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A scoring procedure is described for measuring the quality of the results for protein
identifications obtained from spectral matching of MS/MS data using the Sequest database
search program. The scoring system is essentially probabilistic and operates by estimating the
probability that a protein identification has come about by chance. The probability is based on
the number of identified peptides from the protein, the total number of identified peptides,
and the fraction of distinct tryptic peptides from the database that are present in the identified
protein. The score is not strictly a probability, as it also incorporates information about the
quality of the individual peptide matches. The result of using Qscore on a large test set of data
was similar to that achieved using approaches that validate individual spectral matches, with
only a narrow overlap in scores between identified proteins and false positive matches. In
direct comparison with a published method of evaluating Sequest results, Qscore was able to
identify an equivalent number of proteins without any identifiable false positive assignments.
Qscore greatly reduces the number of Sequest protein identifications that have to be validated
manually. (J Am Soc Mass Spectrom 2002, 13, 378–386) © 2002 American Society for Mass
Spectrometry

Proteolytic digestion followed by mass spectro-
metry and database searching has become the
premier approach to sensitive identification of

proteins. High throughput approaches to protein iden-
tification depend on minimizing human time invest-
ment in this analysis. A variety of techniques, including
robotic gel band excision and digestion, automated
matrix-assisted laser desorption/ionization (MALDI)
spotting, autosampled nano-liquid chromatography
tandem mass spectrometry (LC/MS/MS) analysis, and
automated database searching, have been developed to
further this aim. To make automated database search-
ing possible, it is necessary to use a search program that
can process spectra without need for human interpre-
tation. In theory, it is also desirable to have an auto-
mated scheme to determine the significance and reli-
ability of the database search results.
One of the more popular routines for database

matching of peptide MS/MS spectra is Sequest [1].
Sequest can be used to analyze uninterpreted MS/MS
spectra and provides a score for each match. However,
exact standards for individual peptide matches to be
considered significant, or for a group of peptide
matches to indicate successful protein identification are
still a matter of question. One criterion [2, 3] is what
might be termed a golden match standard, in which a

single, human validated peptide match is considered to
be a conclusive identification of its precursor protein.
While the golden match standard appears valid, it

suffers from some difficulties associated with the in-
completeness of protein databases. In our experience, it
is sometimes the case that the second best match for a
peptide would meet numerical and subjective criteria as
a golden match if the top scoring peptide were removed
from the database. This suggests that the same may be
true of some peptides that generate top scores; they are
not actually the correct peptide, and generate the top
match only because the correct peptide is not in the
database. More generally, the golden match criterion is
caught in a double bind. In order for a peptide to
identify a protein uniquely from the database, it must
be sufficiently long that it is unlikely to exist in several
unrelated proteins. For a peptide of such length,
though, there must be many isobaric peptides that are
not present in the database, so the status of the identi-
fied peptide as the unique best match cannot be con-
firmed.
If single matches, no matter how good, are insuffi-

cient to ensure a correct protein identification, some
approach based on multiplicity of matches must be
used. Some authors have proposed standards for iden-
tification based on multiple peptide matches [4], but
like the golden match standard, these are basically ad
hoc criteria. This paper attempts to create a reasonable,
statistically based algorithm for determining goodness
of protein matches.
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Methods

Computer Programs

The Sequest program was version 26 or 27 (Turbo-
Sequest) obtained from ThermoFinnigan (San Jose, CA).
Subsidiary programs were written in Perl version
5.005_03, available for download from the Com-
prehensive Perl Archive Network (http://www.
cpan.org). The subsidiary programs are available
from the authors’ web site (http://www.cityofhope.
org/microseq/download.html).

Databases

Protein databases were downloaded from the National
Center for Biotechnology Information (NCBI) web site
(ftp://ww.ncbi.nlm.nih.gov/blast/db). The NCBI non-
redundant (nr) database (as of 3/24/2000 and 4/11/
2001) was used for searches against a complete data-
base. The S. cerevesae (yeast) database (6298 proteins)
was used as an example of a smaller, species specific
database. For some experiments, the sequence data-
bases were reversed using the program db_reverse.pl.
A database was reversed by reversing the sequence of
amino acids in each protein. This generated a database
with the same distribution of amino acids, sequence
lengths, and sequence homologies as the original data-
base but none of the actual protein sequences. These
reversed databases were labeled with the original name
spelled backward, i.e., rn and tsaey.

