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The molecular scanner combines protein separation using gel electrophoresis with peptide
mass fingerprinting (PMF) techniques to identify proteins in a highly automated manner.
Proteins separated in a 2-dimensional polyacrylamide gel (2-D PAGE) are digested in parallel
and transferred onto a membrane keeping their relative positions. The membrane is then
sprayed with a matrix and inserted into a matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometer, which measures a peptide mass fingerprint at
each site on the scanned grid. First, visualization of PMF data allows surveying all fingerprints
at once and provides very useful information on the presence of chemical noise. Chemical
noise is shown to be a potential source for erroneous identifications and is therefore purged
from the mass fingerprints. Then, the correlation between neighboring spectra is used to
recalibrate the peptide masses. Finally, a method that clusters peptide masses according to the
similarity of the spatial distributions of their signal intensities is presented. This method allows
discarding many of the false positives that usually go along with PMF identifications and
allows identifying many weakly expressed proteins present in the gel. (J Am Soc Mass
Spectrom 2002, 13, 221–231) © 2002 American Society for Mass Spectrometry

At present, as complete genomes for an increas-
ing number of organisms are available, atten-
tion must be focused on proteins encoded by

the genes. In contrast to the static genome, the proteome
of an organism is a highly dynamic and connected
network, and new analytical methods have to be devel-
oped in order to describe its spatial and temporal
changes and interactions [1]. An important step in this
task is the high throughput identification of proteins,
which nowadays mostly relies on efficient protein sep-
aration, mass spectrometry, protein sequence databases
as well as bioinformatics [2].
One of the most important methods for protein

separation is 2-dimensional polyacrylamide gel electro-
phoresis (2-D PAGE) [3]. This technique allows separat-
ing simultaneously thousands of proteins according to
their isoelectric point (pI) and molecular weight (Mr)
and displaying them on a 2-D map. Mass spectrometry
(MS) has become one of the most powerful techniques
to identify organic molecules. Among various applica-
tions, peptide mass fingerprinting (PMF) is frequently
used because, combined with matrix-assisted laser de-

sorption/ionization time-of-flight (MALDI-TOF) mass
spectrometry [4, 5] it provides a rapid and sensitive
method for protein identification. PMF compares the
list of experimental masses of peptides, the peptide
mass fingerprint, obtained by specific endoproteolytic
digestion of proteins with the theoretical mass values
calculated by in silico digestion of protein sequences. A
valuation score shows how well the theoretical masses
match the fingerprint [6–10]. Gras et al. [11] presented a
PMF identification algorithm which is based on a scor-
ing schema that takes into account important parame-
ters like mass accuracy, protein coverage by matching
peptides, number of missed cleavage sites, and the
deviation of the measured pI and Mr values (if avail-
able) from theoretical predictions. In order to learn the
weights of these parameters for the PMF identification
score, a set of 91 PMF test spectra was used and optimal
values of these weights were calculated by means of a
genetic algorithm. Eriksson et al. [12] investigated the
influence of different experimental parameters on sta-
tistical thresholds used to discern false matches for two
different scoring schemas. Since the experimental mass
fingerprint can match the theoretical peptide masses of
a protein by chance, there is always a certain probability
for false identifications in PMF. There is a trade-off
between sensitivity and specificity of a database search:
If the search is too restrictive, it might miss some
proteins (false negatives), and if it is not restrictive
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enough, it might find too many erroneous matches
(false positives).
The precision of mass measurements certainly influ-

ences the sensitivity and specificity of PMF identifica-
tion. Since the resolution of mass spectrometers has
improved, calibration errors are now the limiting factor.
These errors originate from uncertainties in the estima-
tion of experimental parameters such as electric field
strengths and initial ion velocities. Calibration of mass
spectra is not a trivial problem even if internal stan-
dards are used. For TOF instruments, the function that
relates the flight time with the m/z value and the
algorithm to calculate the calibration parameters have
to be carefully chosen in order to get a good precision.
Christian et al. [13] described a method that is based on
physical flight time equations [14, 15] and a simplex
method to search for the optimal instrument parame-
ters. This approach proved to be more robust than usual
curve fitting methods, especially in the mass range
where no standard masses were available.
Several partially automated methods have been pro-

