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We have obtained relationships for frequency shifts resulting from the interference of spectral
components for the magnitude mode Fourier transform. The approximation of a weak
perturbation of well resolved peaks has been used. Both the low- and high-pressure limits for
Fourier-transform ion cyclotron resonance (FTICR) operation have been considered. We have
found that the shifts can be either negative or positive, depending on the initial phase and/or
the choice of the time-domain interval. The magnitude of shifts generally does not exceed the
peak width. In the approximation of small perturbations the shifts produced by multiple peaks
are additive. We have compared theoretical results with experimental shifts for isotopic
clusters of multiply charged insulin. Up to 1 ppm frequency variations were experimentally
observed for the insulin 5� charge state, consistent with theoretical estimates. The peak
interference is of particular significance in the case of bio-molecular mass spectra having a
large number of peaks and covering a considerable dynamic range (i.e., relative abundance).
We conclude that the common mass measurement procedure based on the location of the
magnitude mode maxima of well resolved peaks can result in systematic mass measurement
errors. The relationships obtained provide corrections for the frequency shifts and thus
improve the mass measurement accuracy. (J Am Soc Mass Spectrom 2002, 13, 387–401) ©
2002 American Society for Mass Spectrometry

Highmass measurement accuracy is one of the key
qualities of the Fourier-Transform Ion Cyclotron
Resonance Mass Spectrometry (FTICR MS). This

quality is particularly important for bio-molecular ap-
plications, where database search specificity is directly
related to the mass measurement accuracy [1–5]. When
complex mixtures of biological nature are studied, a
single mass spectrum may carry information on hun-
dreds of different compounds [6, 7]. This situation
applies when obtaining spectra for peptide or protein
mixtures (e.g., using CE or LC separations in conjunc-
tion with the MS analysis of proteomes) [6–10], or in the
monitoring biomolecule fragmentation [11–15]. En-
hanced dynamic range is another quality highly desir-
able in such studies because of the greatly variable
abundances of ion species of interest.
In this paper we consider interferences between

peaks in FTICR mass spectra. We limit our consider-
ation only to interferences resulting from the properties

of the Fourier transform (FT), and do not consider
factors associated with the physical interactions of ions,
e.g., space charge [16–19], or phase-locking related
interactions [20–23]. We consider the FT magnitude
mode, which is commonly used for presenting mass
spectra obtained using FTICR [24, 25]. Frequency shifts
resulting from the mutual interferences of peaks are
evaluated. We disregard the effects due to noise and
consider the model case of a sum of ideal periodic
(exponentially damped) signals. The aim is to charac-
terize the limitations upon mass measurements for
dense spectra and where peaks may cover a consider-
able dynamic range, and potentially provide a basis for
the improved mass measurement accuracy.
Previous studies [26–29] have examined the effects

of noise on the measurement precision. Phase correction
may be employed for improving resolving power, using
FT absorption spectra. This approach, referred to as
phasing, has been studied for both FT NMR [30] and
FTICR MS [31, 32]. Mass shifts induced by negative
frequency peaks in linearly polarized FTICR signals
have been considered [33]. The article reports that in the
presence of ion molecule collisions the observed peak
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frequency can be shifted due to the overlapping with
the wing of the negative-frequency peak. The extended
mass calibration relation is proposed that exactly cor-
rects for the shifts and improves mass calibration accu-
racy. Frequency shifts from partial overlap of positive-
frequency peaks were also discussed.
Peak interference in the magnitude mode FTICR

spectra was studied by Comisarow et al. [34–36]. It was
shown that the magnitude-mode spectrum of overlap-
ping spectral lines depends upon the relative phase of
the corresponding time-domain signals [34]. The inten-
sities, the valley height, and the apparent position of the
two overlapping peaks were shown to depend upon the
windowing function, damping constant, and the peak
separation [35]. Frequency shifts of closely spaced
peaks were systematically examined [36]. The study
was based on the discrete Fourier transform applied to
a model time-domain signal composed of two exponen-
tially damped periodic components having equal am-
plitude. The frequency shifts were plotted as a function
of the frequency separation between the two peaks, �f,
and the ratio of the acquisition time to the relaxation
time, Ta/�. It was found that closely spaced peaks
having �f � 3/Ta are shifted in frequency. The sign and
magnitude of the shifts depend on the parameters �f,
Ta/�, the phase difference and the apodization function
[37] used. It was problematic because of the many
parameters involved to fully characterize the shifts and
develop a correction methodology.
Here we use an alternative approach for the fre-

quency shifts estimation, which is based on analytical
relationships obtained using the continuous (or mathe-
matical) Fourier transform applied to model time-do-
main signals. In this manner it is possible to character-
ize the frequency shift as a function of all essential
parameters. Our consideration starts from the case of
two components of equal intensity, same as considered
in [36], and then embraces more general cases of two or
more peaks having different intensities. Approximations
used for obtaining the relationships include assumptions
of a weak perturbation and well resolved peaks. We test
the scope of applicability of the relationships obtained by
comparison with direct calculations. The relationships
allow one to predict conditions when the frequency shifts
become significant. We carry out such an analysis and
verify these results using experimental mass spectra,
which show considerable shifts of well-resolved peaks.

Methods

The frequency shift calculation is based on a simple
model time-domain signal consisting of a sum of only
two components. We consider two classical cases. First,
an infinite time-domain length and exponential damp-
ing with a constant characteristic time are assumed.
This situation corresponds to the Lorentzian line shape
[29]. This line shape may be assumed under high-

pressure conditions, when the ICR time-domain signal
damps considerably during the acquisition period.
Next, we proceed with the opposite limit in which the
damping time is assumed to be much larger then the
acquisition period. In the frequency domain this situa-
tion results in peaks having the low-pressure line shape,
described by the sinc function [29, 38]. The frequency
corresponding to a peak maximum is defined for both
high- and low-pressure limits. This value is then com-
pared with the corresponding exact frequency, and the
frequency shift is determined. The calculations are
based on approximate relationships (see Appendix)
obtained from the mathematical definition of the Fou-
rier transform. The results obtained for the doublet are
then generalized for the case of a spectrum consisting of
multiple peaks. The relationships for the frequency
shifts are verified by exact, direct computations. Two
approaches for the direct computations have been used.
The first approach is based on the fast Fourier transform
(FFT) of the model time-domain signal, consisting of a
sum of exponentially damped periodic components. In
order to precisely locate the peak position we imple-
mented 0-filling and 3-point quadratic interpolation, as
described in [36]. Another approach is based on the
exact analytical relationships for the sine and cosine
integral Fourier transforms [39] applied to the exponen-
tially damped, phase-shifted sine wave. This approach
allows one to calculate the peak shape with the double-
precision accuracy of the computer, giving an accu-
rate and reliable standard for testing approximate
results.
Finally, we evaluate the theoretical results by com-