Mass Spectra

Two sets of experimental spectra were used to test the
searching approaches used. All spectra were derived
from LC/MS/MS experiments using a ThermoFinnigan
(San Jose, CA) LCQ Classic ion trap mass spectrometer
and a custom built nano-flow HPLC and nano-ESI
interface [5].
The first data set consisted of spectra from 8 LC/

MS/MS analyses of S. cerevesae proteins. The spectra
were subjected to a series of screening steps to ensure
that they were capable of generating positive Sequest
search results. All spectra were screened using the
winnow.pl program [6], then searched against the NCBI
nr database. All spectra corresponding to yeast proteins
that generated two or more matches were used. The
resulting data set consisted of 511 spectra.
The second data set consisted of spectra from nine

LC/MS/MS analyses of human proteins. No attempt
was made to ensure that the spectra were of high
quality; the only criterion for inclusion was that the
spectra should produce matches when analyzed using
Sequest. This resulted in a collection of 4268 spectra. In
a small number of cases the charge of the precursor ion
could not be determined, so the data was searched
twice, once assuming a doubly charged precursor and

once assuming a triply charged precursor. This resulted
in a total of 4316 individual searches.
Additional sets of spectra used to test the Qscore

algorithm were the product of routine analyses carried
out by the Mass Spectrometry Core Facility at the City
of Hope and were derived from a variety of organisms.

Sequest Searching

Most Sequest searches were carried out using moder-
ately restrictive parameters. The only modification con-
sidered was a quantitative carbamidomethylation of the
peptides, which had been reduced and alkylated with
iodoacetamide, and tryptic cleavage was assumed. Par-
ent ion and fragment ion tolerances were set to 2.5 Da.
For direct comparison with published approaches, less
restrictive parameters were used. In addition to cysteine
carbamidomethylation, non-quantitative methionine
oxidation was considered, and no enzymatic constraints
were used.
In some cases, Sequest search results were checked

by an analyst. Criteria for manual validation were
similar to those described by others [2]. Matched se-
quences were validated if all major peaks in the spec-
trum were explained by the candidate sequence and the
spectrum contained enough peaks to confirm most of
the peptide’s sequence. Sequest Sp and Xcorr scores
were not used as a criterion except where specifically
mentioned.

Predicted Spectra

Predicted spectra contained the b and y ion series as
well as ions representing water loss from the b and y
ions. Multiply charged ions were predicted with a
maximum charge equal to the lower of the precursor
ion charge or 1 plus the number of basic residues
(lysine, arginine, and histidine). The b- and y- type ions
were given an intensity of 1 divided by their charge and
water loss ions were given 1/4 the intensity of their
parent b or y ion. If two ions had the exact same mass to
charge ratio, their intensities were added.

Results and Discussion

False Positive Matches

The crucial factor to consider in deciding if a match is
correct is whether there is a reasonable chance that such
a match could have come about by chance. Sequest will
always return a best match peptide as long as at least
one peptide from the database falls within the peptide
mass tolerance. When using a reasonable peptide mass
tolerance, this condition is met even for databases
smaller than the smallest non-viral proteomes. It is
therefore reasonable to adopt as a null hypothesis that
all matches are essentially random and accept as iden-
tified only those proteins that generate more matches
than would be expected by this null hypothesis.
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The expected number of matches can be established
by a number of approaches. The simplest approach is to
derive a prediction analytically for the generic case.
Given: N � number of individual searches; M � num-
ber of matches against a specific protein; P� number of
proteins in the database.
The chance that a group of M searches will all match

the same protein is then simply:

Pmatch�M, P� � P�1�M� (1)

And the chance that they will not all match is:

Pno match�M, P� � 1 � P�1�M� (2)

The number of groups of M searches chosen from N
searches is:

Ngroups�M, N� � N!�N� M�!M! (3)

The chance that no group of Mmatches will all match to
the same protein is then:

Pno match�M, N, P� � �1 � P�1�M��N!/�N�M�!M! (4)

Making the chance that there is such a match:

Pmatch�M, N, P� � 1 � �1 � P�1�M��N!/�N�M�!M! (5)