posed to excise protein spots from a stained gel, to
submit the excised material to endoproteolytic diges-
tion and to extract peptides from the excised gel [16].
The peptides are then loaded onto a MALDI sample
plate and introduced into a mass spectrometer for PMF
acquisition [17]. These methods have the inconvenience
that the location of protein spots must be known prior
to excision, and that the excision precision is limited
(�1 mm). Recently, Binz et al. [18] introduced a new
and highly automated approach, dubbed the molecular
scanner, which combines 2-D PAGE separation tech-
niques with PMF methods. In this approach, the pro-
teins were digested firstly in the gel itself and then
during transfer onto a collecting polyvinylidene fluo-
ride (PVDF) membrane [19]. This membrane was
sprayed with a matrix solution (
-Cyano-4-hydroxy
cinnamic acid), and the co-crystallisation of the matrix
and the peptides allowed MALDI-MS analysis. Since
diffusion in this process was not relevant, the location
of the peptides on the PVDF membrane corresponded
to the location of their proteins in the gel [18]. The
membrane was then scanned by a MALDI-TOF mass
spectrometer. For each scanned point the acquired
peptide mass fingerprint was submitted to a PMF
identification program, which returned a list of match-
ing proteins. A threshold that was based on a statistical
analysis of erroneous identifications was used to distin-
guish false identifications by their average identifica-
tion score [2]. This method provided good results for
the most abundant proteins, but it had difficulties to
distinguish weakly expressed proteins from noise. A
graphical display allowed visualising the matching
proteins on a 2-D map.
High throughput methods can produce a large

amount of mass spectrometric data, and multidimen-
sional visualization of these data is becoming more and
more important. It allows surveying data and provides
ideas for algorithmic solutions. One example is second-

ary ion mass spectrometry (SIMS) techniques, where
natural tissues can be scanned with a spatial resolution
of less than 100 nm and the resulting spectra can be
used to visualize the 2- or 3-D distributions of second-
ary ions [20]. Stoeckli et al. [21] coated frozen thin
sections of tissue with a solution of MALDI matrix, then
dried and introduced them into a mass spectrometer,
which scanned the sample. For a human brain tissue, an
area of 8.5 mm � 8 mm was scanned with a grid
spacing of 100 �m and the position of 45 ions were
recorded and rendered as 2-D images.
In this paper, visualization of all mass fingerprints

provides important information on the presence of
chemical noise that is shown to be a potential source for
false matches in the PMF identification procedure. The
correlation of neighbouring spectra is used to recali-
brate the mass fingerprints. In order to simplify PMF
identifications, an algorithm calculates distributions of
peptide signal intensities and joins the masses with
similar distributions into clusters. These clusters repre-
sent protein spots, and many of them yield a clear PMF
identification. These methods were developed in the
framework of the molecular scanner, but we think that
they are of more general interest since they deal with
issues such as chemical noise, calibration, weak signal
detection, and how contextual information can be used
to improve results.

Methods

In this experiment, 1 mg E. coli proteins were separated
by 2-D PAGE. After in-gel digestion, the proteins were
submitted to a digestion-transfer and trapped on a
PVDF membrane (Bio-Rad, Richmond, CA). A portion
with a size of approximately 9� 13 mm (corresponding
to a pI range of 5.1–5.2 and a Mr range of 35'000–45'000
Da) was cut out from the membrane and pasted on the
sampling plate of a MALDI-TOF mass spectrometer
(Voyager Elite, Applied Biosystems, Framingham MA),
which was equipped with a 337 nm UV laser. 5 mg/mL
of 
-cyano-4-hydroxycinnamic acid (4-HCCA from
Sigma, St-Louis, MO) dissolved in 70% methanol was
sprayed on the PVDF membrane. Then the membrane
was scanned on a 48� 32 grid with a sampling distance
of 0.25 mm. 64 laser shots were fired at a frequency of 3
Hz leading to an acquisition time of about 9 h. The disc
space needed to store all the spectra was 350 MB, which
could be compressed to 3MB after peptide signal detec-
tion if just the mass fingerprints were stored. More
details of the molecular scanner experiment discussed
in this article can be found in [19].
The algorithms used for peptide signal detection and

the PMF identification program SmartIdent are de-
scribed in [11]. Since the concentration of some proteins
was low, only a few of their peptide masses were
detectable and the minimal number of matching masses
for the PMF search was set to two if deconvoluted
peptide mass lists were used and to three otherwise
(since the standard version of SmartIdent requires at
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least three matching masses, it was adapted to the
needs of this experiment). The number of missed cleav-
ages was set to one and only chemical modifications of
cysteine and methionine were considered. The mass
tolerance was set to 200 ppm. A reduced version of
Swiss-Prot (Release 39.22 of 20 June 2001) that con-
tained all 4740 proteins from E. coli was searched for
PMF identification.
Calculations were performed on a 500 MHz Pentium

processor with 128 MB RAM on Windows NT. Pro-
grams were written in C�� and Virtual Reality Mod-
eling Language (VRML 2.0, http://www.sdsc.edu/
vrml) was used for visualization. VRML is a software
standard that defines the format of data files sent over
the Internet for visualization and animation, and is
therefore supported by Internet browsers. Netscape
Communicator 4.7 was used to render the VRML data
files and m/z-software by Proteometrics to render single
spectra.

