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This paper presents and proves an algorithm to calculate the isotopic composition of
individual (nominal) isotopic peaks. From this information one can calculate the accurate
masses of isotopic peaks. This opens the way to use accurate mass measurements to determine
chemical compositions of compounds using non-mono-isotopic peaks. The algorithm is
computationally efficient and rigorously correct in the absence of roundoff error. Highly
effective error correction strategies are described to detect and correct computational errors
arising in practical calculations. Results from theoretical calculations of isotopic masses for a
krypton inclusion complex agreed well with experimental measurements. (J Am Soc Mass
Spectrom 2004, 15, 12–21) © 2004 American Society for Mass Spectrometry

High accuracymass measurements bymass spec-
trometry are often used to determine the chem-
ical composition of compounds [1]. Standard

practice is to select the mono-isotopic peak because it is
the only peak for which the accurate mass can be
conveniently calculated from the chemical formula.
However, for isotopically complex molecules the mono-
isotopic mass peak may be too weak to be useful. As a
partial solution to this problem Senko et al. have
proposed the use of “averagine” modeling as a way of
estimating the unobservable mono-isotopic masses [2].
While extremely useful, this technique is designed to
handle cases for which averagine is a good model, i.e.,
proteins of typical composition, and is not designed as
a general-purpose tool.
An alternative approach would be to calculate the

accurate masses of nominal isotopic peaks, and then
compare the calculated values to measured values. [In
this paper, when we refer to the accurate mass of an
isotopic peak we are referring to the accurate mass of a
nominal isotopic peak, for example the accurate mass of
29(CO), including all isotopic contributions, rather than
the accurate masses of individual contributions to the
isobar, such as 13C16O and 12C17O.] One approach to
calculating accurate isotopic masses is to first determine
the isotopic composition of an isotopic peak, and then
calculate the accurate mass of the isotopic peak based
on the isotopic composition and the accurate elemental
isotopic masses. In principle this is a solved problem.

The polynomial method can be used to generate a peak
list. Each element of the peak list is associated with a
specific isotopic composition and probability. The accu-
rate mass of a nominal isotopic peak would be calcu-
lated by sorting through the list to organize the list into
isobars and then computing the mass of a nominal
isotopic peak as a probability-weighted sum of all the
terms within an isobaric group.
Although the polynomial method works well for

small molecules, the recent trend in mass spectrometry
has been toward larger and larger systems. For these,
the polynomial method becomes increasingly complex
and impractical. The basic problem is a combinatorial
explosion of terms when the method is applied to
isotopically complex molecules. This leads to computa-
tional inefficiencies, both in terms of speed and memory
usage. The only known method of dealing with this
problem is to omit the calculation of some terms, a
process known as “pruning”. An unavoidable byprod-
uct of pruning is a loss of accuracy [3–7]. The loss of
accuracy affects the peak probabilities and average
mass more strongly than the individual isotopic peak
positions, but pruning does affect the isotopic peak
positions as well. The loss of accuracy might be accept-
able in some cases, but this has not been validated in the
literature for isotopically complex systems. Further-
more, even with pruning there is a loss of computa-
tional efficiency as isotopic complexity increases, and
speed may be crucial in some applications.
The present paper introduces a method for calculat-

ing isotopic compositions of isotopic peaks that avoids
the need for polynomial calculations. The method is
both accurate and computationally efficient. The algo-
rithm itself is exact, and errors that creep into practical
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calculations, such as roundoff error, are easily handled
by very effective error detection and correction strate-
gies.

Theoretical Development

The Algorithm

Unless otherwise noted an isotopic distribution will be
understood to represent a discrete probability distribu-
tion, implying that the sum over the distribution equals
one. For presentation purposes peaks will be labeled by
integer mass (nucleon number) unless otherwise noted.
For example, the nucleon number of the mono-isotopic
peak of CO2 is 44, so its integer mass is 44.
All elemental isotopic abundances and masses used

in this paper are given in Table 1. Unless otherwise
indicated all masses used in calculations in this paper
are taken from the column labeled “Mass (isotope.dat)”,
which is excerpted from the isotope table normally
provided with the computer program “Mercury6”.
Mercury6 is based on work presented elsewhere [4].
The algorithm is based on the idea that one can

determine the isotopic composition of a peak by ran-
domly removing an atom from the molecule. Each
isotope of each element has a probability associated
with it, and this probability, together with the chemical
formula of the compound, provides the information
needed to calculate the isotopic composition. One ap-
proach could be a Monte Carlo sampling procedure.
However, that approach is subject to statistical uncer-
tainty. The following algorithm performs a direct cal-
culation of the probabilities (Steps 1–5), and then folds

the result with the chemical formula to yield the isoto-
pic composition of the isotopic peaks (Step 6).
The compound under consideration will be called

