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The electric fields responsible for mass-selective axial ejection (MSAE) of ions trapped in a
linear quadrupole ion trap have been studied using a combination of analytic theory and
computer modeling. Axial ejection occurs as a consequence of the trapped ions’ radial motion,
which is characterized by extrema that are phase-synchronous with the local RF potential. As
a result, the net axial electric field experienced by ions in the fringe region, over one RF cycle,
is positive. This axial field depends strongly on both the axial and radial ion coordinates. The
superposition of a repulsive potential applied to an exit lens with the diminishing quadrupole
potential in the fringing region near the end of a quadrupole rod array can give rise to an
approximately conical surface on which the net axial force experienced by an ion, averaged
over one RF cycle, is zero. This conical surface has been named the cone of reflection because it
divides the regions of ion reflection and ion ejection. Once an ion penetrates this surface, it
feels a strong net positive axial force and is accelerated toward the exit lens. As a consequence
of the strong dependence of the axial field on radial displacement, trapped thermalized ions
can be ejected axially from a linear ion trap in a mass-selective way when their radial
amplitude is increased through a resonant response to an auxiliary signal. (J Am Soc Mass
Spectrom 2003, 14, 1130–1147) © 2003 American Society for Mass Spectrometry

Ions trapped within a linear quadrupole ion trap canbe extracted mass selectively either axially [1, 2] or
radially [3]. Both approaches yield high quality

mass spectra and offer advantages over conventional
three-dimensional ion traps, such as greater ion capac-
ity, higher trapping efficiencies, less mass discrimina-
tion, and reduced effects of space charge [1,3]. In certain
cases, linear ion trap mass spectrometers can be incor-
porated into the ion path of triple quadrupoles yielding
an instrument that combines the strengths of both
platforms [1, 4]. Ions are trapped radially in these
devices by the RF quadrupole field and axially by static
DC potentials at the ends of the quadrupole rod array,
in contrast to conventional Paul traps in which ions are
trapped by a three-dimensional RF quadrupole field.
Radial mass-selective ion ejection occurs when the RF
voltage is ramped in the presence of a sufficiently
intense auxiliary AC voltage. The auxiliary AC reso-
nance-ejection voltage is applied radially and the ions
emerge from the linear ion trap through slots cut in the
quadrupole rods [3]. Radial ejection requires that the RF
field be of high quality over the entire length of the ion
trap [3] in order to preserve mass spectral resolution,
since resolution depends on the fidelity of the secular
frequency of the trapped ions. Thus, very high mechan-
ical precision is required in fabrication of the quadru-

pole rods in order to maintain the same secular fre-
quency over the length of the device. Of course, the
greater the length of the linear ion trap, the more
difficult it is to maintain the high degree of mechanical
precision. In addition, considerable care must be taken
to ensure that the ions that are intended to be ejected
radially from the linear ion trap are isolated as much as
possible from the ends of the linear quadrupole device
due to the fringing field effects of the termination of the
RF fields [3]. These fringing fields, positioned at both
ends of the quadrupole, are most often deleterious to
RF/DC quadrupole performance [5] as well as radial
ejection from a linear ion trap [3]. In the fringing region,
the diminution of the quadrupole field, the increased
significance of higher-order terms in the multipole
expansion of the potential and coupling of radial and
axial fields lead to significant changes in the secular
frequency [6, 7] and thus ejection at unexpected stability
coordinates.
Mass-selective axial ejection (MSAE) of ions from

linear quadrupole ion traps takes advantage of the RF
fringing fields to convert radial ion excitation into axial
ion ejection [1, 2] in a manner analogous to resolving
RF-only mass spectrometers [8, 9]. Trapped ions are
given some degree of radial excitation via a resonance
excitation process, and in the exit fringing-field, this
radial excitation results in additional axial ion kinetic
energy that can overcome the exit DC barrier [1, 2].
MSAE of ions from a linear quadrupole ion trap has

been shown to add high-sensitivity and high-resolution

Published online August 11, 2003
Address reprint requests to F. A. Londry, MDX SCIEX, 71 Four Valley
Drive, Concord, Ontario L4K 4V8, Canada. E-mail: Flondry@nexicom.net

© 2003 American Society for Mass Spectrometry. Published by Elsevier Inc. Received May 14, 2003
1044-0305/03/$30.00 Revised June 4, 2003
doi:10.1016/S1044-0305(03)00446-X Accepted June 4, 2003



capabilities to traditional RF/DC mass-filters [1, 4].
Trapped, thermalized ions can be ejected axially in a
mass-selective way by ramping the amplitude of the RF
drive, to bring ions of increasingly higher m/z into
resonance with a single-frequency dipolar auxiliary
signal, applied between two opposing rods. In response
to the auxiliary signal, ions gain radial amplitude until
they are ejected axially or neutralized on the rods [2]. In
general, the radial excitation voltage is lower than that
used to perform mass-selective radial ejection [3] since
the goal is provide a degree of radial excitation rather
than radial ejection.
In this work, a combination of analytic theory and

computer modeling has been used to study the axial
forces that influence ion trajectories in the fringing
region at the end of a linear quadrupole ion trap and to
elucidate the process of mass-selective axial ejection.
Initially, analytic approximations are used to obtain a
closed-form expression, which offers insight into the
salient characteristics of the net axial force experienced
by ions in the fringing region that make MSAE a
practical analytic technique. Subsequently, fields ob-
tained by more rigorous, numerical, methods are used
to confirm the validity of these approximations and to
demonstrate the technique. Finally, simulated mass-
intensity signals are compared with experiment.

Methods

In this work, a theory is developed, which provides a
basis for understanding the process of mass-selective
axial ejection (MSAE) from a linear quadrupole ion trap.
Subsequently, a trajectory simulator, described in the
Appendix, is used to test the validity and the range of
applicability of the theory. In addition, numerical meth-
ods are used to perform realistic trajectory calculations
of ions subject to MSAE and the results are used to
relate concepts developed theoretically to mass-spectral
characteristics. Finally, mass-intensity signals, obtained
through simulation are compared with experimental
data.
Before the theory is presented, the trajectory calcu-

lations are explained briefly and the experimental ap-
paratus is described. Throughout this paper, a fre-
quency of 1.0 MHz was used exclusively for the
quadrupole RF drive.

Trajectory Calculations

A general description of the trajectory calculator has
been provided in the Appendix. In general, trajectories
were calculated by integrating an equation of motion
with three distinct terms.

d2r�
dt2

�
e
m

�VquadE� quad � UlensE� lens � VdipolarE� dipolar�

(1)

where r� is the position vector of a singly charged
positive ion of mass m and e is the electronic charge.
Vquad is the amplitude of the quadrupole RF drive, Ulens

is the DC potential applied to the exit lens and Vdipolar
is the amplitude of the dipolar auxiliary RF signal
applied between the x-rods. The electric fields, E�quad,
E� lens, and E�dipolar were obtained by numerical methods
described in the Appendix for the final 17 mm of a
round-rod quadrupole array followed by a wire-mesh
covered exit-lens 3 mm distant from the ends of the
rods yielding an overall axial dimension of 20 mm. The
model was terminated in the x-y plane at the end
opposite the lens by a plane of even symmetry. To
reduce field distortions imposed by this boundary
condition to inconsequential levels, the axial dimension
of the numerical models was chosen greater than four
times the field radius r0. The minimum distance be-
tween opposing rods was 8.34 mm and the r/r0 ratio was
1.126. Specifically, E�quad was obtained by differentiating
a numerical solution of the Laplace equation, which
was obtained with �1 V applied to opposing rods in
quadrupole fashion with the exit lens grounded. Simi-
larly, E� lens was obtained with the rods grounded and
one volt applied to the exit lens. Likewise, E�dipolar was
obtained with �1 V applied to the opposing x-rods,
with the y-rods and exit lens at ground.
In order to make a more direct comparison with the

theory, in some cases the first term of Eq 1 was replaced
by the gradient of an analytic approximation of the
quadrupole potential in the fringing region, �FF, vide
infra.

d2r�
dt2

�
e
m

� � ��FF � UlensE� lens � VdipolarE� dipolar�

(2)

Experimental

The experimental apparatus was a prototype version of
the Q TRAP instrument (Applied Biosystems/MDS
SCIEX, Toronto, Canada) with a Q-q-Qlinear ion trap ar-
rangement. Significant elements of the ion path are
shown in Figure 1. The ion path was based on that of a
triple quadrupole mass spectrometer ion path with the
final quadrupole rod array configured to operate as a
conventional RF/DCmass filter or a linear ion trap with
mass-selective axial ejection. Ions, generated by a pneu-
matically assisted electrospray ion source, travelled

