Skip to main content

Advertisement

Log in

The mathematical modelling of adjuvant chemotherapy scheduling: Incorporating the effects of protocol rest phases and pharmacokinetics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper the modelling objective is to determine the drug alternation time which minimises the formation of resistant tumour cells when delivering two non-cross resistant chemotherapeutics given such drugs cannot be delivered simultaneously and constraints due to pharmacokinetics and protocol rest phases. We initially consider cell cycle phase non-specific models, as investigated by Goldie and Coldman. By extending previous work, these models are generalised to consider chemotherapeutic S-phase specificity.

We find with the cell cycle phase non-specific models that once the alternation time of the drugs is reduced below a critical threshold, a substantial improvement in protocol outcome is predicted. Extensive improvements are also observed for the S-phase specific investigation if the drugs can be alternated extremely rapidly. However, this is typically impossible due to pharmacokinetic constraints. Under such circumstances, the most appropriate choice of the alternation time can depend sensitively on the median and variance of the tumour cell cycle time in a complicated manner. For schedulings motivated by Capecitabine protocols, we find that switching the drugs only once, or at most twice, between rest phases gives the most reliable alternation time.

The main and novel conclusion of this paper is the modelling prediction that one must be much more specific in the choice of the protocol alternation time if attempting to observe the improvements promised by Goldie and Coldman’s alternation hypothesis for the rest phases, pharmacokinetics and delivery mechanisms typically encountered in cell cycle phase specific chemotherapy protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, R., 2004. Current surgical strategies for the treatment of colorectal cancer liver metastases. Eur. J. Cancer Suppl. 2, 21–26.

    Article  MATH  Google Scholar 

  • Agur, Z., 1998. Resonance and anti-resonance in the design of chemotherapeutic protocols. J. Theor. Med. 1, 237–245.

    Article  MATH  Google Scholar 

  • Agur, Z., Dvir, Y., 1994. Use of knowledge on ϕ n series for predicting optimal chemotherapy treatment. Random Comput. Dyn. 2, 279–286.

    MATH  Google Scholar 

  • Agur, Z., Arnon, R., Schechter, B., 1988. Reduction of cytotoxicity to normal tissues by new regimens of phase-specific drugs. Math. Biosci. 92, 1–15.

    Article  MATH  Google Scholar 

  • Agur, Z., Arnon, R., Schechter, B., 1992. Effect of the dosing interval on survival and myelotoxicity in mice treated by Cytosine arabinoside. Eur. J. Cancer 28A, 1085–1090.

    Article  Google Scholar 

  • Agur, Z., Arnon, R., Sandak, B., Schechter, B., 1991. Zidovudine toxicity to murine bone marrow may be affected by the exact frequency of drug administration. Exp. Hematol. 19, 364–368.

    Google Scholar 

  • Anderson, L.K., Mackey, M.C., 2001. Resonance in periodic chemotherapy: a case study of acute myelogenous leukaemia. J. Theor. Biol. 209, 113–130.

    Article  Google Scholar 

  • Andreeff, M., Goodrich, D.W., Pardee, A.B., 2000. Cell proliferation, differentiation, and apoptosis. In: Holland, J.F., Kufe, D.W., Pollack, R.E., Weichselsbaum, R.R., Frei, E.I., Bast, R.C. (Eds.), Holland-Frei Cancer Medicine. Decker Inc. (Chapter 2).

  • Belpomme, D., 1991. Diversity of the resistance mechanisms to anticancer cytotoxic drugs. M S-Medecine Sciences 7, 465–472.

    Google Scholar 

  • Brockmann, 1976. The Pharmacological Basis of Cancer Chemotherapy. Williams and Wilkins Publishers, Baltimore, pp. 692–710.

    Google Scholar 

  • Bruce, W.R., Meaker, B.E., Valeriote, F.A., 1966. Comparison of normal hemapoietic and transplanted lymphoma colony forming cells to chemotherapeutic agents administered in vivo. J. Nat. Cancer Inst. 37, 233–245.

    Google Scholar 

  • Buzzoni, R., Bonadonna, G., Valagussa, P., Zambetti, M., 1991. Adjuvant chemotherapy with doxorubicin plus cyclophosphamide, methotrexate, and fluorouracil in the treatment of resectable breast cancer with more than three positive axillary nodes. J. Clin. Oncol. 9, 2134–2140.

    Google Scholar 

  • Chiorino, G., Metz, J.A.J., Tomasoni, D., Ubezio, P., 2001. Desynchronisation rate in cell populations: mathematical modelling and experimental data. J. Theor. Biol. 208, 185–199.

    Article  Google Scholar 

  • Cojocaru, L., Agur, Z., 1992. Theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math. Biosci. 109, 85–97.

