2� signaling and the role
of these factors in disease pathogenesis is a major focus
of our ongoing collaborative proteomic research
program [6].
Several validated mouse genetic and transgenic

models are available to investigate cardiomyopathy and
heart failure at a detailed molecular level not currently
feasible in humans. For instance, transgenic mice over-
expressing a human disease point mutant variant in
PLN (R9C) die early of severe dilated cardiomyopathy
(within four to five months of age). It is possible to
examine the phenotype of the affected cardiac tissue of
such mice at various stages of pathology, even prior to
overt presentation of clinical symptoms, and to examine
the corresponding proteome at select time-points in the
disease progression using shotgun proteomic ap-
proaches [7]. When this potential is combined with the
use of high penetrance inbred strains to minimize the
influence of genetic variance, a more refined investiga-
tion of the course of disease action can be carried out.
Mouse models also provide a useful setting for investi-
gation of the cellular responses and long-term effects of
clinically relevant therapeutic interventions [8–10].
Heart myocytes are predicted to express several

thousand distinct protein species [11–13], several hun-
dred of which are likely to be tissue-specific and hence
critical for proper cardiac performance and capacity.
Although a number of gene products predisposing to
cardiomyopathy have been reported to date (dystro-
phin, for example [14]) based on known or predicted
heart-related functions, identification of the full set of
proteins associated with this “complex trait” has
proven to be a challenge [15]. A comprehensive, non-
biased description of the proteome or set of expressed
proteins in healthy and diseased cardiac tissue could
provide a breakthrough in understanding of the patho-
genesis of heart disease by furthering knowledge of
unknown critical disease pathways, leading to novel
diagnostic and therapeutic targets.
Nevertheless, the complexity and markedly skewed

composition of the cardiac muscle proteome represents
a considerable experimental challenge and effective
sample fractionation methods are required in order to
detect low abundance proteins [16]. Historically, 2D-gel
electrophoresis has provided a useful method for high-
resolution separation of complex protein samples, in-
cluding cardiac tissue [13]. However, gel-based pro-
teomic techniques are generally biased towards
detection of high abundance housekeeping enzymes,
with reduced detection of low abundance proteins,
membrane proteins, and proteins with extremes in
isoelectric point and molecular weight [17, 18], limita-
tions that are further compounded by the need to
analyze many individual gel spots. To circumvent these
problems, several groups have developed gel-free pro-
tein expression profiling strategies coupling high-effi-
ciency liquid chromatography separation procedures
with automated tandem mass spectrometry, allowing
for large-scale ‘shotgun’ sequencing of complex mix-
tures [16]. The archetypal approach, termed MudPIT
(for Multidimensional Protein Identification Technol-
ogy) [19], pioneered in the laboratory of John Yates, III,
has proven to be a remarkably effective and robust
methodology for investigating global changes in pro-
tein expression as a function of development and dis-
ease [20–22].
Our group has been evaluating the utility of MudPIT

as a method for investigating the molecular basis of
normal heart physiology and disease perturbed cardio-
myopathies in a controlled animal model setting [6].
Here, we outline some of the more challenging technical
and analytical issues that have become apparent in our
pilot studies, and offer helpful experimental, technical,
and computational solutions that we have developed to
date which allow for a more comprehensive and reli-
able analysis of healthy and diseased mammalian car-
diac tissue. While centered on heart disease, the analyt-
ical approach described here is broadly applicable to a
range of biomedical problems, and hence should be of
general interest to investigators contemplating or cur-
rently applying MudPIT to generate a detailed molec-
ular description of the proteomic patterns of cells,
tissues and/or organelles of special focus.
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Materials and Methods

Heart Homogenization and Organelle Isolation

Hearts were isolated from adult mice (24 weeks of age),
atria were removed, and the ventricles carefully minced
with a razor blade and rinsed extensively with ice-cold
PBS (phosphate buffered saline) to remove excess
blood. Tissue was homogenized for 30 s using a loose-
fitting hand-held glass homogenizer in 10 ml lysis
buffer (250 mM sucrose, 50 mM Tris-HCl pH 7.6, 1 mM
MgCl2, 1 mM DDT (dithiothreitol), 1 mM PMSF (phe-
nylmethylsulphonyl fluoride). All subsequent steps
were performed at 4 °C. The lysate was centrifuged in a
benchtop centrifuge at 800 � g for 15 min; the superna-
tant served as a source for cytosol, mitochondria, and
microsomal fractions. The pellet containing nuclei was
diluted in 8 ml of lysis buffer and layered onto 4 ml of
0.9 M sucrose buffer (0.9 M sucrose, 50 mM Tris-HCl
pH 7.6, 1 mM MgCl2, 1 mM DDT, 1 mM PMSF) and
centrifuged at 1000 � g for 20 min at 4 °C. The resulting
pellet was resuspended in 8 ml of a 2 M sucrose buffer
(2 M sucrose, 50 mM Tris-HCl pH 7.4, 5 mM MgCl2, 1
mM DTT, and 1 mM PMSF), layered onto 4 ml of 2 M
sucrose buffer and pelleted by ultracentrifugation at
150,000 � g for 1 h (Beckman SW40.1 rotor). The nuclei
were recovered as a pellet. The mitochondria were
isolated from the supernatant by re-centrifugation at
7500 � g for 20 min at 4 °C; the resulting pellet was
washed twice in lysis buffer. Microsomes were pelleted
by ultracentrifugation of the post-mitochondrial cyto-
plasm at 100,000 � g for 1 h in a Beckman SW41 rotor.
The supernatant served as the cytosolic fraction.