The expected number of matches can also be estimated
as the number of groups that can generate a match
times the chance that each will generate a match:

Nmatch�M, N, P� � P�1�M�N!�N� M�!M! (6)

It is important to note that for Pmatch(M, N, P) �� 1 (i.e.,
when the chance of a false positive is low), Pmatch(M, N,
P) � Nmatch(M, N, P). Nmatch(M, N, P) will tend to
overestimate the number of matches if Nmatch(M� 1, N,

P) � 1, as each match to M � 1 spectra is treated as
M � 1 matches of M spectra. The results of these
formulas can be experimentally tested by searching a
group of real spectra against a deliberately falsified
database. This was carried out for the two data sets
described against both the rn and tsaey (sequence
reversed) databases.

Effective Database Size

The results of database searching (Table 1) show the
trends expected from the formulas. The number of
matches tends to go up as the number of spectra
searched increases and down as the number of proteins
in the database increases. The actual numbers of pro-
teins matched were not exactly as expected. The search
of the tsaey database resulted in a few more matches
than predicted, while that for the rn database gave
many more than predicted. In effect, the tsaey database
behaves as though it is somewhat smaller than its actual
size and the rn database behaves as though it is much
smaller than its actual size. Several factors appear to
account for the discrepancy.
A single search can result in matches to more than

one protein. Short peptides can exist in several unre-
lated proteins simply because there are a limited num-
ber of possible sequences, while longer peptides may
exist in several homologous proteins. Furthermore,
some peptides while of different sequence are not
distinguishable by mass spectrometry. Frequently this
occurs because they contain isobaric amino acid substi-
tutions, such as leucine for isoleucine or glutamine for
lysine. Occasionally peptides with greater sequence
differences will not be distinguished because fragments
that could distinguish them are not observed. The
presence of multiple identical or indistinguishable pep-
tides in the database reduces its effective size.
Another critical factor is that peptides are not evenly

distributed among all proteins. Large proteins may
contain hundreds of peptides that may be matched in a

Table 1. Results of searching different data sets against sequence reversed databases. Data shown are the actual and predicted
number of matches generating at least 2 or 3 unique peptide sequences, and the largest number of unique peptide sequences for any
match

Peptides required
for a protein
match

Number of protein matches
data set 1 (511 searches)

Number of protein matches
data set 2 (4316 searches)

Tsaey
databaseb

Rn
databasec

Tsaey
databaseb

Rn
databasec

2 or morea Actual 27 2 1034 118
Predicted 20.7 0.27 1479 19.2

3 or more Actual 1 0 402 4
Predicted 0.56 9.4 
 10�5 338 5.7 
 10�2

Largest Actual 3 2 10 3
Predicted 3 1 6 2

aThe predicted values for 2 or more peptides/protein are actually overestimates, as each group of 3 matches is treated as 3 independent groups of
2 matches.
bThe tsaey database contains 6298 proteins.
cThe rn database contains 483730 proteins.
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search, while small proteins may contain fewer than
ten. Proteins with more peptides are naturally more
likely to generate multiple matches than those with
fewer peptides.

Distinguishable Peptides

A simple and reasonable approach to correct for the
discrepancies in database size is to perform a theoretical
digestion of the entire database and count the number
of distinguishable peptides generated. A program,
db_stats.pl, was written to do this. It is important to
note that the number of distinguishable peptides is
necessarily somewhat inexact and dependent on exper-
imental conditions. For the experiments described here,
the pairs leucine/isoleucine and glutamine/lysine were
considered indistinguishable. This is an approximation.
Even with low mass-accuracy ion trap spectra, Sequest
will occasionally generate slightly different scores for
glutamine versus lysine containing peptides. For the
yeast databases used in this study, 93% of the tryptic
sequences are unique. For the NCBI databases however,
more than 40% of the tryptic peptide sequences are
redundant (Table 2).
Once available, the number of distinguishable pep-

tides in the database (d) can be compared to the number
of distinguishable peptides generated by a theoretical
digestion of a protein from the database (p) to deter-
mine the probability of a chance match:

Pmatch�M, p, d� � �d/p��1�M� (7)

which gives the predicted number of matches:

Nmatch�M, N, p, d� � �d/p��1�M�*N!/�N� M�!M!