Results and Discussion

Visualization of Spectra

The data obtained in the molecular scanner experiment
consisted of a set of mass spectra: One for each scan
point. The first aim was to get an idea of how the data
were structured. Since there were 1536 spectra, it was
impossible to inspect and compare them by means of
conventional visualization tools that are only able to
render a few spectra at a time. We designed a method
that allows circumventing this problem and inspecting
all spectra at once.
Each mass detected in a spectrum can be associated

with a point in a 3-D space (Figure 1a) where the
horizontal plain corresponds to the scanned membrane
and the vertical axis to the mass value. In Figure 1b all
masses between 800 Da and 1000 Da are marked as
points revealing that some masses were detected on a
contiguous region of the scanned membrane, while
others were found only on isolated lattice sites. For the
main part of this paper we considered only masses that
could be reproducibly detected in a neighborhood,
because this provided more reliable results than work-
ing with all masses. Therefore a filter discarded a mass
from a mass fingerprint if it could not be detected in the
majority of the eight surrounding sites. All lattice sites
were treated simultaneously and this process was re-
peated until a stable configuration was obtained, i.e. the
filter can be represented as a synchronous cellular
automaton [22]. This filter is different from a filter that
selects the most intense peptide signals in an isolated
spectrum since it takes into account the spatial correla-
tion of the data. There were several low intensity
peptide signals detected on a contiguous region that
proved to be essential for the identification of a protein.
The masses that pass this filter and do not belong to
chemical noise (see below) are called contiguous masses
and are depicted in Figure 1c.

Chemical Noise

Figure 1b reveals an interesting feature: Some masses
cover the entire membrane while others are localized in
spots. Figure 1d shows that the localized peptide sig-
nals at 951.5 Da and 999.7 Da are not distinguishable
from ubiquitous masses at 804.4 Da, 820.4 Da, 838.2 Da
and 936.1 Da by means of signal intensity. Figure 4
shows that signal intensity distributions of ubiquitous
masses are flat in contrast to E. coli peptide masses. In
order to automatically find ubiquitous masses, a routine
tests how even and spread out an intensity distribution
is. Therefore it divides the membrane into 26 regions of
equal size (8 � 8) and calculates the deviation between
each region’s mean intensity I�i and the overall mean
intensity I�tot. If the sum over all regions of the relative
deviations �i�I�i � I�tot�/I�tot is smaller than a certain
threshold (	20) and if the mass is detected on more
than 72 sites, it is called ubiquitous (Table 1).
Since diffusion is limited in the molecular scanner

technique [18], and since none of the ubiquitous masses
(exception: 820.4 Da) could be associated with peptide
masses of proteins annotated in the respective portion
of the master SWISS-2DPAGE [23] gel (Swiss-Prot en-
tries: IDH_ECOLI, METK_ECOLI, PGK_ECOLI,
ACEA_ECOLI), these ubiquitous masses do not stem
from proteins of the E. coli sample. However, some of
these ubiquitous masses could be attributed to known
impurities from tryptic autolysis and various forms of
human keratin, whereas the remaining masses could
stem frommodified or unknown impurity peptides and
matrix clusters. Matrix clusters form another source of
chemical noise in the low mass range, especially if the
amount of protein to be analyzed is low [24, 25], but in
contrast to contaminating peptides their mass and in-
tensity are not reproducible and it is not sure whether
they could be detected over the entire membrane. In
addition, the ubiquitous masses could not be explained
by a formula for matrix cluster masses as described in
[24]. Whatever the source for the masses listed in Table
1 is, it would be impossible to discern them from low
intensity peptides from the E. coli sample without the
knowledge of their spatial distribution provided by the
molecular scanner data.