the “parent compound”. Tribromo-trichloro-ethane
(C2Br3Cl3) will serve as an example of a parent com-
pound. In the algorithm described below one divides
molecules of the parent compound into two unequal
pieces, one (the “atom”) consisting of a single atom of a
particular element, and the other (the “product com-
pound”) consisting of the remaining atoms. For exam-
ple, if we are computing the contribution of carbon
isotopes to C2Br3Cl3 then the atom and product com-
pound are C and CBr3Cl3 respectively.
The algorithm proceeds as follows. Step 1: Compute

the isotopic distribution of the parent compound. Fig-
ure 1a illustrates Step 1 for C2Br3Cl3. Step 2: Remove the
atom and compute the isotopic distribution of the
product compound. In our example C is removed, so
the product compound is CBr3Cl3. Figure 1b illustrates
this step. Step 3: Add the mass of the isotope of interest
to the mass scale of the isotopic distribution calculated
in Step 2. For the 13C isotope Step 3 yields a result
illustrated in Figure 1c. (Figures 1c–f look like mass
spectra, but they are not. Instead they represent inter-
mediate and final results of calculations.) Step 4: Divide
the intensities of the peaks in Figure 1c by the intensities
of the corresponding peaks in Figure 1a. The result is
demonstrated in Figure 1d. Step 5: Multiply this result
by the elemental isotopic abundance for the isotope of
interest for the atom removed in Step 2. In our example,
we multiply by 0.01107, which is the elemental isotopic
abundance of 13C. Results are shown in Figure 1e. Step
6: Multiply the result by the number of atoms of the
element under consideration in the formula for the
parent compound. In our example we multiply by 2,
which is the number of carbon atoms in the parent
compound. Results are shown in Figure 1f. The num-
bers represented in this figure are the 13C compositions
of the isotopic peaks of the original compound.
Interesting features of the 13C composition are as

follows. The highest-mass isotopic peak has a 13C
composition of 2 because the highest-mass peak is made
of all-heavy isotopes, so both carbon atoms must be 13C.
The odd-mass peaks all have a 13C composition of 1.
This is because the hypothetical Br3Cl3 molecule has a
strictly even-mass isotopic distribution. Therefore, odd
mass peaks for C2Br3Cl3 must be the result of the
addition of carbon, and the only odd masses possible
from two carbon atoms are via one 13C. The even-mass
peaks have a very small contribution from 13C. This is
because 13C forms a small percentage of the total
carbon, and the probability of finding two 13C atoms in
a molecule is very low.
The 12C composition would be calculated the same

way, except that the shift in mass scale in Step 2 would
be 12, and the probability used in Step 5 would be
0.98893. The composition for the isotopes of the other
elements would be calculated by an analogous proce-
dure.

Table 1. Masses and abundances used for calculations in this
paper

Nuclide
Mass

(isotope.dat)
Mass

(XMASS) Abundance

1H 1.0078246 1.007825032 0.99985
2H 2.0141021 2.014101778 0.00015
12C 12.0000000 12.000000000 0.988930
13C 13.0033554 13.003354838 0.011070
14N 14.0030732 14.003074005 0.996337
15N 15.0001088 15.000108898 0.003663
16O 15.9949141 15.994914622 0.997590
17O 16.9991322 16.999131501 0.000374
18O 17.9991616 17.999160419 0.002036
35Cl 34.9688531 34.968852707 0.755290
37Cl 36.9659034 36.9659026 0.244710
39K 38.963707 38.963706861 0.932581
40K 39.963999 39.963998672 0.000117
41K 40.961825 40.961825972 0.067302
79Br 78.918336 78.918337647 0.5069
81Br 80.916289 80.91629106 0.4931
78Kr 77.914 77.920386271 0.0035
80Kr 79.916380 79.91637804 0.0225
82Kr 81.913482 81.913484601 0.116
83Kr 82.914135 82.914135952 0.115
84Kr 83.911507 83.911506627 0.570
85Kr 85.910616 85.910610313 0.173
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The resulting isotopic composition from applying
the algorithm can then be used to calculate accurate
isotopic masses. The procedure is to first select a
nominal isotopic peak of the molecule. Then one calcu-
lates the elemental isotopic composition for that peak.
One then multiplies these isotopic compositions by
accurate elemental isotopic masses. Finally, one adds
these results to compute the accurate mass. Succinctly
stated, the accurate mass of a molecular isotopic peak is
the dot product of an isotopic composition vector and
an accurate mass vector.