parison with actual FTICR mass spectra. The spectra
were obtained using the 11.5 tesla FTICR mass spec-
trometer developed and constructed at Pacific North-
west National Laboratory. The instrument is controlled
by an Odyssey (Finnigan, Bremen, Germany) data sta-
tion, and equipped with an external electrospray ion
source and an elongated cylindrical open-ended cell,
described in details elsewhere [40]. The electrospray
solvent consisted of 0.025% trifluoroacetic acid (TFA,
Sigma Inc.); 0.1% acetic acid (Aldrich); the balance is
water (nanopure 18.3 megaohm-cm resistivity). The bo-
vine insulin (Sigma, St. Louis, MO) concentration used
was 10 �g/ml. A �2 kV voltage was applied to the ESI
emitter, and charged species were injected through a 500
�m diameter heated metal capillary maintained at 160 °C.
At the exit of the metal capillary, the ion beam was
focused to the entrance of a quadrupole ion guide by an
ion funnel interface [41–43]. The ionswere accumulated in
an external storage quadrupole before transfer to the
FTICR cell. After trapping in the ICR cell, ions were
excited using a broad range stored waveform inverse
Fourier transform (SWIFT) [25] and detected at a 728
kHz acquisition frequency, for 512 Kb datapoints. Data
were analyzed using software developed specifically
for this work.
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Results

Lorentzian Line Shape

Let us first consider a simple case of a time-domain
signal s(t) consisting of two damped sinusoids, both
having unit amplitude:

s�t� � s0�t� 	 s1�t� (1)

s0�t� � sin��0t 	 �0�exp��t/�� (2)

s1�t� � sin��1t 	 �1�exp��t/�� (3)

Here �0 and �1 are angular frequencies, �0 and �1 are
phases and � is the exponential damping time constant.
The frequency �p of the power spectrum maximum for
the first component can be shifted from the exact
frequency �0 due to a perturbation from the second
component.
Consider a case where the two components are well

resolved. The separation between the two components
in terms of angular frequency can be defined as �� �
�1 � �0. For well-resolved peaks this separation must
be larger than the half-width of the Lorentzian peak,
���� �� ��1/2. Using the Lorentzian half-width [24],
��1/2�2�3/�, we arrive at the following inequality:

����� �� 3.46 (4)

The frequency shift 
� � �p � �0 due to the perturba-
tion from the second component can be estimated using
relationships eq A5 and A8 (see Appendix). Unper-
turbed sine and cosine Fourier transforms Fs(�) and
Fc(�) may be obtained by Fourier transform of the
component s0(t), eq 2:

Fs��� � 2FL
2������1 cos �0 	 �� � �0�sin�0� (5)

Fc��� � 2FL
2������1 sin �0 � �� � �0�cos �0� (6)

FL��� �
�

2�1 	 �� � �0�
2�2

(7)

The Lorentzian function FL(�) [24, 29] used here corre-
sponds to the time-domain signal having unit ampli-
tude. The relationships eq 5 and 6 are not exact, but
very accurate in our case of a narrow peak, �0 �� 1/�,
and for a frequency range close to the peak maximum,
i.e., �� � �0� 	 ��1/2. The power spectrum P(�),
obtained from eq 5 and 6 using the definition eq A1,
gives the Lorentzian line shape squared, FL

2(�). In order
to estimate the frequency shift using eq A8, we need to
find the second derivative of the unperturbed Lorent-
zian peak at its maximum, for � � �0. Using eq 7 we
obtain:

d2P
d�2

� �
�4

2
(8)

The sine and cosine transforms of the small perturba-
tion, 
Fs(�) and 
Fc(�), are similar to Fs(�) and Fc(�)
above, but the second component s1(t) is used instead of
s0(t). The condition of a narrow peak is replaced by the
assumption that the separation between the two peaks
is small compared to the unperturbed frequency, i.e.,
���� �� �0. Having all four functions, Fs(�), Fc(�), 
Fs(�)
and 
Fc(�), we can estimate the power spectrum of the
perturbation 
P(�), using the relationship eq A5 from
the Appendix:


P��� �
1
2
cos ����2

� � �0

�1

	
1


�1
2� �

���

2
�1
2 sin ��

(9)

Here �� § �1 � �0 is the initial phase difference, and

�1 § � � �1. The relationship eq 9 is an approximation
valid for conditions of small perturbations, �� � �0� �
��1, and well resolved peaks, eq 4. For eq A8 we need
the derivative of the perturbation, estimated for � � �0.
For our purpose of an approximate estimation we can
ignore terms having 
�1

2, obtaining the following ex-
pression:

d
d�


P�� � �0� � �
�2

2��
cos�� (10)

Substituting eq 8 and 10 into eq A8 we arrive at the
relationship for the frequency shift:


� � �
1

���2
cos �� (11)

This relationship may be easily generalized for the
case of two components having different amplitudes, A0
and A1. As shown in the Appendix, the frequency shift
is a linear function of a perturbation in the limit of small
perturbations considered. Thus, the frequency shift eq
10 needs to be corrected by the ratio of amplitudes Ar �
A1/A0:


� � �
Ar

���2
cos �� (12)

We see that the two exponentially damped periodic
signals interact with each other so that the frequency �p,
defined as the location of the peak’s maximum, deviates
from the exact frequency �0. Eq 12 has been obtained
for the FT power spectrum P(�), but it is also valid for
the commonly used magnitude FT spectrum [29], be-
cause taking the square root of P(�) does not change the
location of the peak’s maximum.
The perturbation arising from distant peaks de-
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creases inversely with the peak separation ��, however
distant peaks can still produce a significant perturba-
tion, particularly when the intensity ratio Ar is large (see
following discussion for the case of large Ar).
The frequency shift produced by several peaks may

be estimated as a sum of shifts resulting from pair
interferences, as obtained in the Appendix for weak
perturbations. Thus, for a set of peaks each frequency
shift can be found as 
�i � �
�ij, where 
�ij is the pair
interference shift of the peak i influenced by the peak j,
estimated from eq 12.
To obtain an appreciation of the magnitude of fre-

quency shifts we assume that the phase difference is
zero, so that cos�� � 1. Consider a frequency domain
FTICR mass spectrum having a peak at m/z 1000. The
angular frequency corresponding to the peak’s position
is �0 	 106 s�1, for a 10 T magnetic field. Let us assume
that a second peak is located at �� � 1000 s�1, which
corresponds to a mass difference of ca. 1 Da. In case of
two isotopic peaks we may assume the intensity ratio Ar