Calibration

Masses detected over the entire membrane could be
used to investigate the calibration of the mass spectrom-
eter. Figure 2a reveals that mass values were locally
quite stable, but varied significantly over the entire
membrane, whereas the difference between the mini-
mal and maximal measured value of the trypsin peptide
mass at 842.509 Da was about 1 Da because the mem-
brane was warped at its upper edge (high Mr values),
and because physical conditions as electric field
strength depend on the position of the sampling plate
[26]. Therefore it was impossible to assign precise mass
values useful for all spectra, and a large mass deviation
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of 700 ppm about the median values had to be taken
into account. A re-calibration of the spectra would
facilitate data handling, and we had to device a method
that does not rely on internal standard masses since
these were not used in the experiment described here.
Since we had no information about flight times and

how they had been converted into mass values, it was
not possible to apply the method described in [13] to
our problem and we had to guess a function that
calculates the corrected masses from the original
masses. Egelhofer et al. [26] used a linear relationship,
which was a reasonably good approximation to their
data and is easy to calculate with. We chose a different
approach:

Figure 1. (a) The pI axis goes from 5.1 to 5.2, whereas the Mr axis
is inverted and goes from 45'000 Da to 35'000 Da. Masses of one
spectrum (m1,. . .,m5) are schematically depicted. (b) Masses be-
tween 800 and 1000 Da. The peptide signal detection threshold
was set to the optimal value used for the identification where also
small signals are detected (signal height �2.2*noise). (c) Contigu-
ous masses between 800 and 1000 Da. Only the masses that were
detected in a contiguous, but well localized region are shown. (d)
800 Da –1000 Da portion of a spectrum from the upper right part
of the scanned membrane. Only an arbitrary selection of detected
peptide signals is labeled.

Table 1. Ubiquitous masses

Mass
(Da)a

Number
of sitesb

Alleged
originc

804.5 1320 Keratin2

820.4 761
823.4 112 Keratin1,2

829.3 139
832.5 377 Keratin2

833.4 265
834.4 451
838.3 636
839.3 315
842.5 1251 Trypsin
845.3 665
859.5 202
861.3 97 Keratin1

871.2 577 Keratin1

912.4 234
913.5 103
914.5 74
926.4 868
927.5 188
936.2 355
940.5 582
1027.2 305
1032.6 154
1045.7 366 Trypsin
1046.6 180 Keratin2

1060.3 105 Keratin1

1092.2 234
1126.7 170 Keratin1

1164.7 206
1480.0 72
1804.1 99
1994.3 93 Keratin2

2118.4 136 Keratin1

2211.4 92 Trypsin
2250.2 89

aUbiquitous mass value. Since this value is not exactly the same in all
spectra where the mass was found the median value is displayed (after
calibration, see below).
bThe number of spectra where the mass was found (maximal 1536).
Sometimes, masses were detected with a deviation of about �1 Da
from a keratin/trypsin peptide mass. This might be due to difficulties to
detect the monoisotopic mass for very small peptide signals.
cIf a mass matched a trypsin (SwissProt entry: TRYP_PIG) or a keratin
peptide, it is indicated in this field (one missed cleavage, maximal mass
deviation 200 ppm). The following human keratins produced more than
one match: 1) K1CM_HUMAN, 2) K2C1_HUMAN.
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m1/2corrected � a1m
1/2 � a2m � a3m

3/2 � a4m
2 � k (1)

which took into account additional terms which fit well
to observed data (not shown). If the calibration correc-
tion is known for a set of masses {mi, mi

corrected}, then the
parameters ak can be calculated by a robust fit [27] of eq
1.
None of the trypsin or keratin peptide masses could

be detected in all spectra and therefore they could not
be used as internal standards. However, many masses
found in one spectrum could also be detected in the
spectra of the neighboring scan points with a relatively
small mass deviation (�200 ppm), which would allow
at least a relative adjustment of masses of a spectrum
with respect to its neighbors. If there was a way to
calibrate some master spectra, the relative adjustment
could be used to calibrate the remaining spectra.
Some scanned points provided very clear PMF iden-

tifications even if large mass deviations were allowed.
The peptide masses of the identified proteins can then
be used as standard masses for the calibration of the
associated mass fingerprints. An iterative algorithm
was then used to calibrate the remaining the spectra:

1. Choose some sites with very clear identifications and
use the theoretical masses of the matching peptides
as mass standards in order to calibrate the respective
fingerprints with eq 1.

2. For each spectrum that was not calibrated in Step 1,
one of the following steps is performed: (a) If a
spectrum is found in a 3 � 3 neighborhood that has
already been calibrated in Step 1, adjust the masses

with respect to this spectrum, i.e., find the masses
that are common in both spectra (with a mass
tolerance of 200 ppm) and fit eq 1 to these values. If
several such spectra are found, take an average
adjustment, i.e., take the mean values of the param-
eters ak. (b) If no such spectra are found, take the
average adjustment with respect to all spectra in the
3 � 3 neighborhood. This step (Step 2) is performed
simultaneously for all spectra and a new, corrected
set of fingerprints is obtained that replaces the old
fingerprints.