Figure 1. Essential elements of the ion path of the Q TRAP
instrument.
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through curtain gas and differential pumping regions
into an RF-only quadrupole ion guide (Q0) within a
chamber maintained at approximately 6 � 10�3 torr.
The Q0 rods were capacitively coupled to the 1 MHz Q1
drive RF voltage. An additional differential pumping
aperture, IQ1, separated the Q0 chamber and the ana-
lyzer chamber. A short RF-only Brubaker lens, located
in front of the Q1 RF/DC quadrupole mass spectrom-
eter, was coupled capacitively to the Q1 drive RF power
supply.
The collision cell (q2) was an enclosed LINAC [10]

quadrupole array with the IQ2 and IQ3 lenses located at
either end. Nitrogen gas was used as the collision gas.
Gas pressures within q2 were calculated from the
conductance of IQ2 and IQ3 and the pumping speed of
the turbo molecular pumps. Typical operating pres-
sures were about 5 � 10�3 torr in q2 and 3.5 � 10�5 torr
in Q3. The RF voltage used to drive the collision cell
rods was transferred from the 1.0 MHz Q3 RF power
supply through a capacitive coupling network.
The Q3 quadrupole rod array was mechanically

identical to Q1. Two additional lenses were located
downstream of Q3, the first, a mesh covered 8-mm
aperture, the second, a clear 8-mm diameter aperture.
The mesh-covered lens is referred to as the exit lens and
the clear aperture lens is referred to as the deflector.
Typically, the deflector lens was operated at about 200
V attractive with respect to the exit lens in order to draw
ions away from the Q3 ion trap toward the ion detector.
Ions were detected via an ETP (Sydney, Australia)

discrete dynode electron multiplier, operated in pulse
counting mode, with the entrance floated to �6 kV for
positive ion detection and 	4 kV for detection of
negative ions.
The source for the auxiliary AC signal was a HP

33120A signal generator (Hewlett Packard, Palo Alto,
CA) capable of variable frequency and voltage opera-
tion. The auxiliary AC voltage was applied to Q3 in a
dipolar fashion via a centre-tap bipolar toroidal trans-
former and its amplitude was ramped proportionally to
mass. The ions trapped within the Q3 linear ion trap
were excited resonantly at � 
 0.76 by a 380 kHz signal,
corresponding to (a, q) 
 (0, 0.84).
The reserpine solution used in these experiments

was obtained from Sigma-Aldrich Canada Ltd. and was
used at a concentration of 1 picomole per microlitre.

Theory

The behavior of ions, in response to a combination of RF
and DC quadrupole potentials, has been described
thoroughly by Dawson [11]. For completeness and
continuity, some of that theory has been reproduced
herein.
In the central portion of a linear ion trap where end

effects are negligible, the two-dimensional quadrupole
potential can be written as

�2D � �0
x2 � y2

r0
2 (3)

where 2r0 is the shortest distance between opposing
rods and �0 is the electric potential, measured with
respect to ground, applied with opposite polarity to
each of the two poles. Traditionally, �0 has been written
as a linear combination of DC and RF components as

�0 � U � Vcos�t (4)

where � is the angular frequency of the RF drive.
In response to the potential described by Eq 3, the

equation of motion for a singly charged positive ion of
mass m is

d2r�
dt2

�
e
m

��2D (5)

where e is the electronic charge. With the substitution of
the dimensionless parameter

� �
�t
2

(6)

Eq 5 can be cast in Mathieu form as

d2u
d�2

� �au � 2qucos2�u � 0 (7)

where u can be either x or y and

au � �
8eU

mr0
2�2 (8)

and

qu � �
4eV

mr0
2�2 (9)

where the 	 and � signs correspond to u 
 x and u 

y, respectively.
Consider motion in the x-direction and assume,

following Dehmelt [12], that ion motion can be approx-
imated by a slowly varying high amplitude secular
motion X and a rapidly varying low amplitude micro-
motion 	x such that

x � X � 	x (10)

where 	x �� X and
d2	x

dt2




d2X
dt2

. Under these

conditions, Eq 7 can be rewritten as

d2	x

d�2
� � �ax � 2qxcos2� X (11)
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If there is no DC component so ax 
 0 and assuming
that X is constant on the scale of 	x, Eq 11 can be
integrated twice to obtain 	x in terms of X as

	x � �
1
2

qxXcos2� (12)

Recalling that 2� 
 �t, the x-coordinate can be written

x � X �
1
2

qxXcos�t (13)

Similarly,

y � Y �
1
2

qyYcos�t (14)

To a first approximation, the diminution of the two-
dimensional quadrupole potential in the fringing re-
gions near the ends of the rods can be described by a
function f(z) so that the potential in the fringing regions
can be written as

�FF � �2D f� z (15)

and the axial component of the electric field due to the
diminution of the two-dimensional quadrupole field is

Ez,quad � ��2D

�f� z

� z
(16)

When there is no DC component to the quadrupole
potential, Eqs 4, 13, and 14 can be used in Eq 3 to write

�2D �
1
r0
2(�Vcos�t)��X �

1
2

qxXcos�t� 2 � �Y2

�
1
2

qyYcos�t� 2� (17)

Using Eq 17 in Eq 16

Ez,quad �
V
r0
2cos�t�X2�1 �

1
2

qxcos�t� 2�Y2�1
�
1
2

qycos�t� 2��f� z

� z
(18)

In the case of an exit fringing-field, where f(z) must be
a decreasing function of z, the value of Ez averaged over
one RF cycle TRF can be obtained from

�Ez,quad�RF �
1

TRF
�

t
0

TRF

Ez,quad�t (19)

Using Eq 18 in Eq 19, carrying out the integration and
substituting for V from Eq 9

�Ez,quad�RF � ��f� z

� z
�m�2

8e
�q2�X2 � Y2 (20)

where, because there is no DC component in the quad-
rupole potential, qx 
 �qy 
 q has been used to simplify
Eq 20. In most instances typical for MSAE, when
thermal ions are excited resonantly by a dipolar auxil-
iary signal, secular amplitude increases appreciably
only between the rods to which the auxiliary signal is
applied and motion in the other coordinate direction
would not contribute significantly to Eq 20.
Eq 20 shows that, as a consequence of the diminish-

ing radial quadrupole potential in the fringing region,
ions experience a net positive axial electric field, i.e., an
electric field directed out of the linear ion trap. To a first
approximation, this field is proportional to the square
of the radial displacement, the square of the stability
coordinate q, and the m/z of the ion. It is noteworthy
that this result is independent of the form of f(z).
However, to evaluate Eq 20, it remains to obtain �f(z)/�z.
Hunter and McIntosh [13] obtained an analytic ex-

pression for f(z) by fitting an exponential function to a
numerical solution of the Laplace equation. Adapting
their expression to an exit fringing field, which termi-
nates in the plane of the exit lens at z 
 z1,

f� z � 1 � exp��a� z1 � z�b� z1 � z22 (21)

The positive constants, a and b, depend on the rod-lens
separation and were tabulated for specific values in
reference [13]. Differentiating Eq 21 with respect to z
one obtains

�f
� z

� ��a � 2b� z1 � z�1 � f� z (22)

which is negative for all z � z1 as required.

The Phase Relationship Between Ion Motion and
the RF Potential

The net positive axial field, which arises in consequence
of the diminishing quadrupole field in the fringing
region, can be understood, without specifying f(z), by
considering the relative phase of the micro-motion 	x

and that of the RF drive in a stability regime where the
micro-motion is distinguished readily from higher-
amplitude secular motion, that is, where the approxi-
mation of Eq 10 is valid.
At any point of interest, the potential due to the RF

drive is negative as often as it is positive, yet Eq 20
shows that there is a net positive axial force in the
fringing region. Eq 12 shows that micro-motion in the
x-z plane is phase-synchronous with the potential ap-
plied to the x-rods, given by Eq 4. More generally,
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maxima in ions’ micro-motion and maxima in the local
RF potential are in phase. This phase relationship has
been illustrated in Figure 2a, where the RF potential

applied to the x-rods has been superposed with the
x-component of a simulated ion trajectory. The trajec-
tory of Figure 2a was obtained with the RF amplitude
adjusted to position m/z 609 at q 
 0.2, with a 
 0, in
stability space.
In reference to Eq 18, because Ez,quad increases with

the square of the radial displacement, its magnitude is
always greatest when it is positive. Furthermore, as
illustrated by Figure 2a, extrema of the micro-motion,
whether positive or negative, occur during the positive
half cycle of the RF. Consequently, the average of Ez,quad
over one RF cycle, �Ez,quad�RF of Eq 20, is always
positive. As an example, Eqs 3 and 4 were used in Eq 16
to evaluate Ez,quad at a minimum and an adjacent
maximum of the micro-motion of the simulated ion-
trajectory of Figure 2a. The magnitude of the negative
axial field at the micro-motion minimum is only two-
thirds the magnitude of the positive axial field at the
micro-motion maximum. Parenthetically, when Eq 18
was used to evaluate Ez,quad, nearly identical results
were obtained. As a result, the average over one RF
cycle is net positive, and in this example, Eq 20 evalu-

ates to � 3.8��f�z

�z
�V/m .