Proof

A somewhat difficult proof was previously outlined
using Fourier transforms [8]. Here we present a simpler
proof based on the idea that taking a molecule apart
into an atom and a remaining portion is the inverse
process of combining these same two components to
form the whole molecule. Chemically, these two inverse
processes are dissociation and recombination, respec-
tively. Mathematically, these processes correspond to
deconvolution and convolution, respectively. Because

Figure 1. Illustration of steps in algorithm to calculate isotopic composition of single isotopic peaks.
(a) Step 1, isotopic distribution of parent compound, C2Br3Cl3. (b) Step 2, isotopic distribution of
product compound formed by removing one carbon atom, CBr3Cl3. (c) Step 3, distribution in Step 2,
shifted by 13 mass units, the isotopic mass of 13C. (d) Step 4, peaks in Figure 1c divided by peaks in
Figure 1a. (e) Step 5, peaks in Step 4 multiplied by elemental isotopic abundance of 13C. (f) Step 6,
peaks in Step 5 multiplied by 2, the number of carbon atoms in C2Br3Cl3. This represents the isotopic
composition of 13C in each of the isotopic peaks of C2Br3Cl3.
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deconvolution is the inverse of convolution we can
investigate the deconvolution process, the process of
interest here, by examining certain intermediate terms
of a convolution calculation.
The proof is via derivation of the algorithm. Assume

for illustration purposes that we are interested in the
13C isotopic composition of C2Br3Cl3. The proof is
broken into two main parts. The first seeks to answer
the following question: If we randomly remove an atom
of a selected element (e.g, C) from a selected isotopic
peak of the parent compound (e.g., the isotopic peak of
C2Br3Cl3 having an integer mass of 370), what is the
probability that it will be a specific isotope of the
element (e.g., 13C)? This relates to the deconvolution
process mentioned above.
In the second part of the proof one uses this proba-

bility, together with the number of atoms of the element
of interest in the chemical formula (e.g., 2, if one is
interested in the carbon isotopes of C2Br3Cl3), to calcu-
late the isotopic composition of the selected isotopic
peak of the parent compound (e.g., the isotopic peak of
C2Br3Cl3 having an integer mass of 370).
We rely on recent results on isotopic patterns of

product ions from the dissociation of single isotopic
peaks [9]. To the extent possible symbols in the present
paper are harmonized with those of reference [9].
However, the naming conventions differ slightly. Gen-
erally speaking, the word “ion” is removed from the
naming conventions of the present paper because
charge is not relevant to the calculations. A vector
denoted by h in both papers refers to the isotopic
distribution of the parent species which we refer to as
“parent compound” in the present paper and “parent
ion” in the previous paper. Vector h represents a
discrete probability distribution, so its elements are
non-negative and add to one. The index into the vector
represents integer mass, and the value of the corre-
sponding vector element represents the relative abun-
dance of the isotopic peak expressed as a probability.
The vector h for C2Br3Cl3 is shown in Figure 1a.
Vector g represents the isotopic distribution of the

“product compound”. In the previous paper this was
called the “product ion”. In the present paper, g serves
only as a computational tool and does not imply the
physical existence of the product compound. The vector
g for CBr3Cl3 (which is C2Br3Cl3 minus a carbon atom)
is shown in Figure 1b.
Vector f represents the isotopic distribution of the

“atom”. The analogous vector in the previous paper
was the isotopic distribution of the “complementary
product”. We use the term “atom” in the present paper

to emphasize the concept that during the derivation we
conceptually remove an atom from the parent com-
pound, whereas in the previous paper the complemen-
tary product was allowed to be polyatomic. Throughout
the presentation we use a simplified notation in order to
avoid a proliferation of subscripts by omitting any
specifier of the chemical element under consideration.
We define a matrix, C, whose elements are defined

by the following relationship:

C�i, j� � g�i� f� j� (1)

In reference 9 this matrix was called by several names,
the most relevant to the present discussion being “prob-
ability matrix”.
Each combination of i and j in eq 1 represents a

specific way to generate molecules of the parent com-
pound. Table 2 summarizes all combinations that can
generate 370(C2Br3Cl3) by combining isotopic peaks of C
and CBr3Cl3. Choosing j � 13 corresponds to a selection
of 13C, where the upper-left superscript indicates inte-
ger mass, and choosing i � 357 corresponds to selection
of 357(CBr3Cl3), where again the upper left superscript
indicates integer mass. The combined choice of (i,j) �
(357,13) relates to the 370(C2Br3Cl3) parent isotopic peak.
There is also a second way of generating 370(C2Br3Cl3),
which is to combine 12C with 358(CBr3Cl3). The (i,j) �
(357,13) combination has a matrix element (i.e., proba-
bility) of 2.675386e-5, which is the result of multiplying
2.416798e-3 with 1.107e-2 from the table, and the (i,j) �
(358,12) combination has a matrix element of
3.287701e-1, which is the result of multiplying
3.324501e-1 with 9.8893e-1 from the table. Because car-
bon contains only two isotopes there are only two
non-zero contributions to 370(C2Br3Cl3). If carbon were a
three-isotope element then there could be as many as
three ways to contribute to any individual isotopic peak
of the parent ion.
Removal of an atom from the parent compound is

the reverse of the process of combining the atom with
the product compound to form the parent compound.
Consequently, if we dissociate the full isotopic profile of
the parent compound, producing the atom and the
product compound, each microscopic dissociation path-
way (specified by a combination of i and j) contributes
a relative amount equal to C(i,j). For example, from the
previous paragraph, the matrix element C(358,12) �
0.3287701 gives the probability of the pathway for the
removal of 12C from 370(C2Br3Cl3) to form