	 10, i.e., corresponding to the case of a shift of the first
isotopic peak caused by the perturbation from the
monoisotopic peak. For the exponential damping time �
� 1 s we obtain from eq 12 the frequency shift 
� �
10�2 s�1, or 0.01 ppm in terms of relative error. This
shift is very small and may be disregarded in most
practical cases. More significant shifts are produced for
shorter transient lifetimes. For example for � � 0.1 s we
obtain 
� � 1 s�1, or a mass measurement error of 1
ppm. Finally, if we assume interference of ca. 10 peaks
of same abundance, separated by �� 	 100 s�1, we
arrive at shifts of 
� 	 10 s�1, or 10 ppm (for � � 0.1 s).
The latter situation may occur in the case of a group of
overlapping isotopic clusters or for highly multiply
charged ions. We conclude that taking into account the
frequency shifts of this origin is of significance for high
accuracy FTICR mass measurements (for the mass mea-
surement accuracy of ca. 1 ppm or better) in many
practical cases.
The above estimates were obtained for an absolute

value of the frequency shift. When estimating the
combined effect from several peaks, it is necessary to
take into account the sign of each pair interference.
Figure 1 shows the frequency shifts for a pair of
Lorentzian peaks, for three different initial phase dif-
ferences ��. The frequency shift eq 12 is negative for a
positive �� in case of a zero initial phase difference. It
follows that two peaks move apart as a result of
interference when cos�� � 0, as the case in Figure 1a,
for �� � 0. If the two time-domain components are
initially out-of-phase, then the frequency shift changes
sign, and the peaks move closer (Figure 1b, �� � �).
Finally, for a phase difference of �/2 the interference is
compensated and the peaks are positioned at frequen-
cies corresponding to actual values. Parameters for the
Figure 1 were chosen so as to make frequency shifts
easily visible, and the approximation of resolved peaks
(eq 4) is generally inadequate. The phase difference
corresponding to the frequency shift compensation has

been adjusted empirically for this case to 0.61�, slightly
different from the �/2 value expected from the above
approximate consideration.
The peak intensities in Figure 1 and the valley height

between the peaks also exhibit the phase dependency.
This observation is consistent with the study on the
shape of two overlapping peaks in the magnitude FT
spectrum [35]. It was found that the intensities, the
valley height, and the apparent position of the two
overlapping peaks are a function of the windowing
function, damping constant, and the peak separation
[35].
A practical consequence of the frequency shift de-

pendence on phase is that the pair interference may be
easily compensated by a slight adjustment of the time
interval chosen for the Fourier transform. The phase
difference ��(t) of the two components changes with
time t as follows:

���t� � ��t 	 �1 � �0 (13)

In order to compensate for the peaks interference we

Figure 1. Magnitude FT of a sum of two periodical, exponen-
tially damped signals, eq 1–3, having angular frequencies �0 � 1

 105 s�1 and �1 � 1.005 
 105 s�1, and the exponential damping
time � � 0.01 s. The first component’s phase is �0 � 0. The phase
of the second component is (a) �1 � 0; (b) �1 � �, and (c) �1 �
0.61�. Dashed lines show positions of exact, unperturbed frequen-
cies. Magnitudes are normalized by the Lorentzian amplitude,
0.5�.
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can choose the starting time so that cos��(t) � 0, or

���t� � ��n 	 1/2�, n � 0, 1,. . . (14)

In practice this can be done by discarding a small initial
interval of the time-domain signal, from 0 to t0. The
length t0 of the skipped interval may be adjusted so as
to minimize the frequency shift. Assuming that the time
axis origin can be chosen arbitrarily, we can omit the
initial phases in eq 13 and express the frequency shift as
a function of t0:


� � �
Ar

���2
cos���t0� (15)

i.e., the frequency shift eq 15 is a periodic function of the
skipped time-domain interval t0. It follows that t0 value
that provides the shift compensation may be chosen to
be less then �/��. For example, for two interacting
peaks separated by �� � 100 s�1 (i.e., �f � 16 Hz) the
initial interval to be discarded is not longer then 32 ms,
which is a minor fraction of a time-domain duration
typical for FTICR measurements.
The relationship eq 15 suggests a possible approach

for revealing frequency variations due to peak interfer-
ences in real data. This can be done by plotting a peak
frequency as a function of the initial time-domain
interval t0 skipped prior to FT. In case of pair interfer-
ence a simple cosine wave will be produced. The wave
amplitude is 
�a � Ar/���2, and the period T�f � 1/�f,
where �f � ��/2�. This approach allows one to esti-
mate measurement errors resulting from peak interfer-
ence. The most accurate frequency value would be one
corresponding to zeros of the cosine wave.
This method for frequency shift compensation can

also be used to compensate for a net shift from a
number of peaks, e.g., in the case of isotopic peak
interference. In this case the function 
�(t0) is a sum of
cosines having amplitudes and periods defined by eq 15
for corresponding pair interferences. One can use the
property of the eq 15 that it averages to zero over the
interval t0 equal to the period T�f. In case of several
interfering peaks it is possible to average the shift over
interval t0 corresponding to the observed period of the
frequency oscillations. An advantage of such an empir-
ical approach is that it takes into account all interfer-
ences present in a mass spectrum under consideration.
Generally the procedure will minimize the frequency
shift only for one particular peak. However for some
cases it may be possible to chose t0 that minimizes the
error for a group of peaks, as seen from an example for
isotopic peaks considered below.
Derivation of the frequency shift relationship eq 12

involved several approximations. In order to evaluate
the importance of these approximations we have per-
formed direct calculations of the frequency shift and
compared results with the relationship eq 12, see Fig-
ures 2 and 3. The comparison shows that the approxi-

mation gives reasonably good values for frequency
shifts, but can deviate from the actual values when the
assumption of a small perturbation breaks down. The
frequency shift compensation based on the phase dif-
ference adjustment, eq 14, is quite efficient, as seen from
direct computation results for �� � �/2. In the case of
a considerable perturbation the phase difference for
exact compensation becomes different from �/2, and

Figure 2. Angular frequency shift 
�, produced by the interfer-
ence from a closely spaced peak, versus frequency difference �0 �
�1. The unperturbed angular frequency of the first peak is �0 � 106

s�1; both components have same amplitudes: A0 � A1. High-
pressure limit: Exponential damping time � � 1 s, infinite time-
domain duration. Solid curve shows results from eq 12, for �� �
0. Closed circles: �� � 0, direct computation. Open circles: �� �
�, direct computation (absolute value of 
� is plotted). The peak
half-width corresponding to the Lorentzian line shape [24] is
shown by the horizontal dotted line.