At the stability coordinates of Figure 2a, the micro-
motion and secular motion are readily distinguished.
However, the significance of higher-order terms in the
complete solution to the Mathieu equation increases
with increasing q and this distinction diminishes above
q 
 0.45. Even so, it can be demonstrated that maxima
in stable ion trajectories remain phase synchronous
with the RF potential when q � 0.45. Figure 2b demon-
strates this condition for an ion of m/z 609 with (a, q) 

(0, 0.84). In this instance, initial conditions were x 

0.24r0 mm, ẋ 
 1046 r0/s with an RF phase angle of
107°.
A more general approach to substantiate this claim

can be taken by considering the complete solution to the
Mathieu equation, Eq 7, given by the expression [14]

u�� � A �
n
��

�

C2ncos�2n � ��

� B �
n
��

�

C2nsin�2n � �� (23)

where the C2n coefficients are complicated functions of
the Mathieu stability coordinates a and q, and A and B
are constants determined by initial conditions. Ion
motion is the superposition of oscillations with frequen-
cies �n given by

�n � �2n � �
�

2
(24)

in which n 
 0, �1, �2, . . . . In the stability regime
where a 
 0 and q � 0.45, the two dominant terms in Eq

Figure 2. Maxima in the extrema of ions’ motion and maxima in
the local RF potential are always phase synchronous. Here, this
phase relationship is demonstrated by superposing the phase of
the RF voltage applied to the x-rods (dashed line) with the
x-component of the trajectory of an ion ofm/z 
 609 (solid line). (a)
(a, q) 
 (0, 0.2) and (b) (a, q) 
 (0, 0.84). Using Eqs 3 and 4 in Eq
16, the axial component of the electric field was evaluated at a
minimum and a maximum of the ion’s micromotion, as indicated
in frame (a). Units of field strength are V/m. In frame (c) the
left-hand-side of Eq 25 has been superposed with the first five RF
cycles of frame (b) to demonstrate that the phase relationship
between the extrema of ions’ radial motion and the local RF
potential is independent of initial conditions.
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23 correspond to n 
 0 and n 
 �1 and the frequency
of the micro-motion is the beat frequency of these two
components. However, the significance of the other
higher-order terms increases with increasing q and
above q 
 0.45, the increased amplitude of other fre-
quencies overwhelms the two-component model. Even
so, local radial maxima in ions’ trajectories can be
identified by setting the time-derivative of Eq 23 to zero
to obtain

�
n
��

�

C2n�2n � �cos�2n � ��

�
n
��

�

C2n�2n � �sin�2n � ��

�
A
B

� 0 (25)

To demonstrate, the first five RF cycles of the trajec-
tory shown in Figure 2b have been superposed with the
left-hand-side of Eq 25 and the RF potential in Figure 2c,
where the ordinates of the latter two have been scaled
for clarity. From Figure 2c, it can be seen that solutions
of Eq 25 occur at or near maxima of the RF potential.
Furthermore, solutions occur most frequently at singu-
larities of Eq 25, which are independent of the A/B ratio,
and hence of initial conditions.

Examination of the Fields

In this section, the theory developed above will be used
to illustrate how axial fields in the fringing region
influence ion trajectories. Central to understanding the
impact of the diminishing quadrupole potential is the
phase relationship between ion motion and the RF
potential, discussed in the previous section. Relevant
characteristics of the quadrupole and exit-lens fields
will be discussed. Finally, the axial components of the
quadrupole and exit-lens fields will be combined in
suitable proportion to define a cone of reflection.

Axial Field Due to Diminishing Quadrupole
Potential

To calculate numerical values for the average electric
field strength, due to the diminishing quadrupole po-
tential in the fringing region, �Ez,quad�RF, and the Hunter
and McIntosh expression of Eq 22 was used in Eq 20. To
obtain the data of Figure 3, �Ez,quad�RF was evaluated in
the x-z plane as a function of axial position for specific
values of the secular amplitude X, specified in the
legend in units of r0. For these evaluations, the fre-
quency of the RF drive was 1.0 MHz and the RF
amplitude was chosen to position m/z 609 at q 
 0.45. It
is recognized generally that the Dehmelt approximation
of Eq 8, on which this evaluation of �Ez,quad�RF was
based, decreases in accuracy with increasing q, and sees
little application beyond q 
 0.45. Even more question-
able is the use of the Hunter and McIntosh approxima-

tion at high radial amplitude. However, the purpose of
this calculation was to identify salient features of spe-
cific contributions to fields in the fringing region that
render MSAE practical, and these approximations suit
this purpose well. The most significant features of
Figure 3 are the strong increase in �Ez,quad�RF near the
ends of the rods and, for any fixed z, that �Ez,quad�RF
increases with the square of secular displacement, X. It
is not surprising that these fields are strong. With m/z
609 at q 
 0.45 and r0 
 4.17 mm , the RF amplitude is
about 487 V and that potential drops to zero over three
millimetres between the ends of the rods and the exit
lens. By comparison, the radial fields are even stronger.
For example, under the same conditions, inside a rod
array, where the fields are essentially two-dimensional,
at (x, y) 
 (0.8r0, 0) maxima in the radial field reach 1.9
� 105 V/m.

Axial Field Due to the Exit Lens Potential

For effective MSAE, the positive electric field described
by Eq 20 must be balanced, in suitable proportion, by a
negative electric field, which decreases in strength with
increasing secular displacement; otherwise, all ions
would be ejected axially with no mass discrimination.
This condition can be achieved simply by applying a
static positive DC potential to the exit lens as Ulens.
Since no analytic expression exists for this contribution,
specific values for Ez,lens, the axial component of the
electric field arising from the exit lens potential, were
obtained by differentiating a numerical solution to the
Laplace equation. The contribution of Ez,lens to the total
electric in the x-z plane, for a lens potential ofUlens 
 2.5
V, has been plotted in Figure 4 as a function of axial
position. As in Figure 3, specific values of the secular
amplitude X, are specified in units of r0. In contrast to
�Ez,quad�RF of Figure 3, ⎪Ez,lens⎪ decreases with increas-
ing X for all z � �0.9r0 as required.

Figure 3. Analytic evaluation of �Ez,quad�RF in the x-z plane. With
Y 
 0, Eq 20 was evaluated at X 
 0.2, 0.6, and 0.8 r0 for an ion of
m/z 
 609 at stability coordinates (a, q) 
 (0, 0.45). For any fixed z,
�Ez,quad�RF increases with the square of secular displacement, X.
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Cone of Reflection

The two contributions to the axial component of the
electric field, �Ez,quad�RF of Figure 3 and Ez,lens of Figure
4, were summed to obtain the total axial field experi-
enced by an ion, averaged over one RF cycle �Ez�RF. The
result has been plotted as a function of axial position in
Figure 5a using an expanded vertical scale so that the
zero-crossings (circled) are apparent. For most values of
X, there is a value of z for which �Ez�RF 
 0. The
locations of these zero-crossings in the x-z plane are
shown in Figure 5b with solid circles. These points
define a surface on which the net axial force acting on
an ion, over one RF cycle, is zero. In recognition of its
shape, this surface has been dubbed the cone of reflection.
Ions inside (to the left) the cone of reflection experience a
negative axial force away from the exit lens, while those
outside (to the right) experience a net positive force
toward the exit lens. When the exit lens potential is
chosen judiciously, ions with sufficient radial ampli-
tude are able to penetrate this surface, and be ejected
axially, while all others are reflected.