358(CBr3Cl3)�
12C, and the matrix element C(357,13) � 2.68e-5 gives

Table 2. Combinations of isotopic peaks of CBr3Cl3 and C to form
370(C2Br3Cl3)

C2Br3Cl3 (parent compound) CBr3Cl3 (product compound) C (atom)

Integer mass Probability Integer mass Probability Integer mass Probability

Combination 1 370 2.675386e-5 357 2.416798e-3 13 1.107e-2
Combination 2 370 3.287701e-1 358 3.324504e-1 12 9.8893e-1
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the probability of the pathway for the removal of 13C
from 370(C2Br3Cl3) to form

357(CBr3Cl3) � 13C.
These probabilities are normalized to the full isotopic

profile of the parent compound. We must renormalize
them to account for the fact that we are sampling from
only part of the parent compound distribution. In our
example we would divide by 0.3287969, which is the
fraction of the parent compound distribution concen-
trated in the mass 370 peak. The value of 0.3287969 is
the sum of 0.3287701 and 2.68e-5, the matrix elements
for the two ways of making 370(C2Br3Cl3) discussed
above. The general formula for the process just de-
scribed is

R�k, j� � C�k � j, j�/�
n

C�k � n, n�

� C�k � j, j�/h�k� (2)

where k is the molecular weight of the selected isotopic
peak of the parent compound and j is the atomic weight
of the isotope of the atom under consideration. R(k,j) is
the probability that the atom will be of isotopic mass j if
it is removed at random from a parent ion of isotopic
mass k. In this expression we have taken advantage of
the fact that

h�k� � �
n

C�k � n, n� (3)

where n is a dummy variable used to generate the sum.
To this point we have shown that R(k,j) is the

probability that an atom (e.g., C) removed at random
from an isotopic peak of a parent ion will be of isotopic
mass j (e.g., 13C). Eq 2 therefore represents completion
of part one of the derivation.
For clarification, let us now take a moment and relate

the quantities discussed so far to specific steps in the
algorithm. C(k-j,j) of eq 3 is equivalent to the results of
Steps 2 and 5 of the algorithm. This can be seen by
looking at the factors that define the matrix elements of
C in eq 1. The first factor, g, is identified with the
isotopic abundance of the product compound in Step 2
of the algorithm. The second factor, f, is identified with
the isotopic abundance of an isotope of an atom in Step
5 of the algorithm. The quantity h(k) is equivalent to the
results of Step 1 of the algorithm. R(k,j) is equivalent to
the results of Step 4 of the algorithm. The mass shift
described in Step 3 of the algorithm is implicit in eq 3.
Of the steps in the algorithm, only Step 6 is missing to
this point.
Now that we know R(k,j) is the probability that an

atom (e.g., C) removed at random from an isotopic peak
of a parent ion will be of isotopic mass j (e.g., 13C), we
have only to convert this probability into an actual
number, such as the number of 13C atoms in an isotopic
peak. To do this we multiply the probability, R(k,j), by
N, the number of atoms in the chemical formula of the

parent compound for the element being considered.
This yields the final result, Q(k,j).

Q�k, j� � N � R� j, k� (4)

Eq 4 is equivalent to Step 6 of the algorithm, and the
proof is therefore complete.

Computational Methods

The algorithm described above can be broken into two
phases. In the first phase (Steps 1 and 2 above) the
isotopic distributions are calculated for the parent com-
pound and product compound. Methods that produce
centroided results (stick spectra) are ideal for these
calculations. [4, 6]. In this paper we use a computer
program, “Mercury6”. Unless otherwise noted, elemen-
tal isotopic abundances and accurate masses used in the
calculations were taken from the isotope.dat file that
Mercury6 uses as input (Table 1). Mercury6 generates
an output file containing mass/intensity pairs. The
isotopic distribution of the atom is also required, but
this does not require a separate calculation since it can
be found in tables. The resulting distribution was nor-
malized to unit probability and the remaining calcula-
tions done using Psi-Plot [10], which has extensive
capabilities for vector operations. A few miscellaneous
calculations were done with hand calculators (HP 12C
and Casio fx-991N).

Experimental Methods

All experiments were performed using a Bruker Dal-
tonics (Billerica, MA) model APEX 47e Fourier trans-
form mass spectrometer (FTMS), equipped with a 4.7
tesla superconducting magnet and an ion source exter-
nal to the high-field region of the magnet, and the
“infinity” trapping cell [11] design. Ions were generated
using microelectrospray of a solution of
decamethylcucurbit[5]uril (hereafter referred to by the
abbreviation mc5; molecular formula: C40H50O10N20; 0.1
mg mL�1, synthesized as has been described [12]) and
potassium acetate (2 mM) in ethanol, into which Kr gas
had been bubbled. The microelectrospray source has
been described [13]. The ions were electrostatically
injected into the FTMS trap. Following injection, the
potentials on both trapping plates were adjusted to a
value of� 1.0 V. The trapped ions were allowed to react
with approximately 5 � 10�8 mbar of neutral 18-
crown-6 (Sigma, St. Louis, MO) for 1.0 s prior to ion
excitation via a chirped RF pulse and acquisition of the
time-domain transient signal. The instrument was con-
trolled using a MIDAS data system [14] (software
version 3.18). The acquired spectra consisted of 128 k of
time-domain data points. The time-domain spectra
were processed and mass calibrations were performed
using Bruker Daltonics’ XMASS package (version
5.0.10); processing consisted of a single zero-fill, fol-
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lowed by Gaussian multiplication (with parameters LB
� �10.0 and GB � 0.5) and magnitude-mode Fourier
transformation. The mass scale was calibrated inter-
nally using the “cal2” method supplied with XMASS;
internal calibration peaks were the mono-isotopic ions
of mc5(K�)2, N2@mc5(K