Figure 3. Angular frequency shift 
�, produced by the interfer-
ence from a closely spaced peak, versus peaks amplitude ratio
A1/A0. The unperturbed angular frequency of the first peak is
�0 � 106 s�1; the frequency difference between the peaks is
�0 � �1 � 1000 s�1. High-pressure limit: Exponential damping
time � � 1 s, infinite time-domain duration. Solid curve shows
results from eq 12, for �� � 0. Closed circles: �� � 0, direct
computation. Open circles: �� � �, direct computation (abso-
lute value of 
� is plotted). The peak half-width corresponding
to the Lorentzian line shape [24] is shown by the horizontal
dotted line.

391J Am Soc Mass Spectrom 2002, 13, 387–401 PEAK INTERFERENCE IN FTICR SPECTRA



some additional adjustment may be done, as in Figure
1c.
The unperturbed frequency used for Figures 2 and 3

(and also for Figures 5 and 6 below) is �0 � 106 s�1, the
same as used in the above estimates of frequency shifts
for 1000 m/z ions. Thus, the frequency shifts plotted
along the vertical axis can be interpreted as relative
shifts expressed in parts per million (ppm). The figures
are plotted using the angular frequency presentation,
� � 2�f, to simplify estimations using eq 12.
The horizontal dotted line in Figures 2 and 3 shows

the peak half-width, calculated for the Lorentzian line
shape [24] as ��1/2�2�3/�. The shifts calculated di-
rectly never exceeded the peak width. The magnitude
of frequency shifts versus peak width is considered
below (Discussion).

Low-Pressure Line Shape

The Lorentzian peak model considered above corre-
sponds to the high-pressure limit in FTICR measure-
ments, applicable when the damping time is much less
than the time-domain acquisition period Ta [29]:

� �� Ta (16)

In the opposite low-pressure limit, when � �� Ta, both
the peak width and the interference of peaks are de-
fined by the total time-domain length Ta rather then by
�. Thus, we can disregard the exponential damping
functions in eq 2 and 3 and assume the model time-
domain signal of the following form:

s�t� � s0�t� 	 s1�t�, 0 � t � Ta (17)

s0�t� � sin��0t 	 �0� (18)

s1�t� � sin��1t 	 �1� (19)

We follow the same steps as in the above calculations.
Unperturbed sine and cosine Fourier transforms Fs(�)
and Fc(�) have the following form:

Fs��� �
1

2��0 � ��
�sin���0 � �� � Ta 	 �0� � sin �0�

(20)

Fc��� � �
1

2��0 � ��
�cos���0 � �� � Ta 	 �0�

� cos �0� (21)

Here again we have used the approximation of a small
variation of the angular frequency around the exact
frequency, i.e., ��0 � �� �� �0, which has allowed us to
omit in eq 20 and 21 terms corresponding to the
negative frequency peak [29, 33]. The line shape in the

FT power spectrum is as follows:

P��� � FLP
2 ; FLP � 	 1

�0 � �
sin � ��0 � ��Ta

2 �	
(22)

Here FLP is the FTICR low-pressure line shape [38]
shown in Figure 4. The second derivative at the peak
maximum now is as follows:

d2P
d�2

� �
Ta
4

24
(23)

The small perturbation 
P from the second time-do-
main signal eq 19 can be found using approximation eq
A5 (Appendix). The derivative of the perturbation is as
follows:

d
d�


P��� � �
Ta
2

2��
cos��� 	

��Ta

2 �cos���Ta

2 �
(24)

Derivation of this relationship (not given) involved the
approximation of well resolved peaks, which in the
low-pressure limit corresponds to the following in-
equality [38]:

����Ta��7.58 (25)

Another approximation used is that the separation
between the two peaks is small compared to the unper-
turbed frequency, i.e., ���� �� �0.
Now we can combine eq 23 and 24 to obtain the

frequency shift of the first peak, produced by the
interference from the second peak:


� � �
12Ar

��Ta
2 cos��� 	

��Ta

2 �cos���Ta

2 � (26)

Figure 4. Low-pressure limit FTICR line shape [38] produced for
a single periodic time-domain component, having angular fre-
quency �0 � 106 s�1. Time-domain acquisition period Ta � 0.1 s.
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We have included a coefficient taking into account
the ratio of amplitudes of the time-domain compo-
nents, Ar � A1/A0, following the same logic as was
used for obtaining eq 12.
Comparing the two frequency shifts, eq 12 and 26,

we see that the absolute magnitude of shifts in both
cases is inversely proportional to the frequency differ-
ence between the interacting components, and inversely
proportional to the characteristic time squared. Both
shifts depend on the initial phase difference ��. How-
ever, the shift in eq 26 has an additional periodic
dependence on the time-domain length Ta. Thus, the
shift eq 26 can be compensated by adjustment of the
time interval Ta, so that:

��Ta

2
� ��12 	 n� , n � 0, 1, 2 . . . (27)

Alternatively, one can compensate for the shift eq 26 by
adjusting the initial phase difference ��. In practice this
can be done by the phasing procedure, similar to one
considered in the preceding section. We can replace the
phase difference �� in eq 26 by the time delay t0 �
��/��, as follows:


� � �
12Ar

��Ta
2 cos
��� t0 	

Ta

2 ��cos���Ta

2 � (28)

We can now set the delay time t0 to one of the following
values that provide the frequency shift compensation:

tn �
1

��
��n 	

1
2� �

Ta

2
(29)