Organelle Extraction

Nuclear proteins were extracted, followed by resuspen-
sion and incubation of the nuclei in 5 vol of high salt
buffer (0.5 M NaCl, 20 mM HEPES (4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid) pH 7.9, 1.5 mM
MgCl2, 0.2 mM EDTA, 1 mM DTT, 1 mM PMSF, 20 %
glycerol) on ice for 30 min with gentle shaking. The
nuclei were then lysed by 10 passages through an
18-gauge needle, and debris was removed by centrifu-
gation at 13,000 � g in a microfuge for 30 min. The
supernatant°served°as°the°“NUC°1”°fraction°(see°Figure
1),°while°the°insoluble°pellet°was°resuspended°in°5°vol
of high salt buffer containing 1% Triton-X-100 detergent
and shaken gently for 30 min. The suspension was
sheared by 10 passages through an 18-gauge needle and
debris removed by centrifugation at 13,000 g for 30 min.
The supernatant served as the “NUC 2” fraction.
Soluble mitochondrial proteins were extracted by

incubating the mitochondria in hypotonic lysis buffer
(10 mMHEPES, pH 7.9, 1 mMDTT, 1 mM PMSF), for 30
min on ice. The suspension was sonicated briefly and
debris removed by centrifugation at 13,000 � g for 30
min. The supernatant served as the “MITO 1” fraction.
The resulting insoluble pellet was resuspended in mem-
brane detergent extraction buffer (20 mM Tris-HCl, pH

7.8, 0.4 M NaCl, 15% glycerol, 1 mM DTT, 1 mM PMSF,
1.5% Triton-X-100) and shaken gently for 30 min fol-
lowed by centrifugation at 13,000 � g for 30 min; the
supernatant served as “MITO 2” fraction.
Membrane-associated proteins were extracted by re-

suspending the microsomes in membrane detergent
extraction buffer. The suspension was incubated with
gentle shaking for 1 h and insoluble debris removed by
centrifugation at 13,000� g for 30 min. The supernatant
served as the “MICRO” fraction.

Digestion of Organelle Extracts and MudPIT
Analysis

An aliquot of �100 �g total protein (as determined by
Bradford assay) from each fraction was precipitated
overnight with 5 vol of ice-cold acetone at �20 °C,
followed by centrifugation at 13,000� g for 15 min. The
protein pellet was solubilized in a small volume of 8 M
urea, 50 mM Tris-HCl, pH 8.5, 1 mM DTT, for 1 h at
37 °C, followed by carboxyamidomethylation with 5
mM iodoacetamide for 1 h at 37 °C in the dark. The
samples were then diluted to 4 M urea with an equal vol
of 100 mM ammonium bicarbonate, pH 8.5, and di-
gested with a 1:150-fold ratio of endoproteinase Lys-C
(Roche Diagnostics, Laval, Quebec, Canada) at 37 °C
overnight. The next day, the samples were diluted to 2
M urea with an equal vol of 50 mM ammonium
bicarbonate pH 8.5, supplemented with CaCl2 to a final
concentration°of°1°mM,°and°incubated°overnight°with
Poroszyme trypsin beads (Applied Biosystems, Streets-
ville, Ontario, Canada) at 30 °C with rotation. The
resulting peptide mixtures were solid phase-extracted
with SPEC-Plus PT C18 cartridges (Ansys Diagnostics,
Lake Forest, CA) according to the instructions of the
manufacturer and stored at �80 °C until further use.
A fully-automated 20 h long 12-step multi-cycle

MudPIT procedure was set up as described previously
[16].°Briefly,°an°HPLC°quaternary pump was interfaced
with an LCQ DECA XP ion trap mass spectrometer
(Thermo Finnigan, San Jose, CA). A 100-�m i.d. fused
silica capillary microcolumn (Polymicro Technologies,
Phoenix, AZ) was pulled to a fine tip using a P-2000
laser puller (Sutter Instruments, Novato, CA) and
packed with 8 cm of 5 �m Zorbax Eclipse XDB-C18 resin
(Agilent Technologies, Mississauga, Ontario, Canada),
followed by 6 cm of 5 �m Partisphere strong cation
exchange resin (Whatman, Clifton, NJ). Individual sam-
ples were loaded manually onto separate columns
using a pressure vessel. Chromatography solvent con-
ditions°were°exactly°as°described°earlier°[16].

Protein Identification and Validation

The SEQUEST database search°algorithm°[23]°was used
to match peptide tandem mass spectra to peptide
sequences in a locally-maintained minimally redundant
FASTA formatted database populated with mouse and
human protein sequences obtained from the Swiss-
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Prot/TrEMBL and IPI databases. To statistically assess
the empirical False-Discovery Rate to control for, and
hence,°minimize°false°positive°identifications°[16],°all°of
the spectra were searched against protein sequences in
both the normal (Forward) and inverted (Reverse)
amino acid orientations. The STATQUEST filtering al-
gorithm was then applied to all putative search results
to obtain a measure of the statistical reliability (confi-
dence score) for each candidate identification (cutoff
p-value �.15, corresponding to an 85% or greater like-
lihood of being a correct match).