Mapping the Cone of Reflection
Numerically

In the previous section, a cone of reflection was ob-
tained using a combination of analytic theory for the
quadrupole contribution and numerical methods to
obtain the contribution from the exit-lens potential. To
test the accuracy and range of applicability of the
analytic theory, it was undertaken to obtain cones of
reflection using numerical methods only. However, in
contrast to the static field arising from a fixed potential
applied to the exit lens, the axial field strength due to
the quadrupole potential is time dependent. Therefore,
simply calculating the axial field strength at specific
points was not an adequate treatment. Rather, it was

necessary to develop a scheme wherein ions were used
probes to measure �Ez�RF, the net effective axial field
experienced by an ion, averaged over one RF cycle.
Finally, trajectory simulations of ions undergoing mass-
selective axial ejection were used to identify loci of
points in the fringing region at which axial ejection was
assured and these loci were compared to numerically
generated cones of reflection, obtained under similar
circumstances.
Two techniques, in which ions were used as probes,

were developed to map cones of reflection. In the first,
with their axial coordinates held constant, thermal ions
were excited radially. With the second, ions with ran-
dom radial amplitudes were moved toward the exit
lens with constant axial speed. The second technique
was developed for situations for which the first was
poorly suited. Both techniques returned mutually con-
sistent results, and in many instances, the results of both
were combined to obtain a complete mapping. In all
instances where trajectory calculations were used to
obtain cones of reflection, the simulations were carried
out in collision-free environments. Cones of reflection,
which were obtained when collisions with a buffer gas
were enabled, differed little in position from their
collision-free counterparts, but were defined less
sharply. Each of the three techniques used to obtain

Figure 4. Numerical evaluation of Ez,lens in the x-z plane. Fields
were obtained by solving the Laplace equation numerically and
differentiating the result. Ez,lens was evaluated at X 
 0.2, 0.6, and
0.8 r0 for an ion of m/z 
 609 at stability coordinates (a, q) 
 (0,
0.45). For all fixed z � �0.9r0, ⎪Ez,lens⎪ decreases as the secular
displacement X increases.

Figure 5. Mapping the cone of reflection. Frame (a) shows the
superposition of �Ez,quad�RF of Figure 3 with Ez,lens of Figure 4 to
obtain the total axial field experienced by an ion of m/z 
 609 at
stability coordinates (a, q) 
 (0, 0.45) averaged over 1 RF cycle
�Ez�RF. In frame (a) the ordinate has been expanded to illustrate the
zero-crossings (circled). The locations of these zero-crossings in
the x-z plane, shown as solid circles in frame (b), define the cone
of reflection.
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cones of reflection numerically are described in turn
below.

Technique of Constant Axial Coordinate

In this method, the axial coordinates of initially ther-
malized ions were fixed at random values, which
spanned the fringing region and the ions were excited
resonantly using an auxiliary two-dimensional dipolar
signal. The only purpose of the auxiliary signal was to
increase gradually the radial amplitudes of the ions.
Typically, the amplitude of the auxiliary signal was less
than one volt. During the excitation, with the amplitude
of the quadrupole RF drive and the exit lens potential
held constant, ions were allowed to respond radially,
but their axial coordinates were held fixed.
Initially, while their radial amplitudes were rela-

tively low, ions felt a net negative axial force (away
from the exit lens). With increasing radial amplitude,
the net axial force became increasingly positive. Upon
gaining sufficient radial amplitude that the net axial
force acting on an ion, averaged over one RF cycle,
became positive, its maximum radial displacement was
plotted against its axial position to define a single point
on the cone of reflection. Many such points, typically
one thousand, were accumulated to define a single
cone.
For this scheme to work, it was necessary to adjust

the frequency of the auxiliary signal to compensate for
the diminishing RF level in the fringing region. For the
simulations, which used Eq 2, the quadrupolar field
was pure and Eq 21 specified its diminution. In conse-
quence, the appropriate auxiliary frequency for each
axial position could be calculated from the continued-
fraction expression for � in terms of Mathieu stability
coordinates [14]. Stable, periodic solutions to the
Mathieu equation exist only for non-integral values of
the dimensionless parameter � and the fundamental
angular frequency of ions with stable trajectories is
given by � 
 0.5��, where � is the angular frequency
of the RF drive [11]. However, for those cases where the
quadrupole field was determined numerically, Eq 1,
this technique was no longer effective. Instead, the
simulator was operated in parametric mode to identify
the frequency to which ions responded most strongly at
millimetre intervals of the axial coordinate. These val-
ues were fit to equations similar to Eq 21, with adjust-
able coefficients to obtain an analytic expression from
which appropriate frequencies for the auxiliary dipolar
signal could be calculated at runtime. It is interesting
that, due to the dramatic increase in the significance of
higher-order terms in the essentially quadrupole poten-
tial, within about 0.7 r0 of the ends of the rods, no
frequency could be found at which an auxiliary signal
of any reasonable amplitude (less than five volts) was
capable of driving ions to the rods. Specifically, as
higher-order terms contribute proportionately more to
the potential, the radial field becomes increasingly
nonlinear and secular frequency becomes increasingly

amplitude-dependent. In consequence, ions go off-res-
onance as their amplitude increases and suffer cycles of
excitation and de-excitation rather than sustained am-
plitude growth.

Technique of Constant Axial Speed

Due to the non-linearity of fields in the fringing region,
it was necessary to map some cones, or at least some
portions of some cones, by a different method. Specifi-
cally, in a two-dimensional environment, dipolar reso-
nant excitation was used to excite thermal ions to
random radial amplitudes between zero and r0. This ion
list was saved and used as input to a calculation in
which ions were allowed to move freely in the radial
directions as before, but were constrained to move
axially through the fringing region from z 
 �4.8r0
toward the exit lens at the constant speed of 100 � 2.5
m/s (about 0.1 mm per RF cycle). As before, the axial
position, combined with the maximum radial position
of the ion during the first RF cycle over which the
average axial electric field became positive, defined a
single point on the cone of reflection.
This technique of using constant axial speed has been

illustrated in Figure 6 where specific features of an ion’s
trajectory (m/z 609, q 
 0.84) have been plotted as a
function of its axial position as it was moved through
the fringing region from z 
 �4.8r0 toward the exit lens.

Figure 6. Obtaining a point on the cone of reflection by the
technique of constant axial speed. Frames (a) and (b) show motion
in the two radial coordinates, x and y, respectively, plotted as a
function of axial position. Frame (c) shows �Ez�, the net axial
electric field strength experienced by an ion, averaged over one RF
cycle. Frame (d) shows �Ez� with the ordinate expanded to show
that point where �Ez� first becomes positive.
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The x and y coordinates of the ion, output at regular
increments 20 times each RF cycle in Figure 6a and b,
show that the radial amplitude of the ion, about 0.5r0, is
confined primarily to the x-z plane and remains rela-
tively constant until the axial force becomes positive.
Figure 6c which shows the axial field strength, averaged
over one RF cycle, experienced by the ion as it was
moved from z 
 �4r0 toward the exit lens at z 
 0. The
expanded ordinate of the second frame, Figure 6d
shows clearly the point at which the net axial force,
averaged over one RF cycle, became positive, yielding a
point on the cone of reflection at x 
 �0.5r0 and z 

�2.2r0. In addition, Figure 6c illustrates a feature of the
fields in the fringing region that is highly significant for
MSAE. Specifically, the strength of the axial field is very
weak to the left of the cone of reflection, but increases
dramatically to the right. The consequence is that once
an ion penetrates the cone it is ejected promptly, typi-
cally within a few RF cycles.

Obtaining Cones of Reflection
from Trajectory Data

In the two techniques described above, ions were used
as probes to identify coordinates where the net effective
axial force experienced by ions, averaged over one RF
cycle, was zero. Cones of reflection, obtained by these
methods, do not correspond necessarily to those points
in ions’ trajectories at which axial ejection becomes
assured. Indeed, in simulations in which ions were
released from their axial constraints and allowed to
respond freely to the axial fields when the net axial
force averaged over one RF cycle first became positive,
were reflected promptly without exception. Therefore,
it is of interest to compare the loci of points obtained by
these methods to those points in the trajectories of ions
at which axial ejection became assured.
To obtain such data, it was necessary to simulate

conditions suitable for MSAE and examine closely the
trajectories of those ions, which were ejected axially. To
this end, a population of singly charged positive ions of
mass 609 Da were allowed to thermalize, through
collisions with a nitrogen buffer gas, under conditions
that precede MSAE under normal experimental condi-
tions. Subsequently, the RF amplitude was ramped at a
rate corresponding to 1000 Da/s to bring ions into
resonance with a dipolar auxiliary signal of frequency
380 kHz, corresponding to q 
 0.84 for an RF drive
frequency of 1.0 MHz. As they came into resonance
with the auxiliary signal, ions were either ejected axially
or lost on the rods. To improve the ratio of ions, which
were ejected axially, to those lost on the rods, the cell
was made as short as possible by eliminating the
middle section of the rod array where the fields are
two-dimensional. As a result, the cell consisted of an
input fringing field followed immediately by an exit
fringing field, yielding a cell of overall length 40 mm. In
addition, efficiency was improved further by allowing

