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Identities ascribed to the intact protein ions detected in MALDI-MS of whole bacterial cells or
from other complex mixtures are often ambiguous. Isolation of candidate proteins can
establish that they are of correct molecular mass and sufficiently abundant, but by itself is not
definitive. An in vivo labeling strategy replacing methionine with selenomethionine has been
employed to deliver an additional constraint for protein identification, i.e., number of
methionine residues, derived from the shift in mass of labeled versus unlabeled proteins. By
stressing a culture and simultaneously labeling, it was possible to specifically image the cells’
response to the perturbation. Because labeled protein is only synthesized after application of
the stress, it provides a means to view dynamic changes in the cellular proteome. These
methods have been applied to identify a 15,879 Da protein ion from E. coli that was induced
by an antibacterial agent with an unknown mechanism of action as SpY, a stress protein
produced abundantly in spheroplasts. It has also allowed us to propose protein identities (and
eliminate others from consideration) for many of the ions observed in MALDI (and ESI-MS)
whole cell profiling at a specified growth condition. (J Am Soc Mass Spectrom 2002, 13,
804–812) © 2002 American Society for Mass Spectrometry

Microbiological applications of matrix-assisted
laser desorption ionization-mass spectro-
metry (MALDI-MS) have piqued the interest

of mass spectrometrists. Whole cell-derived protein
fingerprints (signatures) show promise in bacterial
identification/differentiation for clinical, environmen-
tal, and defense applications, and streamline analyses of
proteins over-expressed in bacteria [1–33]. A recognized
limitation of bacterial fingerprinting and other methods
that supply only intact masses, however, has been their
inability to unambiguously identify the proteins or other
biomolecules responsible for the observed spectra [4,
18, 22, 34–39]. The confidence ascribed to identifications
increases significantly for a well-characterized bacte-
rium such as Escherichia coli, because considerable in-
formation regarding post-translational modifications

has been uncovered, and is readily accessed via care-
fully annotated databases such as Swiss-Prot [40].
Moreover, predictions of open reading frames, cleaved
signal peptides [41, 42], and excised initiator methioni-
nes [43–46], are also reasonably accurate, although not
infallible. This knowledge base and higher accuracy
mass measurements e.g., via Fourier transform mass
spectrometry (FTMS), increase the degree of confidence
further, but additional search constraints, such as amino
acid sequence, remain highly desirable. In this study,
we explore the potential of metabolic labeling [47–53] to
provide additional constraints linking protein signa-
tures to protein identities in whole cell fingerprinting
experiments, and exploit these capabilities to deliver
insights into an antibacterial drug’s mechanism of ac-
tion.

Experimental

MALDI-MS employed a PerSeptive Voyager Elite time-
of-flight mass spectrometer (Applied Biosystems, Fra-
mingham, MA) equipped with delayed extraction and
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operated in linear mode. Sinapinic acid (trans-3,5-dime-
thoxy-4-hydroxycinnamic acid), ferulic acid (trans-4-
hydroxy-3-methoxycinnamic acid), and gentisic acid
(2,5-dihydroxybenzoic acid; DHB) were employed as
matrices. Sinapinic acid was prepared as a saturated
solution in either 33% CH3CN/67% H2O/0.1% triflu-
oroacetic acid (TFA) (vol/vol/vol) or 50% CH3CN/50%
H2O/0.1% TFA. DHB was prepared as an approxi-
mately 20 mg/mL solution in 50% CH3CN/50% H2O/
0.1% TFA. Ferulic acid (saturated) was also prepared in
50% CH3CN/50% H2O/0.1% TFA. Matrices were pur-
chased from Aldrich (Milwaukee, WI) or Sigma (St.
Louis, MO). Anhydrous methanol (AR-ACS grade) and
HPLC-grade water and acetonitrile were acquired from
Mallinckrodt Baker, Inc. (Paris, KY), while sequencing
grade TFA was acquired from Perkin Elmer–Applied
Biosystems Division (Warrington, Great Britain).
Calibration of the time-of-flight MS was performed