3. Repeat Step 2 until the variations of the masses over
the membrane are small enough.

The result of this procedure is depicted in Figure 2b.
109 master spectra were selected, all in the upper part of
the membrane where the abundant proteins were
found. The remaining variation of the mass values over
the entire membrane was smaller than 200 ppm. This
method has one drawback: If no clear identifications
could be found in an experiment, the calibration pro-
vides only a relative adjustment between neighbors. In
this case the knownmasses of trypsin and keratin might
serve as standards and nevertheless allow a recalibra-
tion of the mass fingerprints.

Identification and Clustering of Masses

A peptide mass fingerprint is usually contaminated
with chemical noise and masses of fragmented or
modified peptides. In addition, the resolution of the 2-D
PAGE was limited and some spots overlapped and
abundant proteins covered weakly expressed ones. On
the sites of some weakly expressed proteins many of the
detected peptide masses stemmed from their abundant
neighbors, and the PMF identification of the spectrum
obtained at the respective sites yielded a list of matches
where the weakly expressed proteins were only found
in a lower rank. All these fake masses strongly enhance
the number of mass combinations and produce false
matches in the database search.
Figure 3 shows SmartIdent scores if untreated fin-

gerprints are submitted. Only the abundant proteins
IDH_ECOLI, 6PGD_ECOLI, METK_ECOLI, and
PGK_ECOLI were coherently detected with the highest
score, other proteins scored highest only at isolated sites
and disappeared elsewhere in the mist of false identifi-
cations. The protein ATOC_ECOLI has peptides at
804.428 Da, 820.423 Da, 842.404 Da, 1045.484 Da and
1046.603 Da, which match signals produced by chemi-
cal noise, and is therefore detected over a large part of
the membrane (Figure 3b). Its pI of 6.01 and molecular
weight of 52176.39 Da are outside the scanned portion
of the membrane and it is unlikely to be found over
such a large region. Though its score is significant it is
a false identification. ACEA_ECOLI is a protein anno-
tated in SWISS-2-D PAGE and it is identified over a
contiguous region, but not with a very significant score
(Figure 3c). Also YAGE_ECOLI is identified in the same

Figure 2. (a) Masses between 841 and 845 Da. The masses around
842.5 Da, which are detected over the entire membrane, corre-
spond to a trypsin peptide, whereas the masses around 843.5 Da
stem from isocitrate lyase (Swiss-Prot entry ACEA_ECOLI) and
are localized in the pI-Mr plane except for a few outliners. The
scattering of mass values is due to calibration errors that become
larger (0.7 Da) towards the edges of the membrane. For better
visualization, the mass values are rendered as a surface plot. (b)
As in (a), but after calibration using the algorithm described in the
text.
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region with a similar score (Figure 3d) and it is difficult
to decide whether it is a true or a false identification (a
more detailed analysis as described below discards it as
a false one). This shows that the identification score
does not provide sufficient information for weakly
expressed proteins and we have to investigate PMF
identifications in further detail.
A peptide mass fingerprint in the overlapping zone

of the spots of isocitrate dehydrogenase (IDH_ECOLI) and
s-adenosylmethionine synthetase (METK_ECOLI) was sent
to SmartIdent. The protein with the highest score was
IDH_ECOLI (score: 818034.11; 13 matching peptides)
followed by allantoate amidohydrolase (ALLC_ECOLI;
score: 51341.17; 6 matching peptides) and others with
slowly decreasing scores. METK_ECOLI (score:
25122.18; 5 matching peptides) was only found in the
sixth rank. While the score of the first protein is
significantly higher than the score of the second protein,
there is almost no difference between the second and
third rank, and it is very difficult to decide whether
ALLC_ECOLI is an erroneous match without additional
information. However, the signal intensities of the
matching masses revealed interesting properties (Fig-
ure 4).
For METK_ECOLI all peptides except the one at

1155.684 Da showed a similar intensity distribution. The
peptide at 1155.684 Da, which stemmed from the neigh-
boring protein phosphoglycerate kinase (PGK_ECOLI),
showed lower molecular weight and higher pI values in

good correspondence to other peptides of PGK_ECOLI.
The case of ALLC_ECOLI was very different because no
intensity distribution specific to this protein could be
found. The first two masses (804.419 Da and 820.413 Da)
were not localized and were part of the chemical noise
(Table 1). The next mass (951.456 Da) belonged to
METK_ECOLI, and the peptide at 1193.623 Da was
similar to the one at 1155.684 Da and also belonged to
PGK_ECOLI, whereas the remaining two masses
(1177.629 Da and 2086.002 Da) could be attributed to
IDH_ECOLI. Therefore we assume that the identifica-
tion of ALLC_ECOLI was erroneous.
This analysis identified two possible causes for

erroneous identifications: Chemical noise and over-
lapping protein spots. Chemical noise could be iden-
tified using the method described above and purged
from the mass fingerprints. In order to separate
masses from overlapping proteins, the masses that
had similar intensity distributions had to be identi-
fied and put into the same cluster. If each protein
corresponds to a particular pattern of intensity dis-
tribution, then the clusters will only contain masses
that stem from the same protein.
It is known that peptide signal intensity in