MSAE to occur at both ends. Figure 7 shows a trajec-
tory, which is characteristic of an ion that is ejected
axially in a mass-selective way. With the exception of
frames d and e, the ordinates of Figure 7 indicate
averages of twenty evaluations, made at regular inter-
vals in time, each RF cycle. Specifically, Figure 7a, b,
and c show the x, y, and z components of the ion’s
trajectory. Figure 7d shows the maximum radial excur-
sion in the ion’s radial amplitude, which occurred
during each RF cycle and frame e shows, on an ex-
panded abscissa, the final 104 s of the frame d data.
Figures 7f, g, and h show the x, y, and z components of
the ion’s velocity expressed in units of energy (eV).
Finally, Figure 7i shows the axial component of the ion’s
velocity on a scale where the final point of inflection is
clearly visible and frame j shows, on an expanded
abscissa, the final 104 s of the frame i data. The last
point of inflection (true minimum) in the axial compo-
nent of the ion’s trajectory, indicated with an arrow in
Figure 7i and with a triangle in Figure 7j, was used to
identify the axial point of no return in the process of
MSAE, and the axial coordinate of a point on the cone of
reflection.
The obvious choice for the radial coordinate of this

point on the cone of reflection would be the point from
Figure 7e corresponding in time to the point of inflec-
tion in Figure 7j. Both of these points are marked with
triangles. However, careful examination of a number of
trajectories showed that the points of inflection oc-
curred randomly relative to the phase of the radial
maxima illustrated in Figure 7e. It was found that the
most consistent representation of cones of reflection
obtained by choosing, for the radial coordinate, the
maximum in the ion’s trajectory, which occurred over a
few RF cycles (3 or 4) immediately preceding the point
of inflection, rather than the specific radial maximum
that occurred on the same RF cycle as the point of
inflection. Arrows in both in Figure 7d and e indicate
this point. Invariably, this point was very close to the
overall radial maxima in ions’ trajectories.
To accumulate a sufficient number of points to

define a cone of reflection, it was necessary to process a
large number of ions, typically one thousand. As a
result it was essential to define an automated algorithm
for identifying these points in files of trajectory data.
Explicitly, the point of inflection was determined by
searching backwards through the axial-energy data until
the first minimum was identified. False minima were
avoided by requiring that the preceding eight values
were larger than the current candidate, before terminat-
ing the search. As described above, a corresponding
radial coordinate was chosen by identifying the maxi-
mum in the ion’s radial amplitude, over a few preced-
ing RF cycles.

Results from Simulation and Experiment

For the results reported here, a variety of techniques
were used to examine the impact, both on the cone of
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reflection and on mass-spectral data, of the Mathieu
stability parameter q, the exit lens potential, and the
amplitude of the auxiliary signal used to excite ions
radially. In addition, cones of reflection obtained by
different methods are compared to test the validity both
of the theory and of the numerical techniques used to
generate them. Finally, simulated mass-intensity sig-
nals, and corresponding cones of reflection, are exam-
ined to evaluate the relationship between these two,
and determine if features of the cone of reflection can
offer any insights into the nature of mass-spectra.

The Impact of Mathieu Stability Parameter q

The value of the Mathieu stability parameter q at which
MSAE occurs is determined by the frequency of the

auxiliary signal used to excite resonantly the radial
motion of ions. To examine the impact of changes in
ejection-q on the cone of reflection, and to explore the
suitability, in this application, of the Dehmelt approxi-
mation, Eq 10, at higher values of q, cones of reflection
were generated both analytically and by using ions as
probes as described above.
Usingm/z 609 with a constant exit-lens potential Vlens


 2 V, cones of reflection were mapped analytically, by
the technique illustrated in Figure 5, for ejection-q
values of 0.20, 0.45, and 0.84. These are shown in Figure
8 with dotted, dashed and solid lines, respectively. For
comparison, cones of reflection for these values of
ejection-q were generated with the simulator by using
ions as probes as described above. These are shown
with exes, circles and squares, respectively, in Figure 8.

Figure 7. A trajectory characteristic of an ion that is ejected axially in a mass-selective way. With the
exception of frames (d) and (e), the ordinates indicate averages of twenty evaluations, made at regular
intervals in time, each RF cycle. Frames (a), (b), and (c) show the x, y, and z components of the ion’s
trajectory. Frame (d) shows the maximum radial excursion in the ion’s radial amplitude, which
occurred during each RF cycle and frame (e) shows, on an expanded abscissa, the final 104 s of the
frame (d) data. Frames (f), (g), and (h) show the x, y, and z components of the ion’s velocity expressed
in units of energy (eV). Frame (i) shows the axial component of the ion’s velocity on an ordinate scale
where the final point of inflection is clearly visible and frame (j) shows, on an expanded abscissa, the
final 104 s of the frame (i) data. The last point of inflection (true minimum) in the axial component
of the ion’s trajectory, indicated with an arrow in frame (i) and with a triangle in frame (j), was used
to identify the axial point of no return in the process of MSAE. The corresponding point in time is
indicated by a triangle in frame (e). The arrow in frame (e) indicates the maximum in the ion’s
trajectory over a few RF cycles (3 or 4) immediately preceeding the point of inflection.
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In these simulations, ion trajectories were calculated by
integrating Eq 2 with �FF specified by Eq 15. Recall that
Eq 15 simply describes a two-dimensional quadrupole
field, which diminishes in the fringing region according
to the approximation of Hunter and McIntosh, Eq 21.
Although numerically calculated fields would be ex-
pected to return a more accurate result, Eq 15 was used
as a basis for the analytic results and provides the most
direct test of the theory based on the Dehmelt approx-
imation.
It is clear from Figure 8 that the differences between

cones obtained analytically (solid lines) and through
simulation, using ions as probes, increase both with the
Mathieu stability parameter q and with radial ampli-
tude. Both techniques were based on the same fields,
but the quadrupole term was treated differently in the
two cases. The analytic results relied upon the Dehmelt
approximation, embodied in Eq 20 to obtain �Ez,quad�RF.
In the simulations, which used ions as probes to map
cones of reflection for Figure 8, � [�2Df(z)] was evalu-
ated by using Eq 3 in Eq 15 and the result was
integrated numerically to obtain ion trajectories. In
other words, the differences between the analytic and
numerical results presented in Figure 8 are due primar-
ily to the use by the analytic technique of the Dehmelt
approximation, whose accuracy is well known to di-
minish with increasing q.
Additional inaccuracy in the results of Figure 8 was

introduced by the Hunter and McIntosh expression for
f(z)whose reliability diminishes rapidly with increasing
radial amplitude. However, this approximation was
common to both treatments and should not have con-
tributed to the discrepancy in the results. Despite the
inaccuracies inherent in the Dehmelt and Hunter and
McIntosh approximations, the expression for �Ez,quad�RF
given by Eq 20 does provide some useful insights into
the process of MSAE.

For example, according to Eq 20, the strength of
�Ez,quad�RF increases with the square of q and this
relationship is reflected in the cones of reflection in
Figure 8. Clearly, the cone of reflection corresponding
to q 
 0.2 would be the least conducive to MSAE
because ions would need to advance the furthest into
the fringing region against the repelling force of the
exit-lens potential and in addition would require very
high radial amplitude to penetrate the cone. Although
this situation could be improved by reducing the po-
tential on the exit lens, experimentally, the sensitivity
and resolution of MSAE improve with increasing q,
reaching broad maxima up to q 
 0.904. This is dem-
onstrated in the experimental results presented in Fig-
ure 9 in which the integrated ion signal for MSAE ofm/z
609 was measured as a function of ejection-q with an
exit-lens potential of 2 volts.

Impact of the Potential on the Exit Lens

For MSAE to be effective, the exit lens potential must be
chosen judiciously. When it is reduced below optimum,
resolution is degraded and, in more extreme cases, mass
discrimination is lost. As the exit-lens potential is in-
creased above optimum, sensitivity suffers and ulti-
mately ion current is reduced to zero. To examine the
impact of this parameter on the cone of reflection, the
ion-probe method was used to map cones of reflection
for exit-lens potentials of 2, 4, and 8 V. As before, the RF
drive frequency was 1.0 MHz and in this case the RF
amplitude adjusted to position m/z 609 at q 
 0.45.
These results are presented in Figure 10.
Cones of reflection obtained by using Eq 15 to

specify �FF in Eq 2 are shown in Figure 10a. These were
generated using the same technique and equations
described above, with reference to the numerically
generated cones of Figure 8. In fact, cone in Figure 10a
for which the exit-lens potential is 2 V is identical to the
numerically generated cone in Figure 8 for q 
 0.45. As
mentioned above, the accuracy of the Hunter and

Figure 8. Cones of reflection obtained for m/z 609 with a constant
exit-lens potential of 2 V. Results obtained analytically, by the
technique illustrated in Figure 5, for ejection-q values of 0.20, 0.45,
and 0.84 are shown with dotted, dashed, and solid lines, respec-
tively. Cones of reflection for the same ejection-q values, mapped
numerically by using ions as probes, are shown with exes, circles
and squares, respectively.

