Skip to main content
Log in

Regimes of biological invasion in a predator-prey system with the Allee effect

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Spatiotemporal dynamics of a predator-prey system is considered under the assumption that prey growth is damped by the strong Allee effect. Mathematically, the model consists of two coupled diffusion-reaction equations. The initial conditions are described by functions of finite support which corresponds to invasion of exotic species. By means of extensive numerical simulations, we identify the main scenarios of the system dynamics as related to biological invasion. We construct the maps in the parameter space of the system with different domains corresponding to different invasion regimes and show that the impact of the Allee effect essentially increases the system spatiotemporal complexity. In particular, we show that, as a result of the interplay between the Allee effect and predation, successful establishment of exotic species may not necessarily lead to geographical spread and geographical spread does not always enhance regional persistence of invading species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allee, W.C., 1938. The Social Life of Animals. Norton and Co, New York.

    Google Scholar 

  • Amarasekare, P., 1998. Interactions between local dynamics and dispersal: insights from single species models. Theor. Popul. Biol. 53, 44–59.

    Article  MATH  Google Scholar 

  • Berryman, A.A., 1981. Population Systems: A General Introduction. Plenum Press, New York.

    MATH  Google Scholar 

  • Brauer, F., Soudack, A.C., 1978. Response of predator-prey systems to nutrient enrichment and proportional harvesting. Int. J. Control 27, 65–86.

    MathSciNet  MATH  Google Scholar 

  • Courchamp, F., Clutton-Brock, T., Grenfell, B., 1999. Inverse density dependence and the Allee effect. TREE 14, 405–410.

    Google Scholar 

  • Dennis, B., 1989. Allee effects: population growth, critical density, and the chance of extinction. Nat. Res. Model. 3, 481–538.

    MATH  MathSciNet  Google Scholar 

  • Fagan, W.F., Bishop, J.G., 2000. Trophic interactions during primary succession: herbivores slow a plant reinvasion at Mount St. Helens. Am. Nat. 155, 238–251.

    Article  Google Scholar 

  • Fagan, W.F., Lewis, M.A., Neubert, M.G., van den Driessche, P., 2002. Invasion theory and biological control. Ecol. Lett. 5, 148–157.

    Article  Google Scholar 

  • Fisher, R., 1937. The wave of advance of advantageous genes. Ann. Eugenics 7, 255–369.

    Google Scholar 

  • Frantzen, J., van den Bosch, F., 2000. Spread of organisms: can travelling and dispersive waves be distinguished? Basic Appl. Ecol. 1, 83–91.

    Article  Google Scholar 

  • Gilpin, M., 1972. Enriched predator-prey systems: theoretical stability. Science 177, 902–904.

    Google Scholar 

  • Gyllenberg, M., Hemminki, J., Tammaru, T., 1999. Allee effects can both conserve and create spatial heterogeneity in population densities. Theor. Popul. Biol. 56, 231–242.

    Article  MATH  Google Scholar 

  • Haken, H., 1983. Advanced Synergetics. Springer, Berlin.

    MATH  Google Scholar 

  • Hastings, A., 1996. Models of spatial spread: a synthesis. Biol. Conserv. 78, 143–148.

    Article  Google Scholar 

  • Hastings, A., 2001. Transient dynamics and persistence of ecological systems. Ecol. Lett. 4, 215–220.

    Article  Google Scholar 

  • Hengeveld, R., 1989. Dynamics of Biological Invasions. Chapman and Hall, London.

    Google Scholar 

  • Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R., 1994. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29.

    Article  Google Scholar 

  • Keitt, T.H., Lewis, M.A., Holt, R.D., 2001. Allee effects, invasion pinning, and species’ borders. Am. Nat. 157, 203–216.

    Article  Google Scholar 

  • Lewis, M.A., 1996. A Tale of Two Tails: The Mathematical Links Between Dispersal, Patchiness and Variability in Biological Invasion. Abstracts of the 3rd European Conference on Mathematics in Biology and Medicine, Heidelberg.

  • Lewis, M.A., Kareiva, P., 1993. Allee dynamics and the spread of invading organisms. Theor. Popul. Biol. 43, 141–158.

    Article  MATH  Google Scholar 

  • Loehle, C., Li, B.-L., 1996. Habitat destruction and the extinction debt revisited. Ecol. Appl. 6, 784–789.

    Google Scholar 

  • Malchow, H., Petrovskii, S.V., 2002. Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Math. Comput. Model. 36, 307–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Morozov, A.Y., 2003. Mathematical modelling of ecological factors affecting stability and pattern formation in marine plankton communities, Ph.D. Thesis, Shirshov Institute of Oceanology, Moscow, Russia.