�)2, and mc5�K�. Reference
masses for the calibration were from the XMASS peri-
odic table [15] and are listed in Table 1 of this paper.
Peak positions for all spectra were determined using the
XMASS apex method.

Discussion

Results of Sample Calculation

Table 3 presents the calculated isotopic compositions of
the isotopic peaks of C2Br3Cl3. Peaks are labeled accord-
ing to their integer masses.

Errors and Uncertainties

Although the algorithm presented above is exact, it is
subject to roundoff error. Psi-plot is not a significant
source of computational error because it performs its
calculations to �14 significant figures. Mercury6 gener-
ates the main source of error when it writes its output
file because it scales the base peak to 100% and rounds
its output file to 6 decimal places. This is particularly
significant for the weaker isotopic peaks. In addition to
computational error, there are additional sources of
uncertainty that may affect the comparison to experi-
mental results.

Error Detection. Fortunately, C2Br3Cl3 is simple
enough to verify using hand calculations by the poly-
nomial method. Some entries in Table 3 contain signif-
icant errors, although the algorithm itself is exact.
One way to gauge errors in the calculations is to look

for internal inconsistencies in the calculated isotopic
compositions. In general the Table 3 entries for isotopic

composition are non-integer numbers. For example, the
370-nucleon peak has an isotopic composition of
12C1.99983724

13C0.00016274
79Br1.57871795

81Br1.42128202
35Cl2.42136339

37Cl0.57863660. For each element these non-
integer numbers must add to yield an integer number
reflective of the chemical formula for the compound.
This applies to each isotopic peak. For most isotopic
peaks the errors were well under 1 ppm. This error test
can be applied without recourse to any alternative
methods of calculating isotopic compositions, such as
the polynomial method.
A second test for errors is to calculate an integer

molecular weight (nucleon number) from the isotopic
composition, and compare it to the correct integer
molecular weight. This error test can also be applied
without recourse to any alternative method of calculat-
ing isotopic compositions. Errors in integer molecular
weights were well within 1 ppm for most isotopic peaks
in our example. The calculated integer molecular
weight is found taking the dot product of two vectors,
the first containing the isotopic composition, and the
second being the corresponding integer elemental
atomic isotopic masses. For example the composition
vector for the 370-nucleon peak of C2Br3Cl3 is
[1.99983724, 0.00016274, 1.57871795, 1.42128202,
2.42136339, 0.57863660], which was taken from Row 5 of
Table 3, and the integer mass vector is [12, 13, 79, 81, 35,
37]. To the accuracy of the numbers listed in Table 3, the
calculated integer mass of the 370-nucleon peak is
369.99999702 for an error of �8.1 ppb. Two peaks in
particular had significant errors, the mass 379 peak
(�25 ppm) and the mass 380 peak (0.74%). These are
both very low abundance peaks, and the errors result
from roundoff error in the output file of Mercury6.
A third error check is to compare isotopic composi-

tions calculated by the present method with those
calculated using the polynomial method. A calculation
of this type for 370(C2Br3Cl3) was performed by hand. A
comparison is given in Table 4.