Figure 9. The integrated ion signal for MSAE of m/z 609 mea-
sured experimentally as a function of ejection-q for an exit-lens
potential of 2 V.
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McIntosh expression for f(z) decreases with increasing
radial amplitude. Moreover, the approximation of Eq 15
precludes higher-order terms in x and y, whose signif-
icance increases dramatically near the ends of the rods.
Therefore, to determine the impact of these inaccura-
cies, cones of reflection, which were mapped using a
full numerical solution to the Laplace equation for E�quad
in Eq 1, are shown in Figure 10b. From these results, the
limitations of the Eq 15 approximation are apparent.
In both frames of Figure 10, the cones of reflection

remain similar in shape, but move closer to the exit lens
in response to an increasing exit-lens potential. This
behavior is consistent with the experimental observa-
tions cited at the beginning of this section. Those claims
can be restated with explicit reference to the cone of
reflection. Specifically, when the exit-lens potential is
too low, the cone of reflection is further from the exit
lens inside the rod array. As a result, the cone can be
penetrated by ions with only modest radial amplitude
or, in some cases, even by thermal ions with higher
axial energy. As the cone is moved toward the ends of
the rods, in response to increasing potential on the exit
lens, ions require increasingly higher radial amplitude
and/or axial energy to penetrate the cone and be
detected.

Cones Obtained from Trajectory Data

Up to this point, cones of reflection have been mapped
by three different methods of direct calculation. Specif-
ically, these methods, listed in order of increasing
accuracy, were: analytic, based on the Dehmelt and
Hunter and McIntosh approximations; numeric, based
on the Hunter and McIntosh approximation only; and
finally, full numeric, based on complete numerical
solutions to the Laplace equation in the fringing region.
In all of these cases, cones were mapped by identifying
loci of points in the fringing region at which the net
axial force experienced by ions, averaged over one RF
cycle, was zero; that is, �Ez�RF 
 0. It remains to compare
cones of reflection, which conform to this definition, to
those points in ions’ trajectories at which axial ejection
becomes assured.
The technique used to obtain cones of reflection from

the trajectories of ions that experienced MSAE, and
specific conditions of those simulations, were discussed
in some detail above. The points of inflection in trajec-
tory data obtained from those simulations, which iden-
tify the point-of-no-return for ions undergoing MSAE
under similar conditions, are shown with large circles in
Figure 11. In Figure 11, frames a, b, and c correspond to
exit-lens potentials of 1.0, 2.0, and 4.0 V, respectively. In
all cases, the amplitude of the dipolar auxiliary signal
used for resonant excitation was 0.2 V0-p.
For comparison, cones of reflection obtained by the

most accurate of the numerical methods, which used
ions as probes to identify �Ez�RF 
 0, are shown in
Figure 11 with letter x. These data were obtained using
singly charged ions of mass 609 Da positioned in
stability space at q 
 0.84. In addition, an analytic result
based on the Dehmelt and Hunter and McIntosh ap-
proximations and obtained by the technique illustrated
in Figure 5, is shown with a solid line in Figure 11b.
The degree of similarity between the two represen-

tations in Figure 11 is most encouraging and the differ-
ences are consistent with previous discussion. Recall
that the exes identify coordinates where the net axial
force averaged over one RF cycle first became greater
than or equal to zero. Since positive axial force increases
with radial displacement, as described by Eq 20, it
would be expected that this condition would be met
near a maximum of the secular motion, and that the
average radial amplitude of ion during the following RF
cycle would be lower, and that the net average axial
force experienced by an ion on that next RF cycle would
be negative. In fact, when simulations, in which ions
were used as probes to map the cone of reflection, were
allowed to proceed with axial response enabled, after
the condition �Ez�RF � 0 had been met, ions were
reflected promptly and without exception. Therefore,
one would expect that the point in an ion’s trajectory at
which axial ejection was assured would lie outside of
the cone defined by �Ez�RF 
 0. However, as illustrated

Figure 10. Cones of reflection obtained for m/z 
 609 at stability
coordinates (a, q) 
 (0, 0.45) for exit lens potentials of 2, 4, and 8 V
by using ions as probes: (a) by using Eq 15 to specify �FF in Eq 2
and (b) by using a full numerical solution to the Laplace equation
for quad in Eq 1.
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in Figure 5a, the strength of net axial force experienced
by an ion increases dramatically with both radial and
axial position outside of the �Ez�RF 
 0 cone. In conse-
quence, the point at which axial ejection was assured
should lie outside, but not very far outside, the cone
defined by �Ez�RF 
 0. In fact, this condition is illus-
trated clearly by the data of Figure 11.

Simulated Mass-Intensity Signals

The simulated mass-intensity signals, corresponding to
the data of Figure 11 that showed points of inflection in
trajectory data at which axial ejection was assured, are
shown in Figure 12a with dotted, dashed and solid lines
indicating exit-lens potentials of 1, 2, and 4 V, respec-
tively. In all cases, the auxiliary amplitude was 0.2 V0-p.
This auxiliary amplitude, combined with an exit-lens
potential of 2.0 V yielded a good compromise between
sensitivity and resolution. As expected from experi-
ment, sensitivity decreased and resolution increased
with increasing exit-lens potential. This result is consis-
tent with Figure 11, which shows that, as the potential
on the exit lens is increased, ions must approach the exit
lens more closely before axial ejection is assured. Be-
cause the cone of reflection flares to larger radius at
greater distance from the exit lens, ions that approach
the cone with lower axial speed would require greater
radial amplitude to be ejected axially. In addition,

Figure 11. Cones of reflection obtained for m/z 609 ions posi-
tioned in stability space at q 
 0.84 with exit-lens potentials of 1.0,
2.0, and 4.0 V in frames (a), (b), and (c), respectively. Exes identify
cones of reflection, obtained from direct numerical calculations
employing a full numerical solution to the Laplace equation using
ions as probes. Approximately 1000 ion-probes were used for each
exit-lens potential. The points of inflection in trajectory data,
which identify the point-of-no-return for ions undergoing MSAE,
are shown with large circles. An analytic result, based on the
Dehmelt and Hunter and McIntosh approximations is shown with
a solid line in frame (b).

Figure 12. The simulated mass-intensity signals, corresponding
to the data of Figure 11, that showed points of inflection in
trajectory data at which axial ejection was assured, are shown in
frame (a) with dotted, dashed and solid lines indicating exit lens
potentials of 1, 2, and 4 V, respectively. In all cases, the auxiliary
amplitude was 0.2 V0-p. Frame (b) shows the distributions of the
axial components of the initial velocities of those ions that were
ejected axially, using the same line types to identify exit-lens
potentials. The dot-dash line shows the total distribution of initial
axial speed, consistent with thermal ions of mass 609 Da and an
ambient temperature of 300 K. The percentages in the legends
indicate the fractions of the initial populations that were ejected
axially.
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because ions are repelled by the exit-lens potential, it
would be expected that only those, which approach it
with some minimum axial speed, would be able to
penetrate the cone.
This condition is illustrated clearly by the data of

Figure 12b, which demonstrates that the axial speed,
required to penetrate the cone, increases with the exit-
lens potential. Specifically, Figure 12b shows the distri-
butions of the axial components of the initial velocities
of those ions that were ejected axially. The dot-dash line
shows the total distribution of initial axial speed, con-
sistent with thermal ions of mass 609 Da and an
ambient temperature of 300 K. The dotted, dashed and
solid lines correspond to similarly identified mass-
peaks of Figure 12a, corresponding to exit-lens poten-
tials of 1, 2, and 4 V. Integrated intensities of the mass
peaks in Figure 12a, indicating ejection efficiencies, are
shown in the legend of Figure 12b. In general, in the
absence of collisions, thermal ions are reflected elasti-
cally by the exit-lens potential. Therefore, the distribu-
tions of the axial components of the ions’ initial veloc-
ities remain representative of that condition until ions
either penetrate the cone of reflection or are lost on the
rods.
Parenthetically, the reader is reminded that to im-

prove the ratio of ions, which were ejected axially, to
those lost on the rods, during these simulations, ions
were confined between two back-to-back fringing fields
and MSAE was allowed at both ends of the device.
Consequently, the efficiency of MSAE in these simula-
tions is not representative of experiment and the effi-
ciencies given, as percentages in the legend of Figure
12b, are intended for relative comparisons among spe-
cific values of the exit-lens potential.