either externally (two-point calibration with myoglobin
and insulin singly charged ions) or internally (single
point calibration assuming a mass of 7272 for peaks in
the 7270–7275 Da region). Repeated analyses on our
Voyager Elite verified that a 1 point calibration in the
7100–7300 Da region (relying heavily on instrument
default parameters) yielded better than �0.1% mass
accuracy below 30 kDa (typically �0.05% below 20
kDa). Sinapinic acid was preferred as a MALDI matrix
for these analyses due to its consistently good mass
accuracy, resolution, and sensitivity. Occasionally DHB
or ferulic acid was also employed, because of their
apparently higher tolerance to non-protein impurities.
Relative peak intensities varied somewhat with differ-
ent matrices; the most striking difference was that of the
15,879 Da peak’s intensity, as described later.
LC-ESI-MS analysis was performed on an ion trap

mass spectrometer (LCQ, Finnigan MAT, San Jose, CA)
coupled on-line to a capillary HPLC (MicroPro, Eldex
Laboratories, Napa, CA) and a microautosampler (Al-
cott 718 AL, Norcross, GA) in conjunction with a
protein trapping pre-column (CapTrap, Michrom
BioResources, Auburn, Ca). The samples were pre-
concentrated and desalted on the CapTrap prior to
eluting onto the capillary column (0.3 � 150 mm
PepMap C-18 or C-8, 5 �m, 300 Å; LC Packings, San
Francisco, CA). A step gradient was used to deliver
solvents from 20% B to 65% B during the initial 20 min,
then increased to 75% B for 5 min, and finally ramped
up to 95% B for the final 5 min (30 min total gradient
time). Mobile phase A consisted of 0.1% formic acid, 2%
acetonitrile, 98% water and mobile phase B contained
0.1% formic acid, 20% water, and 80% acetonitrile. The
HPLC was run at a flow rate of 5 �L/min.
An overnight culture was prepared by inoculating 20

mL of Luria broth (Gibco) with E. coli EP1581, a K-12
type strain derived from W3110 [54, 55], possessing
diminished drug efflux capability. The culture was
grown aerobically, at 37 °C, with 200 RPM agitation. An
aliquot was harvested, resuspended in 130 mL glucose-
limiting potassium morpholinopropane sulfonate

(MOPS) medium [56], and incubated as above. Upon
reaching an OD600 of 0.14, 5.0 mL aliquots of the culture
were deposited in 20 mL scintillation vials containing
L-methionine or D,L-selenomethionine (Sigma S3875,
St. Louis, MO), achieving 200 �g/mL Met or Met-
analogue concentrations [57]. At this time, compounds
of interest solubilized in dimethyl sulfoxide (DMSO) or
DMSO controls were dispensed to selected vials, yield-
ing drug concentrations of 0.5–50 �g/mL and 0.1–0.5%
DMSO. Vials were incubated aerobically for 2.5 h at
37 °C with 200 RPM shaking. Cell growth was moni-
tored periodically and immediately prior to harvest by
withdrawing 0.5 mL of the culture, diluting 5-fold in
glucose-limiting MOPS medium containing 0.2% form-
aldehyde, and measuring the absorbance of 600 nm
light. (Absorbances were multiplied by 5 to yield the
culture’s optical density at each time point.) Cells were
harvested by dispensing 1–1.5 mL solution to microcen-
trifuge tubes held on ice, centrifuging for 5 min at
15,000 RPM, 4 °C, and discarding the supernatant. Cell
pellets were stored at �80 °C until use.
Prior to MALDI mass spectrometric analysis, water

was added to each E. coli pellet according to the ratio: 40
�L per A600 unit per mL culture. (We estimate that 1 mL
at A600 � 1.0 corresponds to 200 �g of total protein.)
Following vortexing, 1 �L of the E. coli suspension was
added to 9 �L of matrix solution, further vortexed, and
0.5 �L was spotted to the sample probe and allowed to
dry at room temperature. The E. coli/water suspension
and matrix/sample mixtures were stored at �80 °C for
subsequent measurements.
For LC-MS analysis, cell suspensions in water were

subjected to three or more freeze thaw cycles and
pelleted. The supernatant was removed, and the protein
therein precipitated in 500 �L of 10% trichloroacetic
acid/90% acetone/20 mM dithiothreiotol (DTT) at
�20 °C. The precipitate was washed with cold ace-
tone/20 mMDTT and dried. Prior to LC-MS the sample
was dissolved in 100 �L of 0.09% TFA/10% CH3CN/
90% H2O.