MALDI-MS has a poor shot-to-shot reproducibility due
to matrix/analyte inhomogeneity, variation in laser
power, and detector nonlinearity [28]. Normalization of
the signal intensity with internal standards improves
reproducibility and allows a quantitative analysis over

Figure 3. SmartIdent scores for calibrated but otherwise untreated spectra. (a) Highest score for each
scanned site. For a better visualization, score values were cut at 150'000. Sites are dark if one of the
proteins of Figure 5 was detected with the highest score and light otherwise. (b) Score of acetoacetate
metabolism regulatory protein atoC (ATOC_ECOLI), which produced matches with chemical noise.
Chemical noise is sometimes suppressed in spots of abundant proteins, which explains the holes in the
score landscape. (c) Score of ACEA_ECOLI. (d) Score of hypothetical protein yagE (YAGE_ECOLI).
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two orders of magnitude [29, 30], at least if the internal
standard is chemically similar to the measured peptides
and if concentrations are low enough to avoid suppres-
sion effects [31]. Kratzer et al. [32] investigated suppres-
sion effects in MALDI-MS with 4-HCCA as matrix, and
obtained a good reproducibility of the absolute signal
intensities after averaging over 50 laser shots. They
showed with a mixture of 10 peptides that up to 2.5
pmol/peptide the absolute signal intensities of all pep-
tides increased nearly linearly with increasing peptide
amount, but for higher amounts, complicated nonlinear
suppression effects came into play depending on the
presence of basic amino acids, hydrophobicity, and
peptide length. The longer, more hydrophobic and
arginine containing peptides did not decrease in signal
intensity in the measured range (100 fmol–25 pmol), but
stayed constant or slightly increased for high concen-

trations, whereas other peptides were strongly sup-
pressed. In the experiment discussed here and in simi-
lar experiments [18], the absolute signal intensity of the
contiguously detected peptides always increased to-
wards the center of a spot where peptide concentration
is highest. For the amount of E. coli sample analyzed,
the amount of protein in a spot is expected to be in the
low pmol range producing digested peptides of even
lower amount, which might well be in the linear range.
For the well-expressed, contiguously detected peptides
one can therefore assume that the signal intensity is
positively correlated with the concentration of its pro-
tein in the gel, and a similar intensity distribution of
two peptides indicates that they stem from the same
protein.
In order to quantify the similarity between intensity

distributions, a correlation measure had to be defined.

Figure 4. The vertical axis represents the peptide signal intensities (peptide signal heights) as a
function of the position on the membrane. The intensity was set to 0 if no peptide mass could be
detected at the respective position within 
100 ppm of the theoretical peptide mass. Note that the
scale varies from case to case. (a)–(e) Intensity distribution of the matching peptides of METK_ECOLI.
(f)–(k) Intensity distribution of the matching peptides of ALLC_ECOLI.
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We chose a modified version of the linear correlation
that also takes into account how strongly two distribu-
tions overlap. The correlation between two masses mi

and mj is defined by

corrij �
2nij

ni � nj

1
nij

�
k	1

nij

�hik � h�i��hjk � h�j�

�i�j
;�1 � corrij � 1

(2)

h� i �
1

nij
�

k	1

nij

hik; �i
2 �

1
nij

�
k	1

nij

�hik�h� i�
2;

where ni (nj) is the number of sites where mi (mj) is
detected, respectively, and nij is the number of sites
where both mi and mj are found. hik is the intensity of mi

at site k. The factor 2nij/(ni � nj) is 1 if mi and mj are
found on exactly the same sites and 0 if there is no
overlap at all. The sums in the above equations always
go over all sites where both masses are detected. This
correlation measure does not change if a signal is
multiplied by a constant factor and it is stable against
small local variations in absolute signal intensity as long
as hik/hjk are kept constant.
Table 2 shows the correlation value for some masses

from Figure 4. Obviously there is a strong correlation
between masses of the same protein and a negative
correlation between masses belonging to different pro-
teins.
We calculated the correlation (eq 2) between the 124