Database

High-confidence matches were parsed into an in-house
SQL-type database using a Perl-based script. The data-
base was designed to accommodate database search

results and spectral information (scan headers) for
multiple peptides matching to a given protein, together
with information regarding the sample name, experi-
ment number, MudPIT step, organelle source, amino
acid sequence, molecular mass, isoelectric point, charge,
and confidence level. For this report, only those pro-
teins with a predicted confidence p value of �95%, and
for which at least two spectra were collectively de-
tected, were retained for further analysis.

Immunoblots, Enzyme Activity, and DNA Levels

Protein samples were separated by denaturing sodium
dodecyl sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE) using standard procedures. Commercial
antibodies to calsequestrin (Affinity Bioreagents Inc;

Figure 1. Overview of a systematic protein profiling methodology. Mouse heart tissue is homoge-
nized and subcellular fractions isolated by differential ultracentrifugation using sucrose density
gradients. Protein extracts generated from each organelle are digested, and the peptide mixtures
analyzed by multiple independent MudPIT-based shotgun sequencing experiments. The generated
tandem mass spectra are searched against a comprehensive non-redundant protein sequence database
using the SEQUEST algorithm, and filtered statistically to minimize false positive identifications. High
confidence putative protein identifications are parsed into a relational database and diverse data
mining strategies used to find biologically interesting patterns for more extensive back-up analysis.
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ABI, Golden, CO), ryanodine receptor (RYR2; ABI),
PKC-� (BD Transduction laboratories, Lexington, KY),
�-actinin (Sigma-Aldrich, Oakville, Ontario, Canada)
and myogenin (Developmental Studies Hybridoma
Bank, Iowa City, IA) were used. Antibodies for the
mitochondrial F1-ATP synthase �- and �-subunit were
kindly provided by Dr. Peter Pedersen (Johns Hopkins
Medical Institute, Boston, MA). Horseradish peroxi-
dase-conjugated goat anti-mouse secondary antibody
and enhanced chemiluminescence (Super Signal; Pierce,
Rockford, IL) were used for visualization; signals were
quantified using Image-J software (National Institutes
of Health, Bethesda, MA).
Enzyme activities were determined using commer-

cial assays (Sigma-Aldrich Lactate Dehydrogenase
(LDH) assay kit, cat. no. DG 1340- K; creatine kinase
assay kit (CK), cat. no. 47-20).

Microscopy of Isolated Nuclei

Aliquots of partially purified nuclei were applied to
standard microscope slides and visualized using a Leica
TCS SP laser scanning confocal system (Leica; Rich-
mond Hill, Ontario, Canada).

Hierarchical Clustering, Data Visualization,
and Cluster Evaluation

The cumulative spectral count was used as a semi-
quantitative metric for estimating relative protein abun-
dance,° as° described° by° Liu° et° al.° [24].° Hierarchical
clustering was performed using the Cluster 3.0 freeware
software°package°[25]°and°the°Spearman°distance°met-
ric, with average linkage selected. To improve the
consistency of data grouping, a nominal low non-zero
(0.01) value was substituted for blank (missing) values
in cases where a protein was not detected in a particular
sample. The clustered profiles were visualized in heat
map°format°using°the°TreeView°software°package°[25].
Statistical enrichment of cluster membership to select

functional annotation categories obtained from the
Gene Ontology database (GO terms) was assessed using
the°hypergeometric°distribution°[26],°which°returns°the
probability (p-value) that the intersection of a given
protein list with a given annotation class occurs by
chance. To account for spurious significance due to
multi-hypothesis testing (multiple GO-terms), a Bonfer-
roni correction factor was applied; scores were
amended by dividing the preliminary p-value by the
number of tests conducted. A threshold cut-off p-value
of 10�3 was used as a final selection criterion to high-
light statistically significant and potentially biologically
interesting clusters.

Results and Discussion

Heart disease is the leading cause of mortality and
morbidity°in°the°world°[27].°Heart°failure,°in°particular,

is a major emerging epidemic, due to improved sur-
vival from acute cardiac syndromes (e.g., myocardial
infarction) and the aging population with increasing
risk factors such as hypertension and diabetes. Even
though early detection usually permits successful ther-
apeutic intervention, most early stage heart disease is
not detected clinically until irreversible tissue damage
accrues. Symptomatic heart failure occurs in �1.5% of
the population with an estimated population rate of
asymptomatic ventricular dysfunction at �5% in West-
ern developed countries. Diagnosis only occurs when
patients°become°overtly°symptomatic (e.g., shortness of
breath or peripheral edema). Once the symptoms occur,
patients face recurrent hospitalization and a very high
(�1/3)°one°year°mortality°[28]. Heart°failure°is°pres-
ently the°most°costly°health care°diagnosis° [28].°Al-
though therapies for prevention are already available,
screening of at-risk asymptomatic patients with early
stages of heart failure is not routine due to a lack of
effective tools. The discovery of biomarkers allowing
for early diagnosis and therapeutic monitoring of at-
risk patients is therefore needed urgently. Systematic
analytical methods for determining the genetic, bio-
chemical, and physiological basis of normal heart ho-
meostasis and the deficiencies associated with progres-
sion of heart disease would be highly°beneficial.
High-throughput°high-resolution°experimental tech-