Experimental Mass-Intensity Signals

Unfortunately, the authors are unaware of any suitable
technique for mapping the cone of reflection experi-
mentally. As a result, mass-intensity signals provide the
only convenient point of comparison between this work
and experiment. To this end, experimental data were
obtained by selecting the 12C isotope of reserpine in Q1,
accumulating in Q3 and detecting the trapped ions by
MSAE at a scan rate of 1000 Da/s using a dipolar
auxiliary signal of 380 kHz with constant amplitude 0.4
V0-p. The results are shown in Figure 13a where the
dotted, solid and dashed lines correspond to exit-lens
potentials of 2, 4, and 8 V, respectively. Although these
data are characteristic of good performance, there is
nothing unusual about them.
Experimentally, the best compromise between sensi-

tivity and resolution was achieved with auxiliary am-
plitude 0.4 V and an exit-lens potential of 4 V. By
contrast, when the trajectory calculations were colli-
sion-free, the simulator returned the best performance
at roughly half these values. The lesser and greater
exit-lens potentials of Figure 13a, as with Figure 12a,
were chosen to demonstrate the consequences of halv-

ing and doubling the exit-lens potential, which gave the
best performance.
To obtain a more direct comparison with these

experimental results, simulations were carried out in
which ions moved freely through the entire length (133
mm) of the Q3 cell and suffered collisions with nitrogen
buffer gas at a nominal pressure of 3 � 10�5 torr. As
with the experimental data of Figure 13a, the mass
range was scanned at a rate of 1000 Da/s using a
dipolar auxiliary signal of 380 kHz with constant am-
plitude 0.4 V0-p. The results are shown in Figure 13b
where the dotted, solid and dashed lines correspond to
exit-lens potentials of 2, 4, and 8 V, respectively. As
before, MSAE was allowed from both ends to improve
the efficiency of the simulations, so to compare with
experiment, the ejection efficiencies in the legend must
be halved. Choosing the optimal experimental condi-
tions, of 0.4 V auxiliary amplitude with 4 V on the exit
lens, the efficiency predicted by simulations for these
conditions of 23% from Figure 13b, compares well with
typical experimental values of about 20% [1].
In contrast to the collision-free simulations for which

optimal auxiliary amplitude and exit-lens potential
were below experimental values, it appears from a
comparison of Figure 13a and b that when were colli-
sions are enabled, optimal values for those parameters

Figure 13. Mass-intensity signals of the 609 reserpine ion, col-
lected at a scan rate of 1000 Da/s with the amplitude of the 380
kHz auxiliary signal held constant at 0.4 V0-p. The dotted, solid
and dashed lines correspond to exit-lens potentials of 2, 4, and 8 V,
respectively. (a) Experimental. (b) Simulation results with ejection
efficiencies indicated in the legend.
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in the virtual instrument were greater than experimen-
tal. Specifically, in reference to Figure 13, the simulated
mass peaks for exit-lens potentials of 4 and 8 V match
most closely experimental results obtained with exit-
lens potentials of 2 and 4 V, respectively. Despite this
discrepancy, simulations demonstrate consequences
similar to experiment when the exit-lens potential is
varied about its optimal value. Specifically, when the
exit-lens potential is too low, peaks are poorly resolved,
with many ions being ejected too soon. As the exit-lens
potential is increased, resolution improves but sensitiv-
ity diminishes. In addition, over a fairly broad range
about the optimum value, the high-mass side of peaks
are nearly coincident, while the low-mass side is shifted
to higher mass with increasing exit-lens potential.

Impact of the Amplitude of the Dipolar Auxiliary
Signal

The impact of the amplitude of the dipolar auxiliary
signal, used for radial resonant excitation, was exam-
ined experimentally by holding the exit-lens potential
constant at its optimum value of four volts and gener-
ating mass-intensity signals using auxiliary amplitudes
both half and double the optimum value of 0.4 V0-p. As
before, the 12C isotope of reserpine was selected in Q1,
accumulated in Q3 and detected by MSAE at a scan rate
of 1000 Da/s using a dipolar auxiliary signal of 380
kHz. Results obtained with auxiliary amplitudes of 0.2,
0.4, and 0.8 V0-p are shown in Figure 14a with dashed,
solid and dotted lines, respectively. Corresponding
results, obtained from simulations using identical val-
ues for the exit lens potential and auxiliary amplitude
are presented in Figure 14b. Otherwise, these simula-
tions were similar to those used to obtain the data of
Figure 13b.
In contrast to case of exit-lens potential, optimum

auxiliary amplitude for these simulations appears to be
somewhat lower than experimental. That is, the exper-
imental results demonstrate the consequences of auxil-
iary amplitude that is too low most clearly, while the
simulations illustrate the consequences of auxiliary am-
plitude that is too high most clearly. Even so, the
consequences of varying auxiliary amplitude were sim-
ilar in both regimes. When auxiliary amplitude was
below optimum, ions gained radial amplitude more
slowly and were ejected at higher apparent mass. In
addition, resolution was degraded because ions of the
same mass, which penetrated the cone of reflection, did
so over a greater time period. Moreover, high-mass
tailing resulted when ions retained sufficient radial
amplitude to be ejected axially after they had passed
through resonance, while at higher auxiliary amplitude,
these ions would have been lost on the rods. In other
cases, some ions passed through resonance without
gaining sufficient radial amplitude to penetrate the
cone of reflection at all and sensitivity was reduced.
Conversely, when auxiliary amplitude was too high,

ions gained radial amplitude more promptly and were
ejected at lower apparent mass. The simulation results
of Figure 14b show that resolution was degraded at
higher auxiliary amplitude because some ions pene-
trated the cone of reflection too soon, as manifest by the
low-mass tails on the lower-mass peak. Although not
obvious from Figure 14, as auxiliary amplitude is in-
creased further, sensitivity is reduced because many
ions with lower axial speed are driven to the rods before
they have an opportunity to penetrate the cone of
reflection. These same consequences are observed both
experimentally and in simulations, but require auxiliary
amplitudes greater than those represented in Figure 14
to be manifest.
It is noteworthy that auxiliary amplitude, which is

somewhat greater than optimal, can be compensated by
increasing the exit-lens potential, but at the expense of
sensitivity. In general however, performance is a stron-
ger function of exit-lens potential, relative to the opti-
mal value, than it is of auxiliary amplitude. These
characteristics have been observed in both simulation
and experiment.
Finally, as would be expected, and implicit in the

discussion above, the cones of reflection, obtained from
trajectory data of axially ejected ions, are unaffected by
auxiliary amplitude when ejection-q and exit-lens po-

Figure 14. Mass-intensity signals of the 609 reserpine ion, col-
lected at a scan rate of 1000 Da/s with the exit-lens potential held
constant at 4 V. The dotted, solid, and dashed lines correspond to
amplitudes of the 380 kHz auxiliary signal of 0.2, 0.4, and 0.8 V0-p,
respectively. (a) Experimental. (b) Simulations.
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tential are held constant. Mass-intensity signals are
affected strongly by auxiliary amplitude in consequence
of the influence of the auxiliary signal on ion trajecto-
ries, not on the quadrupole and exit-lens fields, which
determine the cone of reflection.