(8)

If a different enzyme from that used to generate the
database profile is used, the profile data can still be
used to approximate the match probability. In this case
the data used is the number of distinct peptides in the
database (d), the total number of peptides in the data-
base (t), the number of amino acids in the protein (l),
and the number of amino acids in the database (a):

Pmatch�M, d, t, l, a� � ��a/l�*�d/t���1�M�

� �a*d/l*t��1�M� (7a)

Nmatch�M, N, d, t, l, a� � �a*d/l*t��1�M�N!/�N� M�!M!

(8a)
In effect, the chance of finding a peptide from a protein
is treated as the fraction of amino acids in the database
that are present in that protein, with the size of the
database corrected for the presence of indistinguishable
peptides. In a few cases (e.g., a database consisting of
just one protein that includes repeated sequences) this
may result Pmatch � 1, but this is unlikely to be true of
any database used for general searching. This is not an
issue when using the actual number of distinct peptides
in the protein and database, as every distinct peptide in
a given protein must also be present in the database.
A factor that counterbalances peptide duplication in

the database is that the same peptide may generate
multiple matches in an analysis. While data dependent
approaches [7] can minimize re-analysis of the same
peptide, they cannot completely prevent it. Combining
multiple matches is comparatively straightforward;
each distinct sequence identified counts as a single
match. This is important because it was observed that
Sequest returns the same incorrect peptide for related
spectra when the correct peptide is not present in the
database. Spectra derived from the trypsin autolytic
fragment LGEHNIDVLEGNEQFINAAK, for instance,
gave the sequence SLSHVAKGLVKVNGGTILCKM
when searched against the rn database and
NFFYAFNKSTIIHLQLVR when searched against tsaey.
To account for peptide duplication, the total number of
matches should be adjusted to equal the number of
distinguishable peptides identified, rather than the
number of searches carried out.

Sequest Cross-Correlation Scores

Many of the matches of MS/MS spectra to the rn
database (which has no correct protein sequences) gave
Sequest Xcorr scores in the range (�1.9 for �1 ions,
�2.2 for �2 ions, and �3.75 for �3 ions) classified as
significant by others [2, 3] (Table 3). Manual examina-

Table 2. Characteristic statistics are given for the databases used in the study, the yeast genomic database, the NCBI non-redundant
(nr) database at the listed dates, and two sequence reversed databases, tsaey (reversed yeast) and rn (reversed nr as of 3/24/00)

Tsaey Yeast Rn (3/24/00)

NCBI nr

3/24/00 4/11/01

Proteins 6298 6298 483730 483730 666948
AAs 2974038 2974038 151518084 151518084 210073119
Peptidesa 1142678 1138430 51743728 51562434 70959541
Distinguishableb 1061951 1058350 30809348 30685370 40600343
% Unique 92.9 93.0 59.5 59.5 57.2

aPeptides counted were tryptic peptides with lengths between 5 and 30 amino acids.
bPeptides were considered distinguishable if they differed by more than I/L or K/Q substitutions.
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tion of the matches found for the smaller data set
resulted in 30 that fulfilled all of our criteria for a valid
match. Thus, the proportion of false positives that
escape detection by manual validation is estimated to
be 5%.

Accounting for Match Quality

The only factor not yet considered is the quality of
individual peptide matches. While a single peptide
match may not be sufficient to conclusively identify a
protein, it is quite clear that not all matches are created
equal. It is plausible to assume that a strong match is
less likely to result from a false positive than a weak
match is. By rearranging eq 8, it is possible to derive an
expression where some information about the quality of
match of each peptide can logically be included:

Nmatch�M, N, p, d� � �d/p�*i�1�
M�N	 1 � i�/i*�d/p�

q�i� � match quality information for the ith peptide

(9)

Score�M, N, p, d� � �d/p�*i�1�
M�N	 1

� i�/�i*q�i�*�d/p�� (10)

In practice, it may happen that the quality of a match is
so low that the overall score for the protein is worse
when it is included. Rearranging the formula as a
product allows the score to be calculated iteratively,
making it simple to ignore matches that worsen the
final score. It is also convenient to convert the score into
its negative logarithm, giving a Quality based score
(Qscore):