Table 3. Calculated isotopic compositions of isotopic peaks of C2Br3Cl3

Integer mass

Composition

12C 13C 79Br 81Br 35Cl 37Cl

366 2.00000006 0.00000000 3.00000001 0.00000000 3.0000009 0.00000000
367 0.99999889 1.00000140 3.00000345 0.00000000 3.00000250 0.00000000
368 1.99993557 0.00006442 2.24987157 0.75012839 2.75016059 0.24983940
369 1.00000047 1.00000022 2.24984717 0.75015255 2.75015201 0.24984736
370 1.99983724 0.00016274 1.57871795 1.42128202 2.42136339 0.57863660
371 1.00000036 1.00000036 1.57866364 1.42133669 2.42133635 0.57866332
372 1.99967600 0.00032398 1.01445041 1.98554958 1.98571159 1.01428843
373 1.00000005 1.00000054 1.01435908 1.98564174 1.98564125 1.01435907
374 1.99938525 0.00061477 0.57879726 2.42120275 1.42151013 1.57848993
375 0.99999940 1.0000082 0.57866343 2.42133751 1.42133598 1.57866399
376 1.99877636 0.00122362 0.25004868 2.74995132 0.75056306 2.24943684
377 1.00000171 1.00000026 0.24984834 2.750115146 0.75014748 2.24984517
378 1.99691047 0.00308857 0.00038608 2.99961642 0.00115655 2.99884241
379 0.99991862 0.99997577 0.00000000 2.9994022 0.000000000 2.99990906
380 0.00000000 2.01474162 0.00000000 3.02422326 0.00000000 3.01734260
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A fourth error check is to compare accurate masses
computed using the polynomial method to accurate
masses computed using the present method. This
method uses the information generated by the third
error checking method, and therefore adds no addi-
tional information. Nevertheless, it is instructive be-
cause the errors determined by this method were al-
most identical in value to those determined by error test
number 2. This therefore hints at a method for correct-
ing molecular mass errors. As an example of an accurate
mass calculation, the elemental isotopic composition of
the 370 peak of C2Br3Cl3 is given in Row 5 of Table 3.
Accurate masses of the elemental isotopes are given in
column 2 of Table 1. Taking the dot product of the
isotopic composition matrix with the exact mass matrix
gives a value of 369.6569487 for the accurate mass 370
peak of C2Br3Cl3. The error in this calculation was
virtually identical to the error in the integer mass
calculation presented above, �8.1 ppb. Table 5, column
2 presents results for selected isotopic peaks of
C2Br3Cl3. (The error listed in Table 5 for the 370-nucleon
peak, �9.3 ppb, disagrees with the �8.1 ppb of the
sample calculation just presented because the calcula-
tions in the Table were performed with more significant
figures.)

Error correction. Three simple strategies can help con-
trol the effects of computational error. The first is to
normalize the isotopic composition to give the correct
integer values in the chemical formula. This provides
correction against errors in the calculation of isotopic
composition. For example, the computed 12C and 13C
composition of 379(C2Br3Cl3) added to give a value of
C1.99989439 rather than the correct value of C2. One

would simply rescale the isotopic composition of all the
carbon isotopes so they add to the correct value of 2.
The second strategy is to rescale the accurate mass of

an individual isotopic peak as follows:

mnew_accurate � mcalc_accurate � mtrue_integer/mcalc_integer

(5)

Where mnew_accurate is an improved mass estimation,
mcalc_accurate is the “accurate” molecular mass one would
calculate using the accurate elemental isotopic masses
and the calculated isotopic composition of the peak,
mtrue_integer is the true integer molecular weight of the
isotopic peak, and mcalc_integer is the molecular weight
one would calculate from the integer elemental atomic
masses and the calculated isotopic composition of the
peak. This strategy enables better mass calculations
without adjusting the computed molecular formulas,
though it does nothing to correct the calculated isotopic
composition.
The third strategy is a combination approach that

sequentially applies the first strategy and then the
second strategy. Applying any of the three strategies
generally yields improved mass accuracy over an un-
corrected calculation. Table 5 provides a sample calcu-
lation for five selected isotopic peaks of C2Br3Cl3.
Masses determined by the polynomial method are
given for comparison. In general, the third strategy
provided the most accurate results where the worst-
case difference was 0.3 ppb. This was followed by the
second strategy (�50 ppb worst case), and the first
strategy (76 ppb worst case). Each of the three strategies
provided sub-ppm accuracy, even in the case of
380(C2Br3Cl3), where the uncorrected mass calculation
was 0.74% too high.

Isotopic Variability. The natural variability of isotopic
abundances (such as the 13C/12C abundance ratios)
affects the average mass of an ion. For example, mea-
surements of average molecular weights of proteins are
limited to an accuracy of 	8 ppm due to the variability
of the 13C/12C abundance ratio [16]. One must also ask
whether the variability of isotopic abundance ratios will
also affect the accurate masses of individual isotopic
peaks. Consider for example the 100-mer of polyethyl-
ene glycol, the protonated ion of which has a chemical

Table 4. Fractional errors in isotopic composition for
370(C2Br3Cl3)

Isotopic
species

Expected
compositiona

Fractional
error

12C 1.99983726 �1.2E-08
13C 0.00016274 8.6E-07
79Br 1.57871794 5.9E-09
81Br 1.42128206 �3.0E-08
35Cl 2.42136343 �1.7E-08
37Cl 0.57863657 4.9E-08

aExpected composition calculated by hand by the polynomial method.