    Article  MATH  Google Scholar 

  • Coldman, A.J., Goldie, J.H., 1983. A model for the resistance of tumour cells to cancer chemotherapeutic agents. Math. Biosci. 65, 291–307.

    Article  MATH  Google Scholar 

  • Coldman, A.J., Goldie, J.H., 1998. Drug resistance in cancer: mechanisms and models. CUP.

  • Coldman, A.J., Murray, J.M., 2000. Optimal control for a stochastic model of cancer chemotherapy. Math. Biosci. 168, 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Day, R.S., 1986. Treatment sequencing, asymmetry and uncertainty: protocol strategies for combination chemotherapy. Cancer Res. 46, 3876–3885.

    Google Scholar 

  • Deplacido, S. et al., 1995. CMF vs alternating CMF/EV in the adjuvant treatment of operable breast-cancer—a single-center randomized clinical-trial (naples gun-3 study). Br. J. Cancer 71, 1283–1287.

    Google Scholar 

  • Dibrov, B.F., 1998. Resonance effect in self renewing tissues. J. Theor. Biol. 192, 15–33.

    Article  Google Scholar 

  • Dibrov, B.F., Zhabotinsky, A.M., Neyfakh, Y.A., Orlova, M.P., Churikova, L.I., 1985. Mathematical model of cancer chemotherapy. Periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy. Math. Biosci. 73, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Dube, S., Heyen, F., Jenicek, M., 1997. Adjuvant chemotherapy in colorectal cancer. Dis. Colon Rectum 40, 35–41.

    Article  Google Scholar 

  • Frei, E.I., Antman, K.H., 2000. Principles of dose, schedule, and combination chemotherapy. In: Holland, J.F., Kufe, D.W., Pollack, R.E., Weichselsbaum, R.R., Frei, E.I., Bast, R.C. (Eds.), Holland-Frei Cancer Medicine. Decker Inc. (Chapter 40).

  • Gaffney, E.A., 2004. The application of mathematical modelling to aspects of adjuvant chemotherapy scheduling. J. Math. Biol. 48, 375–422.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilewski, T.A., Dang, C., Surbone, A., Norton, L., 2000. Cytokinetics. In: Holland, J.F., Kufe, D.W., Pollack, R.E., Weichselsbaum, R.R., Frei, E.I., Bast, R.C. (Eds.), Holland-Frei Cancer Medicine. Decker Inc. (Chapter 38).

  • Goldie, J.H., Coldman, A.J., 1983. Quantitative model for multiple levels of drug resistance in clinical tumours. Cancer Treat. Rep. 67, 923–931.

    Google Scholar 

  • Goldie, J.H., Coldman, A.J., 1986. Application of theoretical models to chemotherapy protocol design. Cancer Treat. Rep. 70, 127–131.

    Google Scholar 

  • Goldie, J.H., Coldman, A.J., Gudaskas, G.A., 1982. Rationale for the use of alternating non-cross resistant chemotherapy. Cancer Treat. Rep. 66, 439–449.

    Google Scholar 

  • Guichard, S., Hennebelle, I., Bugat, R., Canal, P., 1998. Cellular interactions of 5-fluorouracil and the camptothecin analogue CPT-11 (irinotecan) in a human colorectal carcinoma cell line. Biochem. Pharmacol. 55, 667–676.

    Article  Google Scholar 

  • Harnevo, L.H., Agur, Z., 1992. Drug resistance as a dynamic process in a model for multi-step gene amplification under various levels of selection stringency. Cancer Chemother. Pharmacol. 30, 469–476.

    Article  Google Scholar 

  • Ishikawa, T., Utoh, M., Sawada, N., Nishida, M., Fukase, Y., Sekiguchi, F., Ishitsuka, H., 1998. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate in human cancer xenografts. Biochem. Pharmacol. 55, 1091–1097.

    Article  Google Scholar 

  • Kemeny, N., Huang, Y., Cohen, A.M., Shi, W., Conti, J.A. et al., 1999. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases. New England J. Med. 341, 2039–2048.

    Article  Google Scholar 

  • Mader, R.M., Muller, M., Steger, G.G., 1998. Resistance to 5-fluorouracil. Gen. Pharmacol. 31, 661–666.

    Google Scholar 

  • Midgley, R., Kerr, D.J., 1999. Seminar in colorectal cancer. Lancet 353, 391–399.

    Article  Google Scholar 

  • Midgley, R., Kerr, D.J., 2000. ABC of colorectal cancer: adjuvant chemotherapy. BMJ 321, 1208–1211.

    Article  Google Scholar 

  • Morton, K.W., Mayers, D.F., 1994. Numerical Solution Of Partial Differential Equations. Cambridge University Press.