contiguous masses and performed a hierarchical cluster
analysis [33] in order to group the masses according to
their intensity distribution, which yielded 20 clusters,
11 of which contained more than two masses. Since the
intensity of a mass should be highest where the concen-
tration of protein is maximal, the summit of an intensity
distribution should indicate the center of a spot. Figure
5 shows the summits of all 124 masses colored accord-
ing to the cluster they belong to. It shows that the
summits stemming from the same cluster lie close
together unless the protein corresponding to the cluster
was found on different spots. There was no overlapping
of the centers of different clusters, and several weakly
expressed spots could be well separated from their
intense neighbors.
The algorithm described above provides a means of

clustering the contiguous peptide masses that belong to
the same spot, and the masses of the same cluster can be
submitted to the PMF identification program. Since
chemical noise was removed and all the masses
stemmed from the same protein (assuming that the spot
centers of neighboring proteins are sufficiently separat-
ed), these identifications should contain less erroneous
matches. Instead of the 1536 mass lists of all scanned
points, only the 20 mass lists of all clusters had to be
submitted to SmartIdent.
Some of these mass lists had only a few entries and

the identification score was not discriminative enough
to clearly identify a protein. In this case the contiguous
masses were not sufficient and we had to revert to the
entire set of masses. Therefore all masses in a 3 � 3
neighborhood of the cluster center that appeared more
than once were collected, and all the proteins that
matched at least two contiguous masses were compared
with these extended mass lists. If the extended mass list
clearly distinguished a protein, this identification was
accepted.

Table 2. Correlation between intensity distributions

999.558 Da 1254.742 Da 1155.684 Da 1193.623 Da 2086.002 Da

999.558 Da 1.000 0.606 �0.084 �0.078 �0.097
1254.742 Da 0.606 1.000 �0.046 �0.007 �0.074
1155.684 Da �0.084a �0.046 1.000 0.747 �0.058
1193.623 Da �0.078 �0.007 0.747 1.000 �0.036
2086.002 Da �0.097 �0.074 �0.058 �0.036 1.000

aNegative values were close to 0 because peptides with a bad linear correlation usually had little overlap. A cut-off of 0.35 was used in the clustering
algorithm.

Figure 5. Summits of the intensity distributions of all 124 masses
found on a contiguous but localized region. The intensity distri-
butions were smoothed using a median filter before the summits
were calculated. The vertical axis indicates the number of summits
found on the respective scan point. The groups that could be
identified (13 of 20) carry a label: Aldehyde dehydrogenase A
(ALDA_ECOLI), ketol-acid reductoisomerase (ILVC_ECOLI),
seryl-tRNA synthetase (SYS_ECOLI), isocitrate dehydrogenase
(IDH_ECOLI), 6-phosphogluconate dehydrogenase (6PGD_E-
COLI), isocitrate lyase (ACEA_ECOLI), s-adenosylmethionine
synthetase (METK_ECOLI), phosphoglycerate kinase (PGK_E-
COLI), enolase (ENO_ECOLI), putrescine-binding periplasmic
protein [precursor] (POTF_ECOLI), 3-oxoacyl-[acyl-carrier-pro-
tein] synthase III (FABH_ECOLI), glutathione synthetase (GSH-
B_ECOLI), phosphoserine aminotransferase (SERC_ECOLI). ID-
H_ECOLI, PGK_ECOLI and ACEA_ECOLI were found on two
spots.
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Table 3 shows PMF identifications for those clusters
that could be clearly identified. IDH_ECOLI, 6PGD_E-
COLI, METK_ECOLI, and PGK_ECOLI, the most abun-
dant proteins, had a high score, which was much higher
than the score of the protein in the second rank. It is
remarkable that many of the contiguous masses attrib-
uted to the clusters of these proteins did not match a
peptide mass, the most extreme case being PGK_ECOLI
with 22 unmatched masses. A visual examination re-
vealed that these masses really had a similar intensity
distribution, and the problem did not lie in the cluster-
ing algorithm. We see two different explanations: First,
the peptides could be highly modified, fragmented or
produced by unspecific cleavage and, second, other
proteins could be present in the same spot. In the case of
PGK_ECOLI the intensity distributions almost always
showed two spots, and it seems unlikely that another
protein could be present in the same two spots. In
addition, there was no other protein that matched a lot
of masses from the extended mass list. Therefore the
first hypothesis seems more likely. Of the 22 unmatched
masses only three could be explained by modified
peptides (one carboxyamidomethyl cysteine, one di-
methylation, and one phosphorylation), therefore un-
specific cleavage or fragmentation seems to have
caused most of these masses, but further investigation
has to be carried out in order to give a definite answer.
Other identifications were less clear, but could be

confirmed with the extended mass lists. Even if the
protein database was small since it just contained the E.
coli proteins, it is remarkable that some proteins could
be identified with only two masses. Therefore, if the
right masses are selected, a small number of masses
might be sufficient for a clear PMF identification and

we think that the algorithm presented here provides
such a good selection. The groups that could not be
identified still provided valuable information on the
presence of a spot, which may be useful for gel match-
ing.