Table 5. Fractional errors of corrected masses of selected isotopic peaks of C2Br3Cl3

Integer
mass

Expected
accurate massa

Fractional error
(uncorrected)b

Fractional error
(strategy 1)

Fractional error
(strategy 2)

Fractional error
(strategy 3)

366 365.66156730 1.3E-08 0 1.8E-12 0
367 366.66492270 9.9E-07 3.4E-09 �5.9E-11 1.5E-11
370 369.6595168 �9.3E-09 2.3E-11 �8.1E-14 �8.1E-14
379 378.64993260 �2.5E-05 7.6E-08 �2.0E-09 3.2E-10
380 379.65328800 7.4E-03 0 �5.0E-08 0

aExpected accurate masses calculated by polynomial method.
bUncorrected masses are those calculated using the results from Table 3. Corrected masses are calculated by three strategies explained in paper.
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formula of C200H403O101
� . Using the methods presented

in this paper, and applying error correction strategy
number 2, we calculated the accurate masses of all
isotopic peaks of abundance greater than 0.01% of the
base peak. The calculation was done twice, once using a
13C isotopic abundance of 1.1070% and once using an
altered abundance of 1.2177%, a relative increase of
10%. As expected, the altered 13C isotopic abundances
introduced mass shifts for the individual isotopic peaks.
However, the calculated mass shifts were very small,
being less than 0.15 ppm in the worst case.

Statistical uncertainty. In comparing theoretical calcu-
lations to experimental measurements, invariably ex-
perimental errors must be dealt with. Most are beyond
the scope of this paper, but one relates directly to the
mathematical properties of the isotopic distributions
and can therefore be discussed here. In general a
nominal isotopic peak is not composed of a single
contribution, but rather on the millidalton scale most
isotopic peaks consist of a cluster of closely spaced
peaks [17–20]. A calculated example is shown in Figure
2. In most cases this fine structure is not resolved,
though some ultrahigh resolution experiments have
been reported in which this fine structure was resolved
[20]. If the isotopic distribution for a single nominal
isotopic peak is normalized, it can be treated as a
probability distribution. In an experimental measure-
ment of a nominal isotopic peak ions are selected at
random from the distribution. Hence, the measured
mass (the mean of the random selection from the
distribution) will be uncertain on the millidalton scale.
The statistical uncertainty of the measured mass, �meas
depends on two factors: (1) The number of ions mea-
sured in the nominal isotopic peak, Nion, and (2) �ion,
the standard deviation of the distribution for the nom-
inal isotopic peak:

�meas � �ion/�Nion (6)

This relationship sets an absolute statistical limit on the
measurable mass accuracy. The standard deviation of
the isotopic peak shown in Figure 2 is 0.63 millidalton,
or 1.7 ppm. Therefore, achieving a standard deviation
of 0.1 ppm in mass accuracy for measurements of this
isotopic peak would require sampling approximately
300 ions.

Elemental isotopic mass uncertainties. Uncertainties in
the masses of the elemental isotopes affect the masses of
isotopic peaks computed from elemental compositions,
though they do not affect the calculation of the elemen-
tal compositions themselves. These errors are easily
estimated by simple formulas for propagation of errors,
which will not be given here.

Experimental Results

Agreement between the reference m/z values and the
results of the calibration is about 0.1 ppm over a range
of about 500 m/z units. The calibrated spectrum was
used to obtain accurate mass measurements for the
various peaks of the isotope cluster corresponding to
the Kr@mc5(K�)2 inclusion complex. The region of the
spectrum comprising the complex is given in Figure 3.
A list of the measured accuratem/z values is included in
Table 6. Also included are the theoretical accurate m/z
values, calculated using reference masses and abun-
dances from the XMASS periodic table, excerpted in
Table 1. Included in the calculation are the charge (�2)
and the electron mass. Error correction strategy number
3, described above, was used. However, corrections
were small (0.2 ppm or less) for each of the peaks listed.
Theory and experiment agree at the low ppm level.

Errors ranged from �1.4 to —3.9 ppm, taking the
theoretical values as the reference point. The difference
between the theoretical and experimental results

Figure 2. Ultrahigh resolution calculation of isotopic fine struc-
ture of isotopic peak of mass 371.655 of C2Br3Cl3. Calculations
performed using algorithm in reference [17] and normalized to
unit area.

Figure 3. Fourier transformmass spectrum of the isotopic cluster
of Kr@mc5(K�)2.
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showed systematic trends, as seen in Figure 4. The
origin of these trends is unclear. Two possibilities
include space charge induced frequency shifts in the
ICR cell (possibly including “local” frequency pertur-
bations [21]) and background noise, both of which
could affect the peak positions, especially for small
peaks.

Strategies for Comparison Between Experiment
and Theory

Computer programs for accurate mass comparisons
generally perform a semi-exhaustive search of all pos-
sible compositions to match experimental results to
possible chemical compositions. The search is generally
restricted to a certain mass error band and to a subset of
all possible isobars, based on composition constraints.
A similar semi-exhaustive search strategy could be used
for isotopic masses. For high molecular weight mole-
cules, which in general contain complex isotopic struc-
ture, the use of multiple isotopic peaks would be highly
advantageous because the multitude of isotopic peaks
provides redundant information. However, because of
this redundancy, the comparison becomes more com-
plicated. Instead of a single parameter to compare
(agreement between experimental and theoretical
mono-isotopic masses), there are multiple parameters
to compare (agreement of experimental and theoretical

masses for several isotopic peaks), and consequently
several different forms of comparison are possible.
Most involve calculating the mass difference between
each experimental peak and the theoretical peaks, and
then applying some kind of averaging method to the
data to provide a global comparison.
Rather than discuss all possibilities we will mention