The frequency shift compensation efficiency is seen
from exact calculations, Figures 5 and 6. The compen-
sation allows suppressing the shifts �100 times in the
regions where the approximation of weak perturbation
of two well-resolved peaks works well enough. Note
that frequency difference values �� used for Figure 5
are chosen so that to set the second cosine in eq 28 to 1,
in order to eliminate ��-dependent oscillations.
Comparison of the approximate relationship eq 28

and the direct computation results shows that the
approximation is reasonably good, when two peaks are
well resolved, and the perturbation is small enough for
the linear approximation eq A5 to be applicable. The
latter condition does not hold when the amplitude ratio
is above 	100 for the parameters used for Figure 6.
Note that the frequency shift magnitude for Ar above
300 approaches the peak half-width ��1/2 � 7.58/Ta

[38], shown by the horizontal dotted line. In such cases
the approximations eq 26 and 28 are invalid, and more
exact calculations should be used.
Direct computations used for Figures 2, 3, 5, and 6

are based on exact relationships for the Fourier trans-
form applied to continuous signals eq 1 and 17. How-

ever, the same results can be obtained using the discrete
FT procedure, e.g., fast Fourier transform, which is
commonly used for processing FTICR spectra. We have
tested both approaches and obtained equivalent results.
However, under conditions of very weak interference

Figure 5. Angular frequency shift 
�, produced by the interfer-
ence from a closely spaced peak, versus frequency difference �0 �
�1. The unperturbed angular frequency of the first peak is �0 � 106

s�1; initial phase difference �� � 0; both components have the
same amplitude: A0 � A1. Low-pressure limit: Time-domain
length Ta � 1 s, infinite exponential damping time. Crosses (�)
show results from eq 28, for time delay t0 � 0. Circles show direct
computation results. Closed circles: t0 � 0. Open circles: Time
delay is set to frequency shift compensation, t0 � tn, eq 29; the
absolute value of 
� is plotted. The frequency differences plotted
are: �0 � �1 � 4� n/Ta, n � 1, 2, 4, . . . 8192 (see text). The peak
half-width corresponding to the low-pressure line shape [38] is
shown by the horizontal dotted line.

Figure 6. Angular frequency shift 
�, produced by the interfer-
ence from a closely spaced peak versus peaks amplitude ratio
A1/A0. The unperturbed angular frequency of the first peak is
�0 � 106 s�1; initial phase difference �� � 0; frequency
difference between the peaks is �0 � �1 � 1000 s�1. Low-
pressure limit: Time-domain length Ta � 1 s, infinite exponen-
tial damping time. Solid curve shows results from eq 28, for
time delay t0 � 0. Circles show direct computation results.
Closed circles: t0 � 0. Open circles: Time delay is set to
frequency shift compensation, t0 � tn, eq 29; absolute value of

� is plotted. The peak half-width corresponding to the low-
pressure line shape [38] is shown by the horizontal dotted line.
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zero-filling procedure combined with interpolation
must be used for accurate frequency determination
using the discrete FT [36], which makes this approach
more complicated for this kind of analysis.
Finally let us consider another form of the relation-

ship for the frequency shift in the low-pressure case. We
can rearrange eq 28 using the trigonometric identity
2cosA cosB � cos(A � B) � cos(A � B), as follows:


� � �
6Ar

��Ta
2 �cos���t0� 	 cos���Ttot�� (30)

Here Ttot � t0 � Ta is the total acquisition time, prior to
truncating the time-domain by t0 interval. The relation-
ship eq 30 may be useful when analyzing data having a
fixed total acquisition period. One can see that the
frequency shift eq 30 includes a term cos(���Ttot) that is
independent of t0 and is defined by the total acquisition
length Ttot. Thus, frequency shifts in the low-pressure
case generally can not be compensated by averaging
over the period of a frequency variation T�f, as is the
case for high-pressure shifts, eq 15. However, this still
can be done if the acquisition length is slightly adjusted,
so that cos(���Ttot) � 0.

Comparison with Experimental Results

The above theoretical considerations were based on
idealized concepts of FTICR operation in the high- and
low-pressure limits. We also assumed that detected
signals have ideal periodic exponentially damped form
and are continuous. In contrast, real FTICR data have
non-exponential, sometimes m/z-dependent damping,
the acquisition process is discrete in time, and the
detected signal is inharmonic. The real peak shape
differs from high-pressure Lorentzian or low-pressure
sinc shape, and can be affected by various factors [29,
44, 45].
In order to test our theoretical results we have

examined the real frequency shifts observed in an
experimental mass spectrum. We have chosen a good-
quality calibration mass spectrum from our 11.5 T
FTICR instrument. The spectrum contains several
charge states of insulin, which can be used for the
DeCal calibration correction [46]. The acquisition period
Ttot � 0.721 s has been used (Figure 7). Such a relatively
short acquisition time is often used for high throughput
measurements for bio-molecular applications, e.g., in
LC/MS runs. The exponential damping time of the
time-domain signal was estimated as � � 2.1 � 0.5 s,
which is larger then the acquisition period. Formally
this situation is between the low and high-pressure
cases. To treat this case we have first directly calculated
the frequency shifts, as done above for verifying our
approximations. Then we also have applied the approx-
imation obtained above to test its usefulness for treating
experimental data.
The frequency-domain interval with 5� insulin iso-

topic cluster is shown in Figure 8a. Magnitude mode
presentation of the Fast Fourier transform, with no zero
filling, is used. To reveal details of the experimental line
shape we have zoomed the main peak no. 5, Figure 8b.
Here we have implemented zero filling of 3rd order,
i.e., the experimental transient length has been in-
creased 8 times by adding zeros prior to FFT. The peak
has half-width �f1/2 � 1.7 Hz, corresponding to a
resolving power 	90 K. This half-width is consistent
with that expected for the low-pressure line shape [38]:

�f1/2 �
3.79
�Ta

� 1.68 s�1 (31)

Figures 9 and 10 show frequencies of the isotopic peaks
versus the initial time interval t0 discarded prior to FT.
The elimination of the initial part of a time-domain is
equivalent to an additional time delay, so the parameter
t0 is referred to as the time delay in following consid-
erations. The frequency shift 
f, Hz, of the magnitude
peak relative to the unperturbed frequency is shown.
The preceding theoretical treatment used angular fre-
quencies � � 2� f, so the factor 2� must be taken into
account when comparing shifts in Figures 9, 10, and 11
with the above results.
Figure 9 shows experimental results obtained for the

spectrum from Figure 8a. All curves start at 
f � 0
because the frequencies for the whole time-domain (for
t0 � 0) are taken as the reference, or unperturbed,
frequencies. Next, Figure 10 shows the frequency shifts
calculated for the model isotopic cluster of insulin 5�,
having parameters listed in Table 1; the time-domain
period Ttot � 0.721 s has been used, corresponding to
the experimental value. The exponential damping time
used for calculations is taken from the experimental
transient shown in Figure 7, � � 2.1 s. Zero initial phases