Qscore�M, N, p, d� � �log�d/p�

	 i�1�
M log��i*q�i�*�d/p��/�N

	 1 � i�� (11)

It is important to note that the inclusion of data about
the quality of the peptide matches may prevent the
Qscore from being a true probability. Unless the scores
accurately reflect the probability that the matches are

true positives, the overall Qscore will be based on
probability theory but not reflect a true probability.
Unfortunately, it is not possible to recover a probability
that a match is a true positive from the data available in
a Sequest search, so this weakness is unavoidable in any
approach that uses Sequest data. Treating the Qscore as
a true probability can still be useful in understanding its
meaning, even though such an interpretation needs to
be viewed cautiously. In such an interpretation Qscore
is -log(expected matches of this quality). A Qscore of 0
thus corresponds to the quality of match that could be
expected to exist based on chance alone.
Our approach to the quality issue is to measure the

agreement between the experimental spectrum and a
spectrum predicted based on the matched sequence.
This can be done using a spectral product algorithm in
which the experimental spectrum (A) and predicted
spectrum (B) are compared to generate a product spec-
trum (C). Each peak in spectrum A is translated into a
peak in C that has intensity equal to the intensity of the
peak in A times the summed intensity of all peaks in B
within a specified mass tolerance. The product score,
s(A, B) is the summed intensity of the peaks in C. To
ensure that the agreement between the spectra is a
value between 0 and 1, each spectrum is first normal-
ized so that its product with itself is 1. The degree of
agreement is then:

a�A, B� � s�A, B�/�s�A, A�*s�B, B��1/2 (12)

The degree of agreement between the actual and pre-
dicted spectra can then be treated as the probability that
the match is a true positive. The qualitative scoring
information is then the inverse of the false positive
chance:

q� 1/�1 � a�actual spectrum, predicted spectrum��

(13)

This suggests that as peptide match quality approaches
perfection, the degree of confidence in the protein
match also approaches perfection, which is essentially a
re-statement of the golden match principle. In practice,
there is a limit to the degree of confidence in any

Table 3. Observed distribution of Sequest Xcorr scores for searches against the rn (sequence reversed) database. With the exception
of very small peptides, none of these identifications should be correct, as the database used does not contain any real protein
sequences

Charge state

Data set 1 (511 searches)a Data set 2 (4316 searches)b

1� 2� �2� 1� 2� �2�

Count 189 308 14 2411 1438 467
Mean Xcorr 1.57 2.24 2.66 1.21 1.74 1.93
Median Xcorr 1.57 2.25 2.53 1.27 1.69 1.93
Maximum Xcorr 2.70 4.04 3.48 2.72 3.48 3.78

aThe spectra in data set 1 were selected for high quality.
bThe spectra in data set 2 were not.
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peptide match, which depends on the quality of the
mass spectral data used. This uncertainty should be a
natural consequence of the matching algorithm.
The process of comparing an actual spectrum with a

predicted spectrum is illustrated using a spectrum
derived from a trypsin autolytic peptide (Figure 1).
When the actual spectrum (Figure 1, top panel a and b)
is compared to the predicted spectrum for the correct
sequence (Figure 1, middle panel a), the product spec-
trum is very similar in appearance (Figure 1, bottom
panel a) to the actual spectrum. When compared to the
predicted spectrum for the incorrect sequence matched
in the rn database (Figure 1, middle panel b), the
product ion spectrum (Figure 1, lower panel b) differs
significantly from the actual spectrum. This obvious
qualitative difference is reflected in the TIC scores of the
two product ion spectra.
It is also necessary to account for peptides or sets of

indistinguishable peptides that are matched more than
once. Matching a peptide several times does increase
the confidence that the match is correct. This can be
accomplished by taking the product of the individual
match scores to arrive at a score for the group of
matches. In this case it is important to apply a maxi-

mum allowable score, so that multiple incorrect
matches do not overly skew the results.

