Skip to main content
Log in

Regression and regrowth of tumour cords following single-dose anticancer treatment

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, the evolution of a tumour cord after treatment is investigated by extensive numerical simulations on the basis of a mathematical model developed by Bertuzzi et al. (submitted). The model is formulated in cylindrical symmetry adopting the continuum approach, and takes into account the influence of oxygen level on the proliferation and death rate of cells, the volume reduction due to disgregation of dead cells, and the cell killing effects of radiation and drugs. Some extensions of the model are proposed to represent more accurately the radioresistance of hypoxic cells and the cytotoxic action of anticancer drugs. The steady state of the cord, and the cord evolution from the steady state after the delivery of a single dose of an anticancer agent, are computed for various combinations of model parameters and for different choices of the functions describing the effects of treatments. The results of the numerical computations show that, in spite of its many simplifications, the model behaviour appears to be reasonable in view of the available experimental observations. The model allows having a better insight into some complex treatment-related events, such as cell reoxygenation and repopulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. A. and S. A. Maggelakis (1990). Diffusion regulated growth characteristics of a spherical prevascular carcinoma. Bull. Math. Biol. 52, 549–582.

    Article  Google Scholar 

  • Ambrosi, D. and L. Preziosi (2002). On the closure of mass balance models for tumour growth. Math. Models Methods Appl. Sci. 12, 737–754.

    Article  MathSciNet  Google Scholar 

  • Bertuzzi, A., A. Fasano and A. Gandolfi (2000). A mathematical model for the growth of tumor cords incorporating the dynamics of a nutrient, in Free Boundary Problems: Theory and Applications II, N. Kenmochi (Ed.), Tokyo: Gakkotosho, pp. 31–46.

    Google Scholar 

  • Bertuzzi A., A. Fasano and A. Gandolfi. A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents, submitted.

  • Bertuzzi, A., A. Fasano, A. Gandolfi and D. Marangi (2002). Cell kinetics in tumour cords studied by a model with variable cell cycle length. Math. Biosci. 177 & 178, 103–125.

    Article  MathSciNet  Google Scholar 

  • Bertuzzi, A. and A. Gandolfi (2000). Cell kinetics in a tumour cord. J. Theor. Biol. 204, 587–599.

    Article  Google Scholar 

  • Bloor, M. I. G. and M. J. Wilson (1997). A mathematical model of a micrometastasis. J. Theor. Med. 1, 153–168.

    Google Scholar 

  • Bloor, M. I. G. and M. J. Wilson (1999). The non-uniform spatial development of a micrometastasis. J. Theor. Med. 2, 55–71.

    Google Scholar 

  • Boyer, M. J. and I. F. Tannock (1998). Cellular and molecular basis of chemotherapy, in The Basic Science of Oncology, I. F. Tannock and R. P. Hill (Eds), New York: McGraw-Hill, pp. 350–369.

    Google Scholar 

  • Breward, C. J. W., H. M. Byrne and C. E. Lewis (2001). Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour. Eur. J. Appl. Math. 12, 529–556.

    Article  MathSciNet  Google Scholar 

  • Breward, C. J. W., H. M. Byrne and C. E. Lewis (2002). The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45, 125–152.

    Article  MathSciNet  Google Scholar 

  • Bristow, R. G. and R. P. Hill (1998). Molecular and cellular basis of radiotherapy, in The Basic Science of Oncology, I. F. Tannock and R. P. Hill (Eds), New York: McGraw-Hill, pp. 295–321.

    Google Scholar 

  • Brown, J. M. and B. G. Siim (1996). Hypoxia-specific cytotoxins in cancer therapy. Semin. Radiat. Oncol. 6, 22–36.

    Article  Google Scholar 

  • Byrne, H. M. and M. A. J. Chaplain (1995). Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181.

    Article  Google Scholar 

  • Byrne, H. M. and M. A. J. Chaplain (1996). Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216.