Figure 7. Experimental FTICR time-domain signal, obtained for
a calibration mixture containing multiply charged ions of insulin.
The acquisition period is 0.721 s; 524288 data points are used. The
damping constant estimated based on the damping rate of the
transient is � � 2.1 �0.5 s.
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have been assumed for all 10 components. Each fre-
quency shift has been calculated as a sum of 9 pair
interferences. An exact frequency of each correspond-
ing component has been used as unperturbed reference
frequency.
The amplitude of frequency variations in Figures 9

and 10 reaches 0.2 Hz, or 	1.3 ppm for smaller isotopic
peaks on both sides of the isotopic cluster, peaks no. 1
and 10. The frequency beats repeat with period Tb � 38
ms. This quantity corresponds to a period of the time-
dependent phase eq 13:

T�f � 1/�f (32)

Here �f � ��/2� is the frequency interval between
isotopic peaks, �f � 26 Hz, see Figure 8a. Frequencies of
the higher-frequency (lower m/z) peaks tend to increase
during the beats, while lower-frequency peaks of the
envelope have negative shifts. In the mass scale this
corresponds to mass intervals increased on average.
Thus, calculation of the 0-charge molecular weight
corresponding to the isotopic cluster will result in

systematic mass error, when the frequencies are mea-
sured for the time-domain segment corresponding to
the frequency beats. In theory for zero initial phase
difference, if the full time-domain is used for FT (t0 � 0),
then the frequency shifts are maximized, as in Figure 10
for t0 � 0. However in real measurements the beginning
of the time-domain signal does not coincide with the
moment of in-phase motion of all ions. One reason for
this is that the experimental detection of the time-
domain signal typically starts at some time delay after
the end of excitation. Additionally, excitation of ions
generally results in non-zero phase differences, e.g.,
SWIFT excitation used in our experiments. The mass
spectrum has been acquired using 41 ms long SWIFT
excitation sequence followed by 1 ms delay before
starting data acquisition. This explains why experimen-
tal frequency shifts in Figure 9 are displaced along t0
axes, relative to theoretical curves in Figure 10.
Comparing the experimental and theoretical fre-

quency shifts in Figures 9 and 10 we can see that both
the amplitudes of beats and the time interval between
the beats are similar. We conclude that the main origin
of the experimental frequency variations is due to the
interference of the FT components, as considered above.
The direct computation of frequency shifts in Figure

Figure 8. Portions of the experimental mass spectrum showing
insulin 5� ion, in the frequency-domain magnitude mode. Am-
plitude is normalized by the most abundant isotopic peak inten-
sity. (a) Isotopic cluster of the insulin 5� ion; no zero filling is
applied. Peaks marked by numbers are used for the analysis of
frequency shifts shown in Figures 9–11. (b) Experimental peak
line shape is shown for the isotopic peak no. 5. Zero filling of the
third order is used, corresponding to the transient duration
increased by factor of 8.

Figure 9. Frequency shifts versus delay time for peaks of the
insulin 5� isotopic cluster from the experimental spectrum shown
in Figure 8(a). The delay time is defined as the length of initial
time-domain interval being rejected prior to FFT, see text. Peaks
chosen for the frequency shift analysis are no. 1, 2, 5, 9, and 10, as
labeled in the Figure 8(a).
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10 took into account both the exponential damping and
the actual length of the acquisition time, avoiding the
approximations used in the above high- and low-
pressure treatments. The three beats over the time
interval of 0.1 s have increasing amplitudes due to
decreasing time-domain length remaining after rejec-
tion of a certain time delay t0:

Ta � Ttot � t0 (33)

An alternative way to obtain the dependence 
f(t0)
would be to move both the beginning and the end of the
interval taken for FT, so that the value Ta is constant,
independent of t0, i.e., in terms of windowing [36, 37],
apply the rectangular window R(t) � 1 for t0 � t � t0 �
Ta. In this case it would be easier to apply the approx-
imate relationship eq 28 to analyze the shifts. Adjusting
t0 and Ta in eq 28 is a possible way for minimization of
the frequency error. This approach can be applied for
experimental data obtained under the low-pressure
conditions. We leave such an analysis, together with
various approaches for frequency shift corrections, for

future studies.
Experimental conditions considered here are quite

close to the low pressure limit, when one can neglect the
signal damping over the acquisition period, as seen
from the experimental transient in Figure 7. This allows
us to use the relationship eq 28 for a simple approxi-
mate estimation of the frequency shifts. Results of such
estimation are shown in Figure 11 (dashed curve),
together with the direct calculations discussed above
(solid curve). The frequency shift for each peak is
estimated as 
�i � �
�ij, where 
�ij is the frequency
shift obtained using eq 28 for the shift of the peak i
resulting from interference with the peak j, for Ttot �
0.721 s and peak parameters listed in Table 1; all 9 pair
interferences are summed. The approximate calcula-
tions do not differ much from the accurate results,
meaning that the low pressure approximation can be
used for this case which has a low ratio of the acquisi-

Figure 10. Frequency shifts versus delay time for peaks of the
insulin 5� isotopic envelope, calculated for theoretical abun-
dances of the insulin isotopic peaks, using the total time-domain
interval of 0.721 s and the exponential damping time � � 2.1 s,
same as in the experimental spectrum in Figure 8(a). Parameters of
the model isotopic cluster used for the calculation are listed in
Table 1; a zero initial phase has been assumed for all 10 peaks. The
frequency shift has been calculated as a sum of 9 pair interfer-
ences. The same isotopic peaks (no. 1, 2, 5, 9, and 10) were chosen
as in Figure 9.

Figure 11. Frequency shifts versus delay time, calculated for the
model isotopic cluster of insulin 5� ion, for peaks 1, 5, and 10. The
solid curve corresponds to the direct calculations, same as shown
in Figure 10. The dashed line shows results obtained using the
approximate relationship for the low-pressure limit, eq 28, which
disregards the transient damping over the acquisition period. Sum
of frequency shifts resulting from 9 pair interferences is taken.
Parameters of the model isotopic cluster used for the calculation
are listed in Table 1; a zero initial phase has been assumed for all
10 peaks.