one. From statistical considerations the best gauge of
error is probably an RMS average with the terms
weighted according to the square root of intensity. In
the present example this method produces a 1.4 ppm
average error.
One might ask what is the level of accuracy required

for accurate mass measurements for large molecules.
Clearly this will be dependent on the context. Tradi-
tional practice for small to medium molecular weight
molecules has been to specify low ppm mass accuracy
in order to provide an unambiguous composition. For
large molecules the requirement is not as clear-cut. For
example, protein compositions are restricted to combi-
nations of amino acids and certain modifications. This
greatly limits the composition space that must be
searched and reduces the likelihood of ambiguity in
deducing composition. Furthermore, even a non-defin-
itive result may be very useful. For example, if one were
interested in a protein generated by genetic engineering
methods the composition may already be “known”
with a fair degree of confidence. Mass spectrometry
would then be used as an additional confirmatory tool.
Suppose the accurate mass measurement were to elim-
inate just 95% of possible isobaric proteins. The product
identity would then be confirmed to a very high confi-
dence level (much greater than 95%), even if some
isobaric proteins were not excluded by the mass mea-
surement alone. This is analogous to the problem of
diagnosing illness based on a laboratory test in which
prior probabilities interact with test performance to
influence the “predictive value positive” of the test [22].

Computational Efficiency

In a semi-exhaustive search, which requires repeated
calculations over a large number of trial compositions,
computational efficiency is extremely important. For
example, consider two algorithms, one taking 0.5 s for a
single composition and a second taking 0.05 s. Both
algorithms would be considered “fast” when run on a
single instance, but if the semi-exhaustive search in-
cluded 200 different compositions then the practical
difference between these two “fast” algorithms (100 s
versus 10 s) becomes dramatic.
We estimate upper limits for run times achievable for

a fully integrated computer program from the follow-
ing. To completely characterize the isotopic composi-
tion of all the isotopic peaks of a compound one must
calculate the isotopic distribution of the parent com-
pound and the isotopic distributions for several product
compounds, one for each chemical element in the
formula. The remaining operations require relatively

Table 6. Accurate m/z values for peaks in the
Kr@mc5(K�)2spectrum. Peaks are doubly charged

Peak Measured m/z Theoretical m/z m/z error (ppm)

1 564.12102 564.12242 �2.47
2 564.62363 564.62362 �0.02
3 565.12111 565.12097 �0.24
4 565.62192 565.62152 �0.70
5 566.12099 566.12019 �1.41
6 566.62141 566.62125 �0.29
7 567.12003 567.12017 �0.24
8 567.61993 567.62095 �1.79
9 568.11947 568.12062 �2.02

10 568.61877 568.62100 �3.93

Figure 4. Systematic m/z error in experimental masses of
Kr@mc5(K�)2.
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little computational effort and can be ignored in the
estimate. Consequently, one can estimate the computa-
tional time to fully implement the algorithm in a
computer program by simply summing the time re-
quired to calculate the isotopic distributions for the
parent compound and product compounds. We have
tested the computational speed for calculating the iso-
topic distribution of the hypothetical compound
C50,000H50,000N50,000O50,000 using the mercury6 program
running on an 864 MHz Pentium-based PC. This hypo-
thetical compound has a molecular weight above
2,000,000. This calculation required less than 0.055 s.
Therefore, taking an extremely conservative estimate of
0.1 s of computational time per distribution, and assum-
ing as many as nine chemical elements in a compound,
we estimate a worst-case computational time of 
1 s.
Even this estimate may be 2 or more orders of magni-
tude too conservative, based on results from rescaling
the chemical formula of the test compound to
C5,000,000H5,000,000N5,000,000O5,000,000. However, full verifi-
cation of timing results must await the development of
a fully integrated computer program implementing the
algorithm.
Based on its computational efficiency, the present

method should lend itself well to applications requiring
a semi-exhaustive search. The method is also advanta-
geous for applications that do not require repetitive
calculations because it gives accurate results at high
speed, even when applied blindly. By contrast, polyno-
mial methods using pruning require some art in their
application because they trade speed for accuracy.

Conclusions

The simple algorithm presented here enables the calcu-
lation of isotopic compositions of single isotopic peaks.
From isotopic compositions one may then calculate
accurate masses of single isotopic peaks, making accu-
rate mass measurements useful, even for compounds
where the mono-isotopic peak is not the dominant peak
in the mass spectrum. The algorithm itself is exact.
Errors introduced during practical calculations, such as
roundoff errors, are controllable by highly effective
error detection and correction strategies. The algorithm
produces results that agree well with calculations based
on the polynomial method. However, the present algo-
rithm is computationally more efficient than the poly-
nomial method and may therefore be applied to sys-
tems of virtually any isotopic complexity. The isotopic
masses of a krypton inclusion complex were measured
experimentally. Low ppm agreement was observed
between theory and experiment.
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