    Article  Google Scholar 

  • Casciari, J. J., S. V. Sotirchos and R. M. Sutherland (1992). Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol. 151, 386–394.

    Article  Google Scholar 

  • Chapman, J. D., D. L. Dugle, A. P. Reuvers, B. E. Meeker and J. Borsa (1974). Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int. J. Radiat. Biol. 26, 383–389.

    Google Scholar 

  • Cui, S. and A. Friedman (2001). Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255, 636–677.

    Article  MathSciNet  Google Scholar 

  • Darzynkiewicz, Z., G. Juan, X. Li, W. Gorczyca, T. Murakami and F. Traganos (1997). Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27, 1–20.

    Article  Google Scholar 

  • Dyson, J., R. Villella-Bressan and G. Webb. The steady state of a maturity structured tumor cord cell population. Discrete Contin. Dynam. Systems B, to appear.

  • Falkvoll, K. H. (1990). The relationship between changes in tumour volume, tumour cell density and parenchimal cord radius in a human melanoma xenograft exposed to single dose irradiation. Acta Oncol. 29, 935–939.

    Google Scholar 

  • Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31.

    Article  Google Scholar 

  • Forrester, H. B., C. A. Vidair, N. Albright, C. C. Ling and W. C. Dewey (1999). Using computerized video time lapse for quantifying cell death of X-irradiated rat embryo cells transfected with c-myc or c-Ha-ras. Cancer Res. 59, 931–939.

    Google Scholar 

  • Greenspan, H. P. (1972). Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51, 317–340.

    MATH  Google Scholar 

  • Hirst, D. G. and J. Denekamp (1979). Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42.

    Google Scholar 

  • Hirst, D. G., J. Denekamp and B. Hobson (1982). Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas. Cell Tissue Kinet. 15, 251–261.

    Google Scholar 

  • Hirst, D. G., V. K. Hirst, B. Joiner, V. Praise and K. M. Shaffi (1991). Changes in tumour morphology with alterations in oxygen availability: further evidence for oxygen as a limiting substrate. Br. J. Cancer 64, 54–58.

    Google Scholar 

  • Holash, J., P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yankopoulos and S. J. Wiegand (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    Article  Google Scholar 

  • Holmgren, L., M. S. O’Reilly and J. Folkman (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in presence of angiogenesis suppression. Nat. Med. 1, 149–153.

    Article  Google Scholar 

  • Jackson, T. L. (2002). Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support. J. Math. Biol. 44, 201–226.

    Article  MATH  MathSciNet  Google Scholar 

  • Jackson, T. L. and H. M. Byrne (2000). A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38.

    Article  MathSciNet  Google Scholar 

  • Jain, R. K. (1999). Transport of molecules, particles and cells in solid tumors. Annu. Rev. Biomed. Eng. 1, 241–263.

    Article  Google Scholar 

  • Joulia, J. M., F. Pinguet, M. Ychou, J. Duffour, D. Topart, P. Y. Grosse, C. Astre and F. Bressolle (1997). Pharmacokinetics of 5-fluorouracil (5-FUra) in patients with metastatic colorectal cancer receiving 5-FUra bolus plus continuous infusion with high dose folinic acid (LV5FU2). Anticancer Res. 17, 2727–2730.

    Google Scholar 

  • Kyle, A. H. and A. I. Minchinton (1999). Measurement of delivery and metabolism of tirapazamine to tumour tissue using the multilayered cell culture model. Cancer Chemother. Pharmacol. 43, 213–220.

    Article  Google Scholar 

  • Lubkin, S. R. and T. Jackson (2002). Multiphase mechanics of capsule formation in tumors. J. Biomech. Eng. 124, 237–243.

    Article  Google Scholar 

  • Majno, G. and I. Joris (1995). Apoptosis, oncosis and necrosis. An overview of cell death. Am. J. Pathol. 146, 3–15.

    Google Scholar 

  • McElwain, D. L. S. and P. J. Ponzo (1977). A model for the growth of a solid tumor with non-uniform oxygen consumption. Math. Biosci. 35