Table 1. Parameters of the model isotopic cluster of insulin 5�
used for frequency shifts estimations

Peak no. Mass, Da Abundance Frequency, Hz

1 1145.92 .028 149069.9583
2 1146.12 .089 149043.9453
3 1146.32 .153 149017.9414
4 1146.52 .186 148991.9466
5 1146.72 .178 148965.9609
6 1146.92 .143 148939.9842
7 1147.12 .099 148914.0165
8 1147.32 .061 148888.0579
9 1147.52 .033 148862.1084

10 1147.72 .017 148836.1679
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tion time to the damping constant, Ta/� � 0.34. Other
characteristics of the low-pressure regime have already
been mentioned above, namely, peak widths corre-
sponding to the low-pressure relationship eq 31 and the
experimental line shapes (Figure 8b) being similar to the
theoretical low-pressure line shape, Figure 4.
The experimental frequency shifts in Figure 9 show a

small negative overall trend that is not present in the
theoretical plots in Figures 10 and 11, and that may be
due to physical factors omitted in our analysis. Slow
frequency drifts observed using FT over consecutive
time-domain segments have been studied in [47]. The
drifts have been attributed to evolution of the shape of
the coherently orbiting ion packets; a frequency drift
compensation procedure has been suggested that con-
siderably improves the resolving power [20, 47].
Here we have implemented an alternative method

for the frequency drifts visualization based on plotting
the peak frequency versus the length of the initial time
interval rejected prior to FT. The approach is similar to
the segmented FT [47], but can be used to monitor faster
frequency variations having characteristic times shorter
than the length of the moving time interval Ta. It allows
one to filter out the frequency variations due to peak
interference, as considered above. The approach can be
applied to practical, relatively short time-domain data
without sacrificing the accuracy of frequency determi-
nation, because instead of consecutive segmenting, a
moving time-domain interval can be used that is just
slightly shorter than the total time-domain duration.
Preliminary results obtained using this approach for
sample bio-molecular spectra show that the physical
frequency shifts often dominate over the shifts due to
FT peak interference. Further improvement in the
FTICR mass measurement accuracy will require consid-
eration of frequency shifts of both physical and mathe-
matical origin, which will be subject of a future work.

Discussion

The frequency shifts due to a short transient life time �,
or insufficient acquisition time Ta, can be suppressed by
adjusting experimental/measurement conditions to in-
crease both time periods. We can use relationships eq 12
and 28 to estimate the amplitude of the shifts 
�a,
defined as the absolute value of 
�, eq 12 and 28, taken
without the cosine functions. The value 
�a is inversely
proportional to the square of the effective duration of a
transient Teff:


�a �
1

����Teff
2 (34)

Here we have assumed Teff � � for the high pressure
case, eq 11, and Teff � Ta for the low pressure limit, eq
28. Both the relaxation time � and the acquisition period
Ta are related to the total FTICR measurement cycle
time. We conclude that optimal parameters would

represent a compromise between the accuracy and the
throughput of measurements.
The inverse relative error resulting from the fre-

quency shift can be defined as R� � �/
�a. This
quantity is similar to the relative mass resolving power
Rm � m/�m. Classical relationships for the FTICR
resolving power in the low and high-pressure limits are
as follows [24]:

Rm �
qB�

2�3 m

� high-pressure limit, Lorentzian peaks (35)

Rm �
0.132qBTa

m
� low pressure, sinc line shape

(36)

Here m is ion mass, q � ze is ion charge, e is elementary
charge, B is magnetic field. The mass resolving power
can be expressed in frequency terms as Rm � �/��1/2
[24], and for the relative frequency shift we obtain:

R� � Rm

��1/2

�a

(37)

Substituting for the peak half-width ��1/2 correspond-
ing expressions for high- and low-pressure limits [24],
we arrive at the following relationships:

R� � Rm

2�3�����
Ar

� high-pressure limit, Lorentzian peaks (38)

R� � Rm

0.632����Ta

Ar

� low pressure, sinc line shape (39)

Thus, the inverse frequency shifts are proportional to
the resolving power, multiplied by the characteristic
time, and we can use the well-known relationships for
the theoretical limit of Rm to estimate R�. Since Rm is
proportional to the characteristic time, eq 35 and 36, we
conclude that the frequency shifts will be reduced with
increasing mass resolving power, proportionally with
Rm
2 .
For the case of well resolved peaks considered here

we can use inequalities eq 4 and 25, arriving at the
following upper limits for the relative frequency shift:

R� �� Rm

12
Ar

� high-pressure limit, Lorentzian peaks (40)
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R� �� Rm

4.8
Ar

� low pressure, sinc line shape (41)

We see that the inverse relative frequency shifts R� are
much greater than the mass resolving power Rm, pro-
vided that the amplitude ratio Ar is not large, Ar 	 1. In
terms of absolute frequency shifts this implies that the
shift is small compared to the peak width.
Relationships eq 38–41 can be used only when the

approximation of a weak perturbation applies. The
approximation has been tested in comparisons of the
approximate relationships and direct calculations (Fig-
ures 2, 3, 5, and 6). Let us consider the plots 
� versus
Ar shown in Figures 3 and 6, for �0 � 106 s�1 and �� �
�1000 s�1. We see that for the amplitude ratio Ar larger
than 	200 the approximations eq 12 and 28 deviate
from accurate values, although the peaks are well
resolved. Thus the approximations can be inaccurate in
case of distant peaks if the intensity ratio is too high.
The limit for possible frequency shifts can be estimated
from direct calculations as follows. The relative peak
width is 3.5 ppm for the high pressure case, Figures 2
and 3 (�0 � 106 s�1 and � � 1 s). For the low pressure
case, Figures 5 and 6, the relative peak width is 7.6 ppm
(�0 � 106 s�1 and Ta � 1 s). The peak half-width is
shown by dotted line in all four figures. We can see that
the directly computed frequency shifts level at values
not exceeding the peak width, or in terms of the inverse
relative quantities:

R� � Rm (42)

This limit for the frequency shifts follows from exact
calculations (no approximations). The condition sets the
limit to both the frequency shifts and to the scope of the
approximate relationships obtained.
Finally, we can express the inverse relative shifts in

terms of physical parameters, such as ion m/z and
magnetic field B. Using the unperturbed cyclotron
frequency qB/m for �, we obtain:

R� �
e2B2�2��m/z�

Ar�m/z�3

� high-pressure limit, Lorentzian peaks (43)