  • Murray, J.M., 1997. The optimal scheduling of two drugs with simple resistance for a problem in cancer chemotherapy. IMA J. Math. Appl. Med. Biol. 14, 283–303.

    MATH  Google Scholar 

  • Nicum, S., Midgley, R., Kerr, D.J., 2000. Chemotherapy for colorectal cancer. J. R. Soc. Med. 93, 416–419.

    Google Scholar 

  • Ojima, I., Ferlini, C., 2003. New insights into drug resistance in cancer. Chem. Biol. 10, 583–589.

    Article  Google Scholar 

  • Rew, D.A., Wilson, G.D., 2000. Cell production rates in human tissues and tumours and their significance. Part II: clinical data. Eur. J. Surg. Oncol. 26, 405–417.

    Article  Google Scholar 

  • Shochat, E., Hart, D., Agur, Z., 1999. Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. J. Math. Models Methods Appl. Sci. 9, 599–615.

    Article  MATH  Google Scholar 

  • Spielmann, M., Tubiana-Hulin, M., Namer, M., Mansouri, H., Bougnoux, P., Tubiana-Mathieu, N., Lotz, V., Eymard, J.C., 2002. Sequential or alternating administration of docetaxel (taxotere) combined with FEC in metastatic breast cancer: a randomised phase II trial. Br. J. Cancer 85, 692–697.

    Article  Google Scholar 

  • Stangl, R., Altendorf-Hofmann, A., Charnley, R.M., Scheele, J., 1994. Factors influencing the natural history of colorectal liver metastases. Lancet 343, 1405–1410.

    Article  Google Scholar 

  • Takahashi, T., Bhide, P.G., Goto, T., Miyama, S., Caviness Jr, V.S., 1999. Proliferative behavior of the murine cerebral wall in tissue culture: cell cycle kinetics and checkpoints. Exp. Neurol. 156, 407–417.

    Article  Google Scholar 

  • Tebbutt, N.C., Cattell, E., Midgley, R., Cunningham, D., Kerr, D.J., 2002. Systemic treatment of colorectal cancer. Eur. J. Cancer 38, 1000–1015.

    Article  Google Scholar 

  • Tsurutani, J., Nitta, T., Hirashima, T., Komiya, T., Uejima, H., Tada, H., Syunichi, N., Tohda, A., Fukuoka, M., Nakagawa, K., 2002. Point mutations in the topoisomerase I gene in patients with non-small cell lung cancer treated with irinotecan. Lung Cancer 35, 299–304.

    Article  Google Scholar 

  • Ubezio, P., Tagliabue, G., Schechter, B., Agur, Z., 1994. Increasing 1-D-Arabinofuranosylcytosine efficacy by scheduled dosing intervals based on direct measurement of bone marrow cell kinetics. Cancer Res 54, 6446–6451.

    Google Scholar 

  • Van Cutsem, E., Dicato, M., Wils, J., Cunningham, D., Diaz-Rubio, E., Glimelius, B., Haller, D., Johnston, P., Kerr, D.J. et al., 2002. Adjuvant treatment of colorectal cancer current expert opinion derived from the third international conference: perspectives in colorectal cancer, Dublin, 2001. Eur. J. Cancer 38, 1429–1436.

    Article  Google Scholar 

  • Webb, G., 1990. Resonance phenomena in cell population chemotherapy models. Rocky Mountain J. Math. 20, 1195–1216.

    Article  MATH  MathSciNet  Google Scholar 

  • Webb, G., 1992a. A nonlinear cell population model of periodic chemotherapy treatment. In: Recent Trends in Ordinary Differential Equations. Series in Applicable Analysis. World Scientific Publishing Company, pp. 569–583.

  • Webb, G., 1992b. A cell population model of periodic chemotherapy treatment. In: Biomedical Modeling and Simulation. Elsevier Science Publishers, pp. 83–92.

  • Webb, G., Johnson, M., 1996. Resonances in age structured cell population models of periodic chemotherapy. Int. J. Appl. Sci. Comput. 3, 57–67.

    Google Scholar 

  • Wheldon, T.E., 1988. Mathematical Models in Cancer Research. Adam Hilger Publishers, Bristol.

    MATH  Google Scholar 

  • Wolfe, S.L., 1995. Introduction to Cell and Molecular Biology. Wadsworth.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaffney, E.A. The mathematical modelling of adjuvant chemotherapy scheduling: Incorporating the effects of protocol rest phases and pharmacokinetics. Bull. Math. Biol. 67, 563–611 (2005). https://doi.org/10.1016/j.bulm.2004.09.002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.09.002

Keywords

Navigation