nologies, such as°DNA°microarray°gene°chips [29]°and
gel-free°mass°spectrometry,°[30,°31]°have°emerged°over
the past few years as powerful platforms for investiga-
tion of the molecular underpinnings of disease progres-
sion on a systems-wide level. Over the last two years,
our group has been active in the development, optimi-
zation, and application of a proteomic expression pro-
filing platform for the analysis of the global protein
composition of heart and other organs using°mouse°as
a°primary model°system°[6,°16].°Our°strategy°is based
on a combination of extensive tissue pre-fractionation,
exhaustive MudPIT analysis of each isolated fraction,
and back-end informatics analysis to provide a mean-
ingful biological context. To this end, we have both
adapted existing and developed novel biochemical,
computational, and statistical tools for evaluating, val-
idating, and mining large-scale protein°expression°data-
sets° [16].° Below,° we° discuss° the major conceptual,
technical, and analytical difficulties that we have en-
countered along the way, as well as our attempts to
resolve these problems. We also describe some impor-
tant considerations that need to be taken into account
when interpreting large-scale MudPIT-derived pro-
teomic datasets.
Figure°1°provides°a schematic overview of an ana-

lytical procedure optimized for routine global pro-
teomic profiling of cardiac tissue. As a critical first step,
simple, well-established, and highly reproducible bio-
chemical procedures based on differential sucrose gra-
dient ultracentrifugation are used to fractionate homog-
enized mouse heart prior to MudPIT analysis. This
methodology yields four distinct subcellular fractions
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[nuclei,°mitochondria,°microsomes°(membranes),°and
cytosol]. Although these fractions are not pure and
contain° cross-contaminants° [16],° this° easily° imple-
mented strategy offers several important analytical ad-
vantages for profiling studies. First, sample complexity
is reduced significantly, thereby allowing for more
comprehensive detection of the myriad of lower abun-
dance proteins typically expressed in myocytes in ad-
dition to the high abundance components of the con-
tractile apparatus. This is a particularly important
consideration given the heterogeneous cell types found
in tissues and organs, the sizeable overall dynamic
range°in°absolute°protein°abundance°(�five°orders°of
magnitude;°[32]),°together°with°the°substantive°under-
sampling (detection bias) typically observed even with
high-efficiency°profiling°methods°such°as°MudPIT°([16,
20,°22,°33];°these°critical°issues°are°discussed°further°in
detail below). Second, since cells are spatially orga-
nized, with significant physical clustering of protein
modules linked to specific biochemical activities, or-
ganellar profiling provides a more relevant biological
context for interpretation of the physiological status of
the target tissue based on observed protein patterns.
Moreover, subcellular fractionation can offer additional
insights into the major biochemical pathways affected
by disease processes, as well as provide hints as to the
potential function(s) of previously uncharacterized (un-
annotated) proteins.
Once isolated organellar fractions are obtained, both

soluble and membrane associated proteins are ex-
tracted. These are digested efficiently prior to MudPIT
analysis using the proteases endoproteinase Lys-C and
trypsin. The peptide mixtures are desalted and ana-
lyzed individually using a variant of the basic MudPIT
procedure. As discussed further below, we have found
that multiple repeat MudPIT analyses are generally
needed to obtain comprehensive proteomic detection
coverage, even when investigating simplified organel-
lar fractions.

Database Searching and Statistical Validation

The large collections of acquired tandem mass spectra
are searched against an extensive database of high
quality (curated) protein sequences using the SEQUEST
algorithm°[23].°To°estimate°the°false°discovery°rate°due
to incorrect spurious database matches, the database is
populated with an equal number of inverted protein
sequences corresponding to reverse amino acid se-
quence orientations. Putative matches to these bogus
“dummy” decoy control sequences are interpreted as
false positives. To reduce the rate of misidentification
(false positives), individual candidate database matches
are evaluated and statistically filtered using
STATQUEST, a pattern-recognition software algorithm
developed in-house trained to distinguish false posi-
tives based on weighted SEQUEST scoring parameters
[16].°High-confidence° peptide° sequence°matches° are
selected using a stringent first-step confidence filter