Applying the Qscore Algorithm

A program, qscore.pl, was written to apply the Qscore
algorithm to real Sequest search results. The qualitative
score information, q, for each distinguishable peptide
was capped at 20 (equivalent to a false positive chance
of 5%). This chance is in agreement with the observed
false positive rate for manual validation of high quality
spectra previously discussed. Proteins that generated
only one distinguishable peptide sequence match were
ignored. The qscore.pl program was then applied to 34
LC/MS/MS analyses of trypsin digested gel bands that
had previously been subjected to manual validation.
The criterion for a positive match was two manually
validated peptides. The analyses varied considerably,
with a range of 20 to 1784 spectra searched. Proteins
matched using the Qscore algorithm were grouped into
four categories:

1. Matches: Those proteins that were identified by
manual validation

2. Contaminants: Common contaminant proteins such
as keratin, trypsin, etc., or known contaminants from
the specific preparation that were ignored in the
manual analysis

3. Misses: Proteins that are probably present in the
sample (from the correct organism and of correct
approximate molecular weight) but not identified by
manual validation

4. False positives: All other matches

A total of 58 matches, 88 contaminants (not all unique),
8 misses, and 42 false positives were found (Figure 2).
The algorithm also eliminated one apparent match that
the analyst classified as a probable artifact. Qscores for
the matches ranged from a minimum of 0.14 to a
maximum of 467.01, and false positives ranged from
�1.1 to 2.12. The overlap in ranges was minimal, with
only 10% of matches having scores lower than the
highest scoring false positive and 17% of false positives
having scores higher than the lowest scoring match.
The sharp differentiation between true and false

positives allows for significant automation of analyses.
As we now use the program, protein identifications
with Qscores higher than 2.5 are automatically ac-
cepted, those with Qscores lower than 0 are automati-
cally rejected. Those with Qscores falling in between are
manually validated. For the data set shown, there was
an automatic acceptance of four of the eight proteins
previously missed by manual validation.

Comparison with Published Approach

A subset of the data used for the evaluation of the
Qscore algorithm was searched again using criteria
similar to those published by others [3]. Briefly, the

Figure 1. An illustration of the peptide match scoring procedure
applied to the MS/MS spectrum for the doubly charge form of the
trypsin autolytic peptide LGEHNIDVLEGNEQFINAAK matched
to (a) the correct sequence and (b) the sequence SLSH-
VAKGLVKVNGGTILCKM from the rn (sequence reversed NCBI
nr) database. Actual spectrum (upper panel) and predicted spectra
(middle panel) are multiplied peak by peak to generate a product
spectrum (lower panel), whose total ion count (TIC) is the match
score. Actual and predicted spectra are first normalized so that the
product with themselves has a TIC value of 1.
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spectra were searched without enzymatic constraint
and considering possible methionine oxidation, and
matches were only considered if their Xcorr and Delt-
aCn scores exceeded specified thresholds. The Xcorr
thresholds were based on published values [3] and are
summarized in Table 4. Spectra were also required to
have a DeltaCn score of 0.1 or higher. An exception to
the DeltaCn threshold was made if the first and second
scoring peptides were very similar, defined as having
only leucine/isoleucine, aparagine/aspartic acid, or ly-
sine/glutamine/glutamic acid substitutions. Spectra
that passed the Xcorr and DeltaCn thresholds were then
manually validated. Figure 3 shows a specific example
of a spectrum accepted under these criteria in which an
erroneous second best match would have been accepted
had the best match peptide been absent from the
database.
The same results were then analyzed using Qscore

and the results compared (Table 5, row A. The two
methods agreed on 30 of the identified proteins. For five
of those, the threshold method identification was based
on a single peptide. Other peptides matched to those

peptides did not have sufficiently high Sequest scores.
The threshold approach identified 14 proteins not
found using Qscore, each based on a single peptide.
Fully half of the additional matches were clearly false
positives as they came from organisms that could not
plausibly have been present in the samples. The Qscore
approach identified two proteins not found by the
threshold method, generated no identifiable false posi-
tives, and required less manual validation. Ignoring
single peptide matches when using the threshold ap-
proach would eliminate all of the false positive matches,
but would result in the identification of seven fewer
proteins than the Qscore approach. It is important to
note that the false positive matches were only identified
because the data was searched against a non-redundant
database, so the species of origin could be used as an
independent check on the reasonableness of the match.
With a species specific database this would not be
possible.
Even better results were obtained with the Qscore

approach using our standard search criteria that exam-
ine only tryptic cleavage and do not consider methio-
nine oxidation (Table 5 row B). Qscore and the thresh-

Figure 2. Distribution of Qscores for a set of Sequest matched
peptide MS/MS spectra. Protein matches were divided into four
groups after manual validation: (a) Proteins that were identified,
(b) known or anticipated contaminant proteins, (c) proteins that
might have been identified (from the right species and of the
correct approximate molecular weight) but weren’t, and (d) all
other proteins. Scores higher than 20 were capped at that value.
Points are scattered on the x-axis to make visualization of indi-
vidual data points easier.