Results and Discussion

Among the most important and difficult questions in
drug discovery is that of a compound’s mechanism of
action or toxicity. No defined procedure exists to divine
the answer, but global analytical methods such as
two-dimensional polyacrylamide gel electrophoresis
(2-D PAGE) and DNA microarrays are valuable tools
employed in its pursuit. Because these methods have
limitations, e.g., analysis of basic proteins and post-
translational modifications, genetic approaches also fig-
ure prominently, i.e., mapping resistance mutations.
Despite these state-of-the art tools, answers remain
elusive. Biological responses are complex and linked at
many levels. Even when gene products are observed to
change in abundance, the biological relevance may lie
elsewhere, with primary and secondary responses as-
sembled more subtly than anticipated. It is because of
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this complexity that alternative analytical methods ca-
pable of addressing these issues and/or complementing
current capabilities are sought.

Protein Identification

MALDI-MS whole cell profiling [26] is one of these
complementary approaches. Its speed and simplicity
have accelerated its acceptance in microbiological ap-
plications, but ambiguities in protein identification re-
strain its potential. Efforts addressing protein identities
have included correlating a m/z 9743 peak to the pres-
ence of the E. coli F-plasmid [36] and isolating E. coli
proteins hdeA and hdeB to demonstrate their potential to
yield peaks at m/z 9742 and 9066 [38]. With a similar
HPLC-based strategy, Dai et al. [18] argued that peaks
at 7272 and 7333 m/z arose from cspC and cspE, respec-
tively, while the preparative isoelectric focusing (IEF)
strategy of Arnold et al. [4] led them to ascribe m/z 7334
to entry exclusion protein b. Subsequently, mass mea-
surements of intact ribosomes [5, 58] demonstrated the
likely contributions of ribosomal proteins to MALDI
profiles, including rl29 at m/z 7274, and the likelihood
that abundant, basic proteins engender characteristic
peaks [22]. Most notable from these results, is that
multiple species may be responsible for a given peak in
a bacterial profile, and that protein isolation strategies,
while addressing a species’ abundance and mass, can-
not unambiguously assign it as the species responsible
for a peak in a spectrum. Also not to be overlooked, is
that results obtained under one set of conditions (e.g.,
bacterial strain, environment, sample preparation) do
not necessarily transfer to a different set of conditions.
MALDI-MS spectra were obtained from E. coli cells

dosed with an antibacterial agent of interest. We noted
the striking appearance of an intense peak at m/z 15,879,
especially dominant when ferulic acid was employed as
the MALDI matrix (Figure 1). Its prominence increased
with increasing doses of antibacterial agent. Hoping to
relate the induced protein to the drug’s mechanism, we
sought its identity. Searching the SWISS-PROT data-
base’s E. coli entries by intact mass (�0.1%), revealed
five contenders: (1) f6b2, CS6 fimbrial subunit B precur-

sor, pI 4.55, Mr 15,877; (2) flgN, flagella synthesis
protein, pI 6.41, Mr 15,867, (3) kla2, antirestriction pro-
tein, pI 5.22, Mr 15,867; (4) pi00, pino protein, pI 4.78, Mr

15,876; and (5) spY, spheroplast protein Y, pI 9.45, Mr

15,876. The spY mass reflects its mature form, lacking
the signal peptide. A search was also performed for a
mass 131 Da larger, to account for proteins trimmed of
their initiator methionine. (SWISS-PROT entries reflect
methionine excision only when it has been established;
e.g., by Edman degradation.) The second search added
rl13, trf5, and up03 as matches, but both ribosomal
protein L13 and up03 were immediately discounted;
they are known to retain their initiator methionines, as
reflected in database annotations. Because we em-
ployed an E. coli strain free of plasmids, the plasmid
proteins kla2 and trf5 were also discarded. That many
plasmid-encoded proteins are small, in concert with
bacterial fingerprinting’s superior detection of lower
molecular weight proteins (i.e., �20 kDa), leads to a
seemingly inordinate number of plasmid proteins aris-
ing as potential identifications. Clearly, analytical com-
plexity is reduced when one is favored with knowledge
as to the presence or absence of particular plasmids.
Similarly, all-encompassing databases contain a num-
ber of strain-specific entries. By this logic, we could
eliminate protein f6b2 from consideration; it was not
sequenced in our strain.
The protein flgN ought to be eliminated based on the