(cut-off p-value �.05) based on the likelihood ratio of
detecting bogus reverse matches to forward candidate
sequences. Next, the candidate proteins are sorted
based on the cumulative number of matching spectra
obtained°at°the°organelle°level°(Figure°2,°Table°1°and
Table°2),°computational°procedures°are°carried°out°on
data that have been formatted and parsed into an
SQL-style relational database. Although this database
was°developed°for°local°use,°the°reader°is°directed°to°the
many helpful stand-alone informatics software tools
presently available for managing, assessing, and filter-
ing large-scale MudPIT-type proteomic datasets that
are freely available to academics from the Yates and
Aebersold°research°laboratories°(e.g.,°DTASelect°[34];
http://fields.scripps.edu/° and° ProteinProphet° [35];
www.systemsbiology.org/).
As an objective measure of the effectiveness of these

quality filters, we first calculate the empirical rate of
false-discovery based on the observed ratio of forward-
to-reverse protein sequence matches (with reverse se-
quence°matches°considered°as°false°positives).°Figure°2
shows a plot of the distribution of the ratio of forward-
to-reverse sequence matches as a measure of database
search accuracy versus the spectral count acquired for
each candidate protein. Clearly, the vast majority of
spurious identifications are predicted based on a single
spectra only as evidence and, consequently, are readily
discarded from further analysis by applying a mini-
mum°two-spectra°cutoff°(data°summarized°in°Table°2).
By applying this stringent two-step filter system to
representative proteomic datasets generated by an ex-
haustive MudPIT analysis of three non-nuclear organel-
lar fractions isolated from healthy adult mouse heart,
�1200°high-confidence°proteins°were°identified°(Table
1).°The°estimated°false°positive°rate°�5%,°with°most
candidate proteins having a predicted confidence
p-value �.002).

Heart Homogenization and Organelle
Fractionation

Subcellular fractionation of heart tissue is challenging
due°to°a°number°of°unique°technical°problems°[6,°13],
most stemming from the extreme fibrous structure and
grossly elevated levels of sarcomeric and mitochondrial
proteins found in cardiac muscle.
Traditional techniques, such as Western blotting and

enzyme assays, were used initially to assess the purity
of°the°isolated°organelle°fractions.°As°seen°in°Figure°3,
these methodologies ostensibly suggested reasonable
purity for each of the four main isolated cellular com-
ponents. For example, the muscle-specific transcription
factor myogeninwas detected exclusively in the nuclear
fraction, the cytosolic enzyme protein kinase C � iso-
form (PKC-�) was detected mainly in the cytosol, while
SR proteins such as ryanodine receptor RyR2 and
calsequestrin were detected uniquely in the microsomal
fraction. Moreover, standard enzyme assays of the
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cytosolic enzymes creatine kinase and lactate dehydro-
genase, clearly demonstrated enriched normalized ac-
tivity in the cytosolic fraction.
Nonetheless, an early indication of substantive cross-

contamination became apparent following proteomic
analysis of these same fractions by MudPIT. For in-
stance, the abundant muscle cyotoskeletal protein �-ac-
tinin was detected in both the nuclear and mitochon-
drial fractions, a problem commonly seen with many
other°high°abundance°muscle°factors°(Figure°3a).°The
elevated load of mitochondria supporting heart func-
tion also leads to substantial cross-contamination of the
nuclear compartment. Western blot analysis of mito-
chondrial markers, such as the �-subunit of the mem-
brane-associated F1-ATPase, generates very strong sig-
nals°in°the°nuclear°(and°all°other)°fractions°(Figure°3d;
top panel). This cross-contamination was not entirely
unexpected, given the highly specialized biomechanical
adaptations of muscle, and has been reported previ-
ously by van Eyk and colleagues in 2D-gel proteomic
studies°of°human°cardiac°tissue°[36].°Nevertheless,°it
proved to be particularly debilitating for detection of
proteins of biological interest. In fact, contaminating
contractile apparatus (e.g., ventricular myosins) and
even blood proteins (hemoglobins) were detected in
nuclear extracts prepared from cardiac myocyte nuclei
using a standard two-step centrifugation protocol fol-
lowing vigorous homogenization of heart tissue with an

electrical blade (Polytron) [data not shown]. The degree
to which this problem afflicts heart tissue is exemplified
by a visual comparison of myocyte nuclear preparations
to the highly pure nuclei isolated from mouse liver
obtained°using°the°same°one-step°protocol°(Figure°3e;
[16]).
Accordingly, we have optimized the heart nuclei

isolation protocols, aiming to reduce the extent of
sarcomeric and mitochondrial contaminants that result
from aggressive disruption of tissue. We have found
that gentle tissue homogenization using a handheld
Dounce glass (B-type) pestle significantly minimizes
gross°cross-contamination°(Figure°3d;°middle°panel).
Nevertheless, given the vast excess of mitochondria
relative to nuclei in differentiated cardiac myotubes,
even more stringent fractionation procedures are still
needed to eliminate cross-contamination of the nuclear
compartment. We have determined that two sequential
rounds of density gradient centrifugation using sucrose
cushions°can°further°alleviate°this°problem°(Figure°3d;
lower panel). The effectiveness of various isolation
protocols is evident by visual inspection of light micro-
scope°images°of°the°different°nuclear°preparations°(Fig-
ure°3e).°Most°of°the°contractile°contaminants°seen°in°the
single 0.9 M sucrose cushion [see the Materials and
Methods section] were removed by passing the crude
nuclei over a second 2 M sucrose cushion, albeit at the
cost of obtaining a significantly reduced yield of nuclei

Figure 2. Two-step data filtration strategy. Proteins identified in each organelle fraction, passing a
minimum 95%� STATQUEST cutoff confidence filter, were sorted and placed into bins based on the
observed spectral count (total number of spectra recorded for each protein identified). The plot shows
the numbers of proteins found in each bin mapping to sequences in the forward SwissProt/TrEMBL
database (Forward) versus those mapping to an equal sized control database composed of non-sense
inverted decoy protein sequences (Reverse).
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in the most highly purified preparations (see Supple-
mentary Figure 1 for a lower magnification view).