Conclusion

The molecular scanner is a protein identification tech-
nique that is able to scan a gel without previous
knowledge of spot locations. Since the distance between
two points at which the membrane is sampled is smaller
than the average spot size, several spectra per spot are
obtained. This allows applying optimization methods
that make use of the spatial correlation present in the
data.
Visualization of all peptide mass fingerprint data

revealed that some masses are localized in spots
whereas other masses, especially in the lower mass
region, spread out over the entire membrane. These
masses were attributed to chemical noise and were
discarded from the mass fingerprints. If only isolated
spectra were available, the identification of chemical
noise masses would be very difficult and these masses
could disturb the PMF identification. Since the mem-
brane was slightly warped after it had been pasted on
the sampling plate of the spectrometer, and since the
physical parameters that define the m/z value of pep-
tides as a function of their flight time depended of the
position of the sampling plate, the overall calibration of
the spectra was bad. A few master spectra that permit-
ted very clear PMF identifications could be calibrated
using matched peptide masses as internal standards.
The calibration of the remaining spectra was strongly

Table 3. Identification results

Swiss-Prot
entrya Scoreb Rankc

Best number
of matched

massesd

Number of
contiguous

massese

Number of
matched
massesf

ALDA_ECOLI 1066.50 (59.64) 1 5 3 3 (3)
ILVC_ECOLI* 152.48 (274.84) 2 9 8 3 (15)
SYS_ECOLI 179.83 (26.83) 1 4 2 2 (3)
IDH_ECOLI 870993.90 (946.29) 1 15 17 11 (16)
6PGD_ECOLI 56913.04 (855.43) 1 9 7 5 (8)
ACEA_ECOLI* 116.18 (53.67) 1 4 2 2 (3)
METK_ECOLI 313362.28 (379.00) 1 9 12 7 (9)
PGK_ECOLI 117051.12 (4221.04) 1 11 30 8 (11)
ENO_ECOLI* 6889.07 (1941.52) 1 7 9 4 (8)
POTF_ECOLI 977.17 (0.02) 1 5 5 3 (3)
FABH_ECOLI 84.14 (4.59) 1 4 2 2 (3)
GSHB_ECOLI* 98.68 (172.43) 2 4 2 2 (5)
SERC_ECOLI 74.93 (2.15) 1 4 4 2 (3)

aSwiss-Prot entry: Swiss-Prot entry for the proteins that could be identified. Asterisks mark identifications that had to be verified by the extended
mass lists as described in the text.
bSmartIdent identification score. If the protein was found in the first rank the value in parenthesis represents the score of the second rank, on the
other hand, if the protein was not found in the first rank the value in parenthesis represents the score of the first rank.
cThe highest number of matched masses of the respective protein found among the original 1536 mass fingerprints.
dRank of the protein in the list of matching proteins sorted with respect to the score.
eNumber of contiguous masses in a cluster that were submitted to SmartIdent.
fNumber of contiguous masses of a cluster that matched peptides in the database search. The number of matching masses of the extended mass
list (see text) is indicated in parenthesis.
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improved by using the correlation between neighboring
spectra.
By selecting the masses that were detected on a

contiguous, but limited region of the membrane, the
noise in the data was reduced. The distributions of the
peptide signal intensities of these masses seemed to
reflect the concentration of the proteins they stemmed
from. Masses with similar peptide signal intensity dis-
tributions were put together in clusters, which allowed
separating masses that stemmed from overlapping pro-
teins. 20 different clusters were obtained in this way
and were submitted to the PMF identification program,
which provided clear identifications for 13 of them.
These are only some applications that are possible

with molecular scanner data. We are currently working
on a new PMF identification scoring method that auto-
matically takes into account the 2-D aspect of the data.
A very intriguing prospect for future development
comes from a new generation of mass spectrometers
such as MALDI-TOF/TOF [34] and MALDI-QqTOF
[35] machines, which could combine the MALDI scan-
ning technique with MS/MS identification. The mass
grouping method could then be used, after a first MS
scan, to efficiently select parent masses for subsequent
fragmentation analysis. A new technique [36], where
the peptides are put on a porous silicon surface allow-
ing disorption-ionization (DIOS) without a matrix di-
rectly from the surface, could also have a direct appli-
cation in the framework of the molecular scanner.
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