0.03% mass accuracy observed (validated by other
proteins in these spectra), but choosing between pi00
(Mr 15876 Da) and spY (Mr 15876 Da) is more difficult.
One can posit the likelihood of observing spY, based on
its higher isoelectric point [22], but such an argument
would be far from definitive. The possibility that both
proteins could contribute should not be neglected, nor
should the possibility of heretofore undetected modifi-
cations, processing events, missed open-reading frames,
or alternative initiation sites.
Seeking to differentiate between possibilities while

assuming little, we considered in vivo labeling. Stable
isotope labeling has provided constraints useful to both
peptide [50, 51, 59] and protein mass analysis [53].
Analogous efforts securing additional constraints for
protein identification [60] have included cysteine alky-
lation [52, 61], H/D exchange [62, 63], acylation [63],
and other derivitizations [64, 65].
For our application, the ideal approach would yield

a dramatic shift in m/z (demanding little of mass accu-
racy and resolution) and be interpreted easily. Based on
these parameters, we considered culturing bacteria with
selenomethionine. The large 46.89 Da mass difference
between selenium and sulfur should display the pro-
teins’ methionine compositions readily. That the amino
acid is relatively rare, comprising 1.7% of a protein’s
amino acids on average, simplifies the analysis [66].
Also invaluable is the considerable experience available
in methionine-labeled proteins: 35S-Met radiolabeling is
a fundamental technology in proteomics and Se-Met
labeling has found utility in protein crystallography.

Figure 1. MALDI mass spectra of E. coli dosed with a stressor
and cultured in methionine-supplemented media (bottom spec-
trum) and dosed with a stressor, but cultured in selenomethi-
onine-supplemented media (top spectrum).
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Selenomethionine-75Se has been injected intravenously
for studies of human lipoprotein metabolism [67], while
dual-label autoradiography (35S- and 75Se-methionine)
facilitated discovery of proteins specific to disease states
[68]. Methionine labeling of E. coli does not require use
of an auxotrophic strain [53] (compromised in ability to
synthesize an amino acid), a valued characteristic when
other parameters must guide the choice of strain; e.g.,
antibiotic susceptibility or resistance. The only require-
ment of methionine labeling is ability to culture in
chemically defined media, so that the pool of methio-
nine available can be controlled.
Table 1 lists the number of methionines anticipated

in the candidate proteins. Cells cultured and prepared
as described previously yielded the spectra illustrated
in Figure 1. Clearly many ions have shifted in m/z; of
most interest is the 518 Da shift at 16 kDa, indicative of
a protein with 11 methionines (518 
 47 � 11). This
simple experiment eliminated all but one contender,
and only alternatives with 11 Mets deserve future
consideration.
More challenging is the question of whether the

identification of a protein lends insight into biological
activity. This mass spectrometry information will be
combined with other assays and 2-D polyacrylamide
gel electrophoretic analyses correlating spot patterns to
antibiotics with known mechanisms of action to, hope-
fully, signal the important pathways involved in the
cells’ reaction to this compound. It has been postulated
that spheroplast protein Y, a secreted protein not de-
tected immunologically in intact cells, but produced
abundantly in spheroplasts, is a stress protein for
spheroplasting [69]. Thus, we speculate that the E. coli
cells sense perturbations in their outer membrane ef-
fected by the compound; they respond by inducing spY.