Protein Sampling

Shotgun sequencing of complex peptide mixtures in-
volves a somewhat stochastic sampling process,
whereby the mass spectrometer instrument sequen-
tially selects individual peptide precursor ions for frag-
mentation. While database searching errors account for
part of the variation limiting the overall reproducibility

of profiling studies, the major deficiency is due to the
finite duty cycle and limited overall dynamic range of
current mass spectrometry instruments, such that not
every precursor peptide ion species is sampled as
peptides elute from the chromatography column. Even
high-efficiency profiling methods, such as MudPIT, are
generally biased towards preferential detection of
higher abundance proteins (which typically produce
higher intensity peptide signals). In contrast, lower
abundance proteins (typically producing lower inten-
sity peptide ion peaks) frequently go undetected or, at
best, are prone to ion competition at the source, which
ultimately leads to signal suppression and quantifica-
tion artifacts. To overcome this “under-sampling” prob-
lem, repeated analysis of the same fraction has been
suggested as a means of obtaining more complete
proteomic°coverage°[24,°37].
Figure°4°shows°the°proteomic°coverage°(detection

efficiency) typically obtained by performing multiple
repeat MudPIT analyses on the same heart cytosolic
fraction. It can be seen from this plot that virtually
complete sample saturation (plateau in the total number
of proteins identified) is achieved after five individual
MudPIT analyses. This pattern is typical of that seen
with the other organellar fractions analyzed. Saturation
of detection is an important consideration if one even-
tual aim is a comparison of the proteomic patterns of
different samples (e.g., developmental time-points or
healthy versus disease states).
To investigate further some of the reasons behind the

Table 1. Protein and spectral counts for Forward and Reverse database sequences for each repeat analysis

Fraction (MudPIT experiment)

Forward Reverse

Proteins Spectra Proteins Spectra

cyto1 452 4860 3 5
cyto2 538 3829 3 3
cyto3 501 3708 4 5
cyto4 472 3440 1 2
cyto5 456 3997 4 5
CYTO TOTAL 668 19834 7 20
micro1 413 4303 2 4
micro2 446 4178 1 1
micro3 390 4161 2 3
micro4 455 3714 6 11
micro5 434 3518 0 0
MICRO TOTAL 615 19874 7 19
mito I 1 279 2806 5 5
mito I 2 276 2687 4 4
mito I 3 210 1887 3 3
mito I 4 299 3095 1 1
mito I 5 313 5087 7 8
MITO I TOTAL 368 15562 10 21
mito II 1 349 3980 6 9
mito II 2 253 2960 9 11
mito II 3 346 3861 6 10
mito II 4 353 3827 9 11
mito II 5 397 4782 12 16
MITO II TOTAL 475 19410 23 57
TOTAL 1230 74680 41 117

Table 2. Effects of filler criteria on number of identified
proteins and the false-positive rate

Fraction (Proteins identified) 1 spectra 2 spectra (sum)

CYTOSOL
Forward 1002 668
Reverse 99 7
% (reverse/forward) 8.9 1
MICROSOMES
Forward 998 615
Reverse 133 7
% (reverse/forward) 9.9 1.1
MITOCHONDRION I
Forward 576 368
Reverse 113 10
% (reverse/forward) 19.6 2.7
MITOCHONDRION II
Forward 870 475
Reverse 233 23
% (reverse/forward) 26.8 4.8
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random sample variation seen with profiling experi-
ments, we examined more closely the behavior of an
individual MudPIT injection of this representative frac-
tion. As a first pass to assess the reproducibility of
detection, each of the 668 high-confidence cytosolic
proteins identified were binned according to the num-
ber of repeat MudPIT analyses in which they were
detected. 40% of the proteins (266) were detected across
all five experiments, while nearly two-thirds were
found°in°four°or°fewer°runs°(Figure°5a).°Moreover,°only
�5% (32) of the proteins were detected in only a single
dataset, demonstrating that proteomic coverage is sat-
urated°quite°quickly°by°repeat°analyses°(Figure°5a).°As
might be expected, proteins found in every single
MudPIT analysis were detected with a considerably
higher average spectral count (67 spectra; range 5–1754
spectra) than proteins detected less reproducibly (a
mean of 2.3 spectra was recorded for proteins detected
in°only°one°experiment)°(Figure°5b),°consistent°with°the
notion that lower abundance proteins are more likely to
remain undetected because of the effects of random
sampling.
To exclude the possibility of poor run quality in a

particular injection, each of the five MudPIT datasets
were°more°thoroughly°compared°(Figure°5c,°d,°and°e).
Figure°5c°shows°the°total°number°of°proteins°detected°in