Table 4. Summary of Xcorr score and tryptic cleavage criteria
used to automatically judge Sequest matches. Spectra were only
considered if their Xcorr exceeded the specified value

Precursor charge

�1 �2 �3 ��3

Non-tryptic —a 3.0 — —
Partially tryptic — 2.2 3.75 —
Fully tryptic 1.9 2.2 3.75 —

aCategories marked with — were never considered.

Figure 3. Example of a spectrum for which the second best
match would meet acceptance criteria if the best match peptide
were not in the database. The same spectrum is shown with peak
assignments for (a) the correct match, NLLHVTDTGVGM*TR (M*
� oxidized methionine, Xcorr � 3.98, deltaCn � 0.157) from
human endoplasmin and (b) the second best match, KVLHVTDT-
NKFDN (Xcorr � 3.37, deltaCn � 0.196) from Vaccinia virus
protein Hind III. The identified peptides exhibit substantial se-
quence identity even though their parent proteins are completely
unrelated.
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old method agreed on 31 of the identified proteins. The
threshold method identified an additional six proteins
and the above mentioned seven false positives. Qscore
identified five additional proteins with no identifiable
false positives. Ignoring single peptide matches when
using the threshold method would eliminate all of the
false positives, but would identify 11 fewer proteins
than the Qscore approach.
Using a constrained search also allows full advan-

tage to be taken of the speed enhancements available in
later versions of Sequest (TurboSequest version 27).
Assuming tryptic cleavage, only quantitative modifica-
tions, and using a predigested/indexed database re-
duced the time to search each spectrum about 100-fold
compared to a search using no enzymatic constraint
and considering possible oxidation of methionine. This
eliminates the problem of slow search speed that is the
most obvious objection to using such a large database.
The use of tryptic constraints was reasonable for these
samples because they were digested with trypsin that
had been modified to minimize chymotryptic activity.
Under these conditions, peptides containing non-tryptic
cleavages or oxidized methionine were generally ob-
served only in the presence of unoxidized tryptic pep-
tides from the same protein, and therefore were not
needed to identify the protein.
The additional protein matches obtained by Qscore

using the trypsin constraint result from peptides that do
not fare well in the preliminary scoring step of Sequest
but yield high Xcorr scores. When the list of possible
peptides is expanded by searching without enzymatic
constraint, these peptides are no longer in the top 500
by preliminary score, so they are never considered by
Xcorr.

Conclusions

Adopting a probabilistic scoring scheme such as
Qscore has a number of advantages. It can minimize
the need for either extensive manual match validation
or ad hoc criteria for goodness-of-match. While these
factors are not completely eliminated, as some crite-
rion for the difference between a good and bad match
will always be needed, Qscore provides an objective
measure of goodness-of-match that includes all relevant

data about the match. Qscore factors in the number and
quality of peptide matches, the total number of searches
that were carried out, the size of the matched protein,
and the size and characteristics of the database
searched. The Qscore algorithm does not use any infor-
mation specific to Sequest, so it should be applicable to
other matching approaches such as the sequence tag
approach [8].
Most importantly, Qscore makes explicit a factor of

database searching that manual validation and ad hoc
cutoff approaches tend to ignore, that search results are
not a binary yes or no answer. There are peptide
matches that are either clearly right or clearly wrong,
but there are also very many that are of intermediate
quality. Using a score cutoff and/or analyst’s judgment
to force intermediate quality results into positive or
negative categories actually interferes with the goal of
maximizing the data extracted from the system. Multi-
ple matches to a single protein, each of which falls just
below the threshold for classification as a positive
match, will be ignored even if they collectively indicate
a strong positive match. Only by incorporating all of the
data from the search, good and bad, is it possible to
extract all of the available information.
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