Protein Synthesis under Dynamic Conditions

Organisms’ responses to environmental changes or to
various stresses beget dimensions of information be-
yond the simple catalogue of gene products of which
they are molded. In applications targeting the rapid
identification of microorganisms, for which reproduc-
ibility reigns, laboratories have sought to limit these
dimensions, striving to produce images of a static
proteome, one most amenable to inter-laboratory com-
parison [19, 24, 27]. But for other applications, viewing
the dynamic landscape of cellular response is para-
mount, and in that venue, radioisotope labeling is

preferred. The proteomic mass spectrometry realm
grasped stable isotope labeling to quantify relative
protein levels, exploiting both in vitro and in vivo
labeling [59, 61, 70, 71]. However, MS-based in vivo
labeling methods have so far lacked pulse labeling’s gift
of distinguishing proteins synthesized prior to the
stress from those synthesized later.
Timing the addition of selenomethionine to coincide

with drug administration, we can differentiate proteins
synthesized after dosing from those synthesized before.
For example, the upper selenomethionine trace in Fig-
ure 1 shows no 15,879 Da (0% Se) peak; spY is present
entirely as the 16,397 Da (100% Se) protein. Clearly, spY
is induced upon addition of the drug and all of the 15.9
kDa protein in the lower, S-methionine trace, was
synthesized after dosing. The advantage for quantifica-
tion is clear: Shifting aside background proteins synthe-
sized prior to application of the stressor provides re-
sults of higher precision, and enhances ability to detect
subtle alterations. Utilizing this experimental design,
we realize the large advantage that metabolic labeling
enjoys over post-harvest labeling.

Suggested Changes and Variations for Identifying
and Quantifying Proteomes

To quantify effects of stressors, we would choose to
compare a control culture selectively labeled with
amino acid analogue “A” at time t1, to a second culture,
which at time t1, was also labeled with “A” and dosed
with compound “X”. Implementing labels in this man-
ner would shift Met-containing peaks in both cultures,
enabling comparisons of proteins synthesized over
equivalent lengths of time, while embedding a pro-
teome of normalization factors (unlabeled proteins syn-
thesized prior to the stress). Care should be taken when
interpreting ratios of peaks composed of more than one
protein. Our protein-by-protein analysis for the com-
pound inducing spY is in progress.
In identifying proteins for dynamic effects, the clean-

est approach conceptually encompasses two sets of
identifications—(1) proteome of unstressed cells, and
(2) proteome of stressed cells. Set (1) reflects the ap-
proach taken in preceeding work [49, 51, 53, 70]: Grow
1 set of cells in standard media and compare them to a
second set of cells grown under the same conditions,
except labeled with “A” throughout the culture. Identi-
fications will rely on the mass and the constraint
embedded in the number of “A” labels. Set (2) may
employ single or double labeling. Single labeling was
undertaken by us to identify spY: Application of a stress
without amino acid labeling versus application of a
stress with concomitant amino acid labeling. The only
drawback with single-labeling is that for the unlabeled
culture, it does not differentiate proteins synthesized
before the stress from those synthesized after, poten-
tially complicating the analysis. However, the compli-
cation may be unimportant, and would likely be illu-

Table 1. Proteins potentially yielding m/z 15,879

Protein
Average molecular

weight
Isoelectric point

(pI)
# Methionines
expected

f6b2 15,877 4.55 3
flgN 15,867 6.41 6
pi00 15,876 4.78 2
spY 15,876 9.45 11
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minated by evaluating the quantification and
unstressed proteome data, described above. Alterna-
tively, double labeling could be pursued with two
cultures: At time t1, culture 1 is selectively labeled with
amino acid analogue “A” and dosed with compound
“X”, while culture 2 is labeled with amino acid ana-
logue “B” and similarly dosed with compound “X”. The
shifts between B- versus A-labeled proteins deliver
direct readouts of the number of methionines in pro-
teins synthesized after the stressor. The main draw-
backs of double-labeling are its potential to complicate
the spectra and the need to invest in a second label or
analogue.
While the replacement of methionine by selenome-

thionine worked well in this application, we would
generally recommend implementation of stable-isotope
labeled methionine for antibacterial studies. Selenome-
thionine lengthens the generation time of E. coli 26, and
was reported to markedly inhibit growth of E. coli K12
[72]. Our observations were consistent; E. coli W3110
grew slower in the selenomethionine-supplemented
media than in the methionine media. The selenomethi-
onine bacteria also appeared to be inhibited less by the
antibacterial compounds examined, which we believe
can be attributed to their slower growth. Fortunately
several forms of stable-isotope labeled methionine are
available, reflecting its utility in protein NMR studies.
While they do not shift protein masses as generously,
the 13 Da shift of 2H8-13C5-methionine is significant.
Methionine labeling provides considerable flexibility
for double-label experiments, through the availability of
deuterated, 13C-labeled, and multiply labeled ana-
logues, as well as the seleno-analogue investigated by
us.
Labeling of other amino acids should be considered