each of the five individual MudPIT runs, and although
not identical in number, the total number of proteins
detected was within a close range (average number 483
� 36 proteins). Similar results were observed for the
total number of spectra (average number 3966 � 539
total spectra) and the average number of spectra re-
corded for the proteins (8.2 � 1.5 average spectra)
(Figure°5d°and°e).°These°results°indicate°that°individual
MudPIT runs are highly similar in overall quality,
consistent with comparable robust performance, and
hence, experimental failure is likely not the major cause
of biased sample detection. In summary, it appears that
extreme sample complexity, combined with a wide
range of absolute protein abundance, is the underlying
factor° resulting° in°under-sampling° in°MudPIT-based
proteomics experiments.
Yates and colleagues have reported a comprehensive

evaluation of the under-sampling problem associated
with MudPIT profiling, using soluble yeast extract as a
model°system°[24].°Based°on°their°experimental°find-
ings (similar to those reported above), they were able to
develop a statistical model for accurately predicting the
number of analyses needed to obtain nearly complete
sample saturation. Importantly, this same study con-
cluded that under-sampling has a useful dividend in
that it can be used to infer protein relative abundance

Figure 3. (a) Western blot analysis of subcellular fractions using antibodies directed against select
marker proteins. (b) Normalized in vitro creatine kinase enzyme activity. (c) Normalized in vitro
lactate dehydrogenase enzyme activity. (d) Western blot detection of the mitochondrial membrane
protein F1-ATPase �-subunit across various subcellular fractions. (e) Light microscopy images of
nuclei isolated from liver using a basic single-step method or from heart using two different isolation
protocols. Middle panel, in one protocol, crude ventricular nuclear preparations were passed through
a single 2 M sucrose cushion. Far right panel, crude ventricular nuclei were subjected to two rounds
of ultracentrifugation, first using a 0.9 M sucrose cushion, followed by a second 2 M sucrose cushion.
Asterisk, muscle fiber; arrows, isolated nuclei.
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simply and reliably, based on the ratio of the number of
spectra recorded for each protein across different sam-
ples. This spectral count metric is far more straight-
forward to implement, and the results more readily
interpreted, than other more sophisticated quantitative
methods° [31,° 38,° 39].° Moreover,° by° looking° at° the

relative distribution of spectral count recorded across
different organellar fractions, one can readily deduce
the “real” subcellular location of a given protein. For
example, the highest spectral counts recorded for the �
and � chains of the mitochondrial membrane protein
ATP synthase were detected in the detergent solubi-

Figure 4. Saturation of protein identification coverage. Total number of putative high-confidence
proteins detected in four subcellular fractions isolated from healthy adult heart tissue (after two-step
filter system). Right panel, total number of proteins detected after a defined number of MudPIT
experiments. Left panel, number of novel proteins detected after a defined number of MudPIT
analyses.

Figure 5. Assessment of MudPIT reproducibility. Statistical analysis of candidate protein identifications
detected in heart cytosol using a two-step filtration process. (a) The fraction of proteins detected between
1 and 5 times in five repeat MudPIT analyses. (b) The average number of spectral counts (� standard
deviation) versus the detection rate in the repeat analyses. (c) The total number of heart cytosol proteins
detected for each of five individual MudPIT experiments. (d) Total spectral counts obtained for heart
cytosol proteins detected for each of five individual MudPIT experiments. (e) Average spectral counts
obtained for heart cytosol proteins detected in each of five individual MudPIT experiments.
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lized mitochondrial extract (MITO II), whereas the
majority of the soluble metabolic enzymes enolase �
and fatty acid binding protein were detected in the
cytosolic heart fraction [data not shown].

Data Mining

Expression profiling projects can generate enormous
datasets quite rapidly, overwhelming the ability of a
researcher to cope. For this reason, automated large-
scale data mining tools are increasingly required to help
organize and manage the data in order to find interest-
ing patterns for biological follow-up or back-up studies.
In°Figure°6,°we°present°an°overview°of°some°of°the°data
mining procedures and software applications that we
have found to be particularly valuable for global pro-
teomic data mining efforts. In particular, we find data
clustering as an effective starting point for finding
hidden patterns among a large collection of proteomic
profiles.°Figure°6a°shows°a°standard°“heat°map”-style
visual display of a clustered collection of MudPIT

datasets generated for healthy adult heart protein frac-
tions. Several features can be readily noticed from this
global perspective. First, the five individual repeat
analyses recorded for each organellar fraction cluster
tightly together, indicating that despite experimental
variation, the multiple proteomic patterns recorded are
highly similar. Second, good separation can be ob-
served between the distinct subcellular fractions, indi-
cating that each fraction has a distinct protein compo-
sition. Indeed, clustering provides a quick method for
finding evidence of regulated patterns of expression or
coexpression°[25],°and°can°be°helpful°for°inferring°the
existence of a biological module. Lastly, evidence of
significant cross-contamination by high abundance pro-
teins is more readily observed (e.g., Box 1—potential
cross-contaminations).
Clustering constitutes the logical first step in a multi-

pronged informatics analysis tailored to address a spe-
cific biological-oriented research problem. Individual
clusters of potential interest (e.g., tight groups of pro-
teins displaying coherent features) can be exported