    Google Scholar 

  • Morozov, A.Y., Petrovskii, S.V., Li, B.-L., 2004. Bifurcations and chaos in a predator-prey system with the Allee effect. Proc. R. Soc. Lond. B 271, 1407–1414.

    Article  Google Scholar 

  • Murray, J.D., 1989. Mathematical Biology. Springer, Berlin.

    MATH  Google Scholar 

  • Nisbet, R.M., Gurney, W.S.C., 1982. Modelling Fluctuating Populations. Wiley, Chichester.

    MATH  Google Scholar 

  • Okubo, A., 1980. Diffusion and Ecological Problems: Mathematical Models. Springer, Berlin.

    MATH  Google Scholar 

  • Owen, M.R., Lewis, M.A., 2001. How predation can slow, stop or reverse a prey invasion. Bull. Math. Biol. 63, 655–684.

    Article  Google Scholar 

  • Petrovskii, S.V., 1994. Approximate determination of the magnitude of the critical size in the problem of the evolution of an impact. J. Eng. Phys. Thermophys. 66, 346–352.

    Article  MathSciNet  Google Scholar 

  • Petrovskii, S.V., Kawasaki, K., Takasu, F., Shigesada, N., 2001. Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species. Japan J. Indust. Appl. Math. 18, 459–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Petrovskii, S.V., Malchow, H., 2000. Critical phenomena in plankton communities: KISS model revisited. Nonlinear Analysis: Real World Applications 1, 37–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Petrovskii, S.V., Malchow, H., 2001. Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol. 59, 157–174.

    Article  MATH  Google Scholar 

  • Petrovskii, S.V., Malchow, H., Li, B.-L., 2004. An exact solution of a diffusive predator-prey system. Proc. R. Soc. Lond. A (in press).

  • Petrovskii, S.V., Shigesada, N., 2001. Some exact solutions of a generalized Fisher equation related to the problem of biological invasion. Math. Biosci. 172, 73–94.

    Article  MathSciNet  Google Scholar 

  • Petrovskii, S.V., Vinogradov, M.E., Morozov, A.Y., 1998. Spatial-temporal dynamics of a localized population ‘burst’ in a distributed prey-predator system. Oceanology 38, 796–804.

    Google Scholar 

  • Petrovskii, S.V., Morozov, A.Y., Venturino, E., 2002a. Allee effect makes possible patchy invasion in a predator-prey system. Ecol. Lett. 5, 345–352.

    Article  Google Scholar 

  • Petrovskii, S.V., Vinogradov, M.E., Morozov, A.Y., 2002b. Spatio-temporal horizontal plankton patterns caused by biological invasion in a two-species model of plankton dynamics allowing for the Allee effect. Oceanology 42, 384–393.

    Google Scholar 

  • Prigogine, I., 1980. From Being to Becoming. Freeman and Co, San Francisco.

    Google Scholar 

  • Sakai, A.K. et al., 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332.

    Article  Google Scholar 

  • Sherratt, J.A., 2001. Periodic travelling waves in cyclic predator-prey systems. Ecol. Lett. 4, 30–37.

    Article  Google Scholar 

  • Sherratt, J.A., Lewis, M.A., Fowler, A.C., 1995. Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA 92, 2524–2528.

    Article  MATH  Google Scholar 

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press, Oxford.

    Google Scholar 

  • Skellam, J.G., 1951. Random dispersal in theoretical populations. Biometrika 38, 196–218.

    Article  MATH  MathSciNet  Google Scholar 

  • Tilman, D., May, R.M., Lehman, C.L., Nowak, M.A., 1994. Habitat destruction and the extinction debt. Nature 371, 65–66.

    Article  Google Scholar 

  • Volpert, A.I., Volpert, V.A., Volpert, V.A., 1994. Travelling Wave Solutions of Parabolic Systems. American Mathematical Society, Providence.

    Google Scholar 

  • Wang, M.-E., Kot, M., 2001. Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171, 83–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson, W., 1998. Resolving discrepancies between deterministic population models and individual-based simulations. Am. Nat. 151, 116–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Petrovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovskii, S., Morozov, A. & Li, BL. Regimes of biological invasion in a predator-prey system with the Allee effect. Bull. Math. Biol. 67, 637–661 (2005). https://doi.org/10.1016/j.bulm.2004.09.003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.09.003

Keywords

Navigation