to complement methionine labeling. For example, pro-
teins synthesized after addition of the label, but pos-
sessing no methionines, cannot be differentiated from
proteins synthesized before addition of the label. Incor-
poration of a different analogue will differentiate syn-
thesis before and after an applied stress for another set
of proteins, as well as provide additional constraints for
protein identification. Methionine labeling is attractive
because it does not rely on auxotrophic strains, e.g., the
presence of 0.1 mM D,L-selenomethionine reduces me-
thionine biosynthesis by 95% [72]. Insight into amino
acid interconversion and labeling strategy gleaned from
previous radiolabeling efforts suggests other labeling
conditions suitable for non-auxotrophic strains [47, 48,
73].

Identifying the Protein Ions Observed in Whole-
Cell Profiles

Each ion mass was searched against the SWISS-PROT
database at 0.05% mass accuracy using TagIdent [74],
with the broadest range of isoelectric points available.
Considerations included: (1) Correcting polypeptide

masses for detachment of signal peptides (The TagIdent
utility performed this subtraction.); (2) accounting for
post-translational modifications known or suspected;
(3) adding 787 Da to the polypeptide minus signal
peptide mass of lipid-acylated proteins. The lipid incre-
ment was based on previous studies of E. coli lipopro-
teins mulI and osmE [39]; (4) discarding plasmid pro-
teins and proteins undocumented in the K12 substrains
MG1655 or W3110; (5) compensating for undocumented
initiator methionine excision by searching for masses
incremented by 131 Da.
For all sequences with uncharacterized amino ter-

mini, the likelihood of initiator methionine excision was
evaluated based on the neighbor amino acid [43–46, 75,
76]: Met-(Ala, Cys, Gly, Pro, Ser, and Thr) were classi-
fied as likely to cleave. Met-(Asp, Asn, Leu, Ile, Val, Gln,
Glu, His, Met, Phe, Lys, Tyr, Trp, and Arg) were
classified as unlikely to cleave. Although Hirel et al. [46]
list Met-Val as likely to be cleaved, no examples as such
were observed in the Edman degradation results of
Link [75].
Figures 2, 3, and 4 illustrate spectra obtained from E.

coli drug-free cultures, labeled with either S-Met or
Se-Met, as described previously.
We find it interesting that the peak at 7273 arises

from cspA and cspC (Figure 2), but not rl29, despite the
prevalence of other peaks attributed to ribosomal pro-
teins. Proteins of the cold-shock domain family, to
which cspA and cspC belong, are induced by various
stresses. We expect their abundances and relative con-
tributions to vary dramatically with growth conditions,

Figure 2. MALDI mass spectra of unstressed E. coli cultured in
methionine-supplemented media (bottom spectrum) and cultured
in selenomethionine-supplemented media (top spectrum). Num-
bers in parentheses denote the number of methionine residues in
the proteins. Proteins consistent in mass, but eliminated by
number of methionines include: Region a–rl29(2), region
c–yahO(4), region e–yqgC(2), region f–yqfE(3) and feoA(2), region
h–ydhI(3), yahM(3), and yjbO(5), region i–yecJ(2), and region
j–p76358(1). Proteins consistent in mass that may also contribute to
the spectra include region a–cspC(0) and region g–yfdY(7). Proteins
with no methionines can rarely be eliminated from consideration,
due to mass overlap with protein synthesized before labeling. The
strength of the 7273 Da peak in the selenomethionine spectrum,
however, argues that cspC is a significant presence. This data
cannot dismiss potential contributions to g from yfdY because a
peak is observed at the seven methionine increment. That peak is
also consistent with 3-selenium shifted hdeB.
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factors which should be considered if them/z 7273 ion is
employed as a marker. Also of note was that under
these culture conditions, the m/z 13,002 ion arose not
from the expected ribosomal protein rl19, but primarily
from the hypothetical protein yifE. Clearly, protein
identities need to be verified for each growth condition
of interest.
Despite the surprises described above, most of the