Figure 6. Data mining strategies. (a) The entire collection of MudPIT-generated datasets was
clustered using the Spearman rank correlation and average linkage and a heat map displayed.
Recorded protein spectral counts were used as a quantitative estimate (as indicated by the plotted
intensity). Examples of significantly enriched GO-terms mapping to defined clusters are provided. (b)
A cluster of cytosol unique proteins was mapped against all available GO-terms (circa November
2004). The proportion of proteins having one or more GO-terms and those without any available
annotation are displayed.
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from the heat map display and the sets of proteins
analyzed individually. As a first pass, one can examine
the cluster membership looking for evidence of func-
tional enrichment, referring to a publicly accessible
annotation resource. The Gene Ontology (GO) database
is particularly helpful in this regard as it reports the
known or predicted molecular functions, subcellular
locations, and biological roles of curated proteins in a
computer-interpretable and biologist-friendly format.
Manual inspection of cluster membership can also help
highlight potential cross-contamination, such as the
presence of groups of mitochondrial proteins, released
presumably°because°of°organellar°damage°and°leakage
during tissue homogenization.
To automate post-cluster analysis, several groups,

including our own, have developed programs to calcu-
late the statistical enrichment of a cluster of proteins to
select functional categories (GO terms) using a hyper-
geometric° distribution° function° [26].° For° our° heart
project, we developed a stand-alone software applica-
tion, MouseSpec, to map annotation terms to an input
list of proteins and then calculate the probability (p-
value) that the intersection of a given input list (cluster)
of proteins with any given annotation term occurs by
chance alone. To correct for so-called multi-hypothesis
testing, the p-value threshold deemed significant for an
individual test is determined by dividing the number of
tests conducted, thereby accounting for spurious signif-
icance due to repeated testing over all of the categories
in the GO database. We typically use a minimum cutoff
value (e.g., 10�3; i.e., association unlikely to happen by
chance alone) as a final selection criterion to highlight
promising, biologically interesting clusters.
As an illustrative example, a cluster of cytosol-

unique heart proteins was exported and evaluated
using MouseSpec. Instances of significantly enriched
GO-terms are listed to the right of the cluster
(hatched° box)° shown° in° Figure° 6a.° As° expected,
highly significant categories within this cluster in-
cluded the GO-terms cytoplasm, catalytic activity,
chaperone activity, glycolysis, and heat shock protein
activity. Surprisingly, a significant fraction of the
proteins detected in this same fraction (63 proteins;
�°25%)°could°not°be°assigned°any°GO-term°(Figure
6b).° However,° based° on° the° observed° subcellular
localization, cluster neighborhood, and overall ex-
pression patterns, as well as on other sources of
available information (such as domain structure or
interaction partners), a potential function for many of
these proteins can be predicted with reasonable con-
fidence.

Future Perspectives

In the near future, we hope to incorporate the afore-
mentioned MudPIT-based profiling methodology
with microarray-based gene expression studies, the
results obtained from phenotypic analysis, and select
follow-up functional analyses in order to create an

integrated systems-wide perspective of the main as-
pects of heart biology that become perturbed during
the course of disease action leading to heart failure.
To account for biological complexity, multiple vali-
dated mouse models of cardiomyopathy have been
chosen for detailed study. We are currently complet-
ing an exhaustive evaluation of the proteomic pat-
terns of heart tissue in transgenic mice carrying
specific point mutations in a key regulatory protein,
phospholamban, in comparison to those recorded
with age-matched wild-type animals, tracking differ-
ent stages as these animals progress to severe dilated
cardiomyopathy,°hypertrophy,°and°heart°failure°[7].
One°key°objective of the data analysis is to identify
interesting candidates that appear to be mechanisti-
cally linked to disease progression arising from this
study for follow up analysis using traditional molec-
ular genetic methods.

Conclusions

In this report, we have endeavored to provide the
reader with a basic framework for analyzing complex
tissue expression patterns using systematic large-
scale MudPIT-based protein expression profiling in a
manner best suited to gaining biologically interpret-
able datasets. We have attempted to confront the
reader with some of the less-appreciated problems
associated with successful implementation of the
MudPIT technology, while aiming to provide helpful
guidelines and useful solutions to the more common
problems encountered with these types of studies.
Specifically, the issue of data validation and filtration
to minimize the rate of false positive identifications,
and the challenge of random sampling leading to
incomplete detection, were discussed, together with
rules for evaluating the optimal number of MudPIT
experiments needed to achieve full coverage. We
have highlighted some basic bioinformatics ap-
proaches that can help to facilitate data organization,
mining, and interpretation. Although we have em-
phasized sample work-up problems that we have
encountered that are specific to heart, particularly in
isolating discrete organellar fractions from this fi-
brous tissue, we strongly encourage investigators to
fine-tune these basic protocols in a project-specific
manner. While the benefits of subcellular fraction-
ation is a biologically meaningful approach for reduc-
ing sample complexity, other more extensive frac-
tionation protocols, in particular those involving
non-denaturing conventional chromatography, may
prove to be even more helpful in revealing of biolog-
ical modules. In this same vein, the recent introduc-
tion of a new generation of linear ion-trap mass
spectrometers, with significantly faster scan speeds
and more rapid duty cycles, will likely markedly
improve overall detection limits, helping surmount
the under-sampling problem.
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