Conclusions

The diminution of the radial quadrupole potential in
the fringing region near the end of a quadrupole rod
array, gives rise to an axial electric field that can lead to
mass-selective axial ejection of ions from a linear quad-
rupole ion trap. In consequence of their radial motion,
which is characterized by extrema that are phase-
synchronous with the local RF potential, the net axial
electric field experienced by ions in the fringe field, over
one RF cycle, is positive. To a first approximation, this
axial field is proportional to the square of the radial
displacement, the square of the stability coordinate q,
and the mass-to-charge ratio of the ion.
When this axial field is superposed, in suitable

proportion, with a static DC field due to a repulsive
potential applied to the exit lens, a surface is defined in
the fringing region on which the net axial force experi-
enced by an ion over one RF cycle, is zero. In recogni-
tion of its shape, this surface has been dubbed the cone
of reflection. Only ions with sufficient radial amplitude
are able to penetrate this surface, and be ejected axially,
while all others are reflected. Outside of the cone, ions
experience a net positive axial force, which increases
strongly with axial position. Inside, the relatively weak
negative axial force diminishes in magnitude with de-
creasing axial position. Therefore, once an ion pene-
trates this surface, it feels a strong net positive axial
force and it is accelerated toward the exit lens. Other-
wise, the net axial force is negative and the ion is
repelled. It could be said that the cone of reflection is the
boundary between reflection and extraction regions,
where the reflection region lies inside the cone of reflec-
tion. When the exit-lens potential is chosen judiciously,
ions with thermal axial energies are able to penetrate
this surface and be ejected axially only if they have
sufficient radial amplitude. Ions lacking sufficient ra-
dial amplitude are reflected. In consequence, trapped,
thermalized ions can be ejected axially, in a mass-
selective way, by ramping the amplitude of the RF
drive, to bring ions of increasingly higher mass into
resonance with a single frequency auxiliary signal. In
resonant response to the auxiliary signal, ions gain
radial amplitude until they are either ejected axially or
neutralized on the rods.
It may be possible to modify the cone of reflection by

changing the nature of the fringing fields. The current
simulation approach offers the opportunity to explore
factors that change the MSAE efficiencies in a logical,
step-wise fashion. The general trends of the simulations
are in good agreement with experimental data, al-
though there are discrepancies in the absolute magni-
tudes of the optimum auxiliary AC amplitudes and

exit-lens potentials. Nonetheless, these simulations
have provided needed clarification of the forces acting
on ions exposed to quadrupole fringing fields that are
not only important for mass-selective axial ion ejection
from linear ion traps, but also for RF/DC and RF-only
quadrupole mass spectrometers.
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Appendix A. The Sx32 Simulator

Overview

The Sx32 simulator was developed in-house to provide
an easy-to-use and easy-to-modify system, capable of
simulating the trajectories of charged particles, which
move under the influence of time-varying electric fields,
suffer collisions with a buffer gas and interact electri-
cally with each other. The simulator consists of three
principal components: a user interface, ion generator
and trajectory calculator. The user interface is written in
Microsoft Visual Basic for Applications (VBA), com-
piled as an Add-In for Microsoft Excel. The ion gener-
ator and trajectory calculator are written in C		 for the
Microsoft Visual C		 Compiler and are compiled and
linked as dynamically linked libraries, DLLs, which
become part of Excel at runtime.
In processes of interest, ions are created within (or

introduced into) a particular device, their trajectories
are manipulated through the application of electric
potentials to electrodes, and finally, they are detected.
This process, called a scan function, is composed of a
series of segments. Each segment consists of a well-
defined region, in either space or time, which can be
described by a linear combination of specific mathemat-
ical models. For example, one segment may model a
fringing-field input to a quadrupole rod array, the next
a collision cell, the next a fringing field between rod
arrays, etc. Often ions are detected during the final
segment of a scan function in such a way that their
mass-to-charge ratio can be measured.
Working in an Excel environment, the user can build

ion populations which meet certain criteria, design and
execute multiple-segment scan functions, examine the
coordinate components of individual trajectories and
energies, and extract statistically significant informa-
tion, such as peak shapes, from a large number of
trajectory calculations.
Collisions between ions and molecules of a neutral

bath gas are of great importance in mass-spectrometric
applications. Consequently, considerable effort has
been devoted to the development of algorithms, which
simulate realistic collision processes. The probability of
collisions between ions and a neutral buffer gas can be
calculated using either the Langevin or hard-sphere
models, or a combination of both. Once a collision is
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deemed to have occurred, scattering can be modeled as
either an elastic or inelastic process. The latter case
includes the possibility of both exothermic charge ex-
change and endothermic fragmentation reactions.

Trajectory Calculations

The trajectory calculator obtains initial conditions for a
specific segment directly from an Excel worksheet. The
trajectory of the ion is calculated incrementally until a
terminating boundary condition is met. Terminal con-
ditions, for that segment, are written to the user inter-
face and input for the next segment is prepared. This
process continues automatically, until each ion has been
processed by the scan function.
In all cases, forces on the ion are calculated by

integration of the second order differential equation of
motion

d2r�
dt2

� �
ze
m

�� (A1)

where r� is the position vector of the ion, z is the number
and sign of elementary charges carried by the ion, e is
the electronic charge, m is the mass of the ion, and � is
the electric potential in three-dimensional space. When
necessary, several mathematically distinct fields are
superposed, simply by calculating the vector sum of the
contributing forces.
Eq A1 is integrated numerically using Richardson

extrapolation and the Bulirsch-Stoer method with adap-
tive step-size and error control. [Press, W. H.; Teukol-
sky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical
Recipes in C, 2nd ed.; Cambridge University Press: Cam-
bridge, 1992; Section 16.4, p 724.] In those cases for
which the electric field is not known analytically, it is
obtained by interpolating tabulated numerical solutions
to the Laplace equation. The user can select an interpo-
lation algorithm (polynomial, rational-function, or bicu-
bic), which best suits the tabulated data. Although the
bicubic algorithm works best with the integrator, it is
the most complicated to implement and requires the
pre-calculation and storage of derivative tensors.

Solving the Laplace Equation

Numerical solutions to the Laplace equation have been
obtained, in both two and three dimensions, using
Ansoft Corporation’s Maxwell Field Calculators. The
Ansoft package includes a CAD system, which is used
to draw electrodes and define boundary conditions.
Successively better solutions are obtained through both
adaptive and manual refinement of a finite-element
mesh. Mesh density, and the concomitant accuracy of
the final solution, is limited by the amount of available
RAM.
For most practical applications, the Ansoft field-

calculator has provided solutions of acceptable accu-

racy. One notable exception has been the weak axial
fields in the fringing regions at the ends of quadrupole
rod arrays. In instances such as these, where one
field-component was several orders of magnitude
weaker than those in perpendicular directions, the
accuracy of the weak component was too low for
practical use. The Ansoft code is not unique in this
regard. In fact, it has returned solutions of comparable
or higher quality than any other commercial code
evaluated by the authors.
Recently, investigation of mass-selective axial ejec-

tion, MSAE, in which the weak axial fields in the
fringing region at the end of a quadrupole rod array
play a pivotal role, provided motivation to develop a
Laplace solver in-house. The method of successive
over-relaxation [Press, W. H.; Teukolsky, S. A.; Vetter-
ling, W. T.; Flannery, B. P. Numerical Recipes in C, 2nd
ed.; Cambridge University Press: Cambridge, 1992; Sec-
tion 19.5, p 863] was adapted to this problem. In this
application, electrode surfaces and symmetry bound-
aries were represented exactly and the potential calcu-
lated at regularly spaced grid points in three-dimen-
sional space to a high degree of accuracy limited
primarily by the precision of 8-byte reals.

Differentiating the Potential

Subsequent to solving the Laplace equation, the poten-
tial must be differentiated to obtain the electrical forces,
which influence ion trajectories. Although several algo-
rithms were evaluated, robustness, speed and ease of
use made single-value decomposition [Press, W. H.;
Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes in C, 2nd ed.; Cambridge University
Press: Cambridge, 1992; Section 15.4, p 671] the tech-
nique of choice. Implicit in single-value decomposition
is the ability to reduce the noise that is inherent in
numerical differentiation through a variable degree of
smoothing.
Specifically, single-value decomposition was used to

fit a polynomial to a relatively small number of points
and the coefficients of that polynomial were used
calculate the derivative at the midpoint of the segment.
For example, to get the x-component of the electric field
on grid points at which the potential was known
numerically, a polynomial consisting of m terms was fit
to n sequential points, n � m, along a vector of constant
y and z. The coefficients so obtained were used to
calculate the derivative at the single grid point at the
midpoint of the segment. The starting point on the
vector was incremented and the process repeated until
derivatives at each grid point on the vector had been
obtained. The degree of smoothing can be controlled by
judicious choices for m and n. Typically, an odd num-
ber of points, such as n 
 5, was chosen for the segment
length. With n 
 5, the number of the terms in the
polynomial would be chosen from the range 3�m� 5.
Choosing m 
 3 would provide significant smoothing
of the potential and derived field components. With

1146 LONDRY AND HAGER J Am Soc Mass Spectrom 2003, 14, 1130–1147



m 
 5, no smoothing of the potential would occur. The
advantage of this strategy over the interpolation tech-
nique is that noisy fields can be smoothed and the
degree of smoothing controlled by judicious choices for
m and n.
It was found that solutions to the Laplace equation,

obtained by the method of successive over-relaxation,
required no smoothing and the most accurate field
components were obtained with m 
 n.
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