selenium-related shifts observed were consistent for
ribosomal proteins at their expected m/z values (19
ribosomal proteins confirmed). In addition, a protein at

m/z 6317 can be ascribed to either rl32 or mature ybiJ
(detached signal peptide); both potential proteins con-
tain a single methionine. Non-ribosomal proteins
matching in m/z and number of methionines included:
rmf (6507 Da), csrA (6858 Da), cspC and cspA (7273 Da),
cspE (7333 Da), yehE (7707 Da), cspD (7970 Da), if1-Met
(8119 Da), hdeB (9064 Da), dbhB (9226 Da), dbhA or
tatA-Met (9536 Da), hdeA (9740 Da), ygiW (11,796 Da),
yifE (13,002 Da), and osmY (18,160 Da).
The identities of several ions are unresolved. An ion

observed at 5065 Da did not display the two methionine
shift, anticipated for ydaG-Met (expected 5064 Da), the
only possibility within mass tolerances, but of low
probability because ydaG was expected to retain its
initiator Met. No protein matched within 0.05% mass
tolerance to a 5459 Da ion found to contain one methi-
onine. An 8326 m/z ion did not contain the two methi-
onines required for assignment to yjbJ or ydaQ-Met
(both ions predicted at 8326 m/z), instead, it contained
zero or one methionine (overlap with another protein
prevented us from differentiating between the two
possibilities). Ions observed at 10,397 and 10,797m/z did
not contain the two methionines predicted for yjbD-Met
and yhcO, respectively, instead the former possessed
none, while the latter contained either 0 or 1 (ambiguity
introduced by overlap with another protein). Finally, an
ion observed at 10,652 Da contained three methionines,
consistent with assignment as ihfB (predicted m/z
10,652), but we are less confident, because initiator
methionine excision is highly probable for this protein’s
Met-Thr amino terminus.
An alternative method for profiling intact proteins

employs LC-MS [12]. Figure 5 illustrates a selenomethi-
onine versus sulfur-methionine comparison performed
by LC-MS with electrospray ionization. Although the
LC separation was less than optimal for such a complex
mixture, the concept is demonstrated by this example.
On-line LC-MS/MS of the 13.6 kDa protein (top, Figure
5) further confirmed the identity of the rs12 protein
(data not shown). The “top-down” approach for protein
identification, in which molecular mass measurement
of the intact protein combined with sequence informa-
tion from fragmentation of the gas phase protein mol-
ecule can proceed by in-source decay of MALDI-gener-
ated ions [39] or MS/MS of ESI-generated ions [77, 78].

Conclusions

These data illustrate a method providing additional
information to support or refute protein identities in
MALDI-MS of whole cells. It does not require the use of
auxotrophic strains. More powerful is that it allows one
to selectively label proteins synthesized after a stress,
e.g., a change in temperature, environment, or addition
of a drug. Labeling in this manner, analogous to the
methods of radiolabeling, provides quantitative infor-
mation on the dynamics of the cellular proteome’s
response to perturbation.

Figure 3. MALDI mass spectra of E. coli cultured in methionine-
supplemented media (bottom spectrum) and cultured in sel-
enomethionine-supplemented media (top spectrum). Numbers in
parentheses denote the number of methionine residues in the
proteins. Note that rl32 and ybiJ both have one methionine; either
or both proteins could give rise to the region b peaks. A region e
protein consistent in mass, but eliminated by its number of
methionines is ycaR(1).

Figure 4. MALDI mass spectra of E. coli cultured in methionine-
supplemented media (bottom spectrum) and cultured in sel-
enomethionine-supplemented media (top spectrum). Numbers in
parentheses denote the number of methionine residues in the
proteins. Note that dbhA, tata-Met, and yceP-Met all have one
methionine; although only dbhA is labeled in the spectrum, any
combination of these proteins generate the region g peaks. Pro-
teins consistent in mass, but eliminated by number of methionines
include: Region b–ydhI(3), yahM(3), and yjbO(5), region c–yecJ(2),
region d–p76358(1), region e–yfgJ(4), and region h–ilvM(3). As
discussed in the Figure 2 caption, this data cannot dismiss
potential contributions from yfdY(7).
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