R� �
e2B2Ta

2��m/z�

12Ar�m/z�3
� low pressure, sinc line shape

(44)

Here �(m/z) stands for m/z-separation of the two inter-
acting peaks. The frequency shifts increase proportion-
ally to the cubic power of m/z, which makes the correc-
tions of particular importance for high m/z ions.
Equation 43 and 44 also show that frequency shifts
improve with increasing magnetic field, 
�a/� � 1/B2,
which implies one more advantage of the high magnetic

field FTICR MS [25].
We did not consider here the use of apodization [37]

and its effect on the frequency shifts resulting from
interference of peaks. This problem was studied in [36]
using direct frequency shift calculations for model
doublets of exponentially damped signals. It was found
that maximum absolute shifts observed for apodized
signals are larger than for unapodized signals, although
for certain conditions apodization can help in the shift
compensation. A similar conclusion can be deduced
from our results if one considers that elimination of an
initial time interval used above is equivalent to apply-
ing the rectangular window R(t), as defined in [36, 37].
Thus obtained above functions 
�(t0, Ta) can be inter-
preted as shift dependence versus the rectangular apo-
dization parameters. Also, the exponentially damped
signal eq 1 can be expressed via non-damped one, eq 17,
multiplied by the exponential window function W(t) �
exp(�t/�). It follows that the high-pressure results can
be considered as frequency shifts for long undamped
signals apodized using the exponential window func-
tion.
Generally, apodization can increase the effective

transient duration by cost of increasing the relative
input of parts of the transient that have low intensity
and, consequently, low signal-to-noise ratios [29]. In
this sense apodization cannot increase the informa-
tional content of FTICR data [29]. Thus, the efficiency of
apodization in terms of frequency shifts compensation
must be considered taking into account noise present in
the signal.

Conclusion

We have obtained relationships for frequency shifts
resulting from the interference of spectral components
for magnitude mode Fourier transforms. The shifts can
have both negative and positive sign, depending on the
initial phase and/or the choice of the time-domain
interval. In the approximation of small perturbations
the shifts produced by multiple peaks are additive. The
magnitude of shifts generally does not exceed the peak
width.
Theoretical results have been compared with exper-

imental shifts obtained for a high quality mass spec-
trum for multiply charged insulin having a well re-
solved isotopic structure. In this case the frequency
shifts are very pronounced because of a combined
interference of closely positioned isotopic peaks. We
have observed up to 1 ppm frequency variations in the
real spectrum of the insulin 5� charge state, which
agrees well with theoretical estimates.
The peak interference sets the fundamental limit for

the mass measurement accuracy attainable in FTICR
MS using the common approach (i.e., based on the
location of the magnitude mode peak maxima). In other
words, for ideal mass measurement conditions there
can still be some systematic inaccuracies. The relation-
ships obtained allow one to correct for these frequency
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shifts and to further improve the mass measurement
accuracy.
Inaccuracies due to peak interference may be of

particular significance in the case of bio-molecular mass
spectra that have a large number of peaks, covering a
considerable dynamic range. Possible approaches for
shift corrections in such cases will be the subject of
subsequent studies.
An immediate consequence of our findings is that

the peak interference must be taken into account in
cases when the high mass measurement accuracy is
essential, e.g., when choosing peaks for calibration or
for defining mass values for a database search that
requires a high mass measurement accuracy. In such
cases any closely positioned, high intensity peaks will
degrade the achievable accuracy.

Appendix

Peak Frequency Shift Due to a Perturbation in the
FT Power Spectrum

The FT power spectrum P(�) may be obtained from sine
and cosine Fourier transforms, Fs(�) and Fc(�) [39], as
follows:

P��� � Fs���2 	 Fc���2 (A1)

Let us consider a frequency interval around a maximum
of a power spectrum peak. The maximum position �p

may be obtained from the following condition of the
extremum:

d
d�

P��� � 0 for � � �p (A2)

In the case of unperturbed single component signal the
position of the maximum �p coincides with the fre-
quency of the time-domain component �0. Let us intro-
duce a small perturbation, resulting from a presence of
additional components in the time-domain signal. Due
to linearity of the sine and cosine transforms we may
express the perturbed power spectrum P1(�) as follows:

P1��� � �Fs��� 	 
Fs����2 	 �Fc��� 	 
Fc����2

(A3)

Here 
Fs(�) and 
Fc(�) are sine and cosine Fourier
transforms of the small perturbation. The perturbed
spectrum may be expressed through the unperturbed
one:

P1��� � P��� 	 
P��� (A4)


P��� � 2Fs���
Fs��� 	 2Fc���
Fc��� (A5)

We have omitted two small second order terms in the

right-hand side, 
Fs(�)
2 and 
Fc(�)

2. The location of the
perturbed peak maximum can be found from the fol-
lowing extremum condition:

d
d�

P � �
d

d�

P for � � �p (A6)

Thus the perturbation shifts the maximum to the point
where the derivative of the unperturbed power spec-
trum is compensated by the derivative of the perturba-
tion 
P. In a small frequency range around �0 we can
estimate the derivative of the unperturbed peak using
the first-order term of the Taylor series expansion:

d
d�

P��� � �� � �0�
d2P
d�2

(A7)

We have omitted the zero-order term of the Taylor
series because the derivative of the unperturbed peak is
equal to 0 at the peak maximum position, see eq A2. The
second derivative of the unperturbed power spectrum
in eq A7 must be estimated for the unperturbed peak
frequency, � � �0. The first derivatives in eq A6 are
evaluated for � � �p. However, considering a smooth
behavior of the perturbation around �0, we can use the
value of the right-hand side in eq A6 for � � �0.
Combining eq A6 and A7 for � � �p, we arrive at the
sought relationship for the frequency shift caused by
the perturbation, 
� § �p� �0:


� � �
d

d�

P�d2P

d�2
��1

(A8)

This relationship may be applied for any type of per-
turbation provided that it is small enough for the
approximation used in eq A7 to be reasonable. The
second derivative of the unperturbed peak may be
found from well-known line shape expressions, such as
Lorentzian or sinc function [29]. The derivative of the
perturbation in the numerator of eq A8 may be found
using the approximation for 
P(�) in eq A5. An imme-
diate consequence of the expressions eq A5 and A8 is
that the frequency shift is a linear function of the
perturbation. In other words, the combined effect pro-
duced by a number of peaks may be estimated as a sum
of shifts produced by each of them, in the limit of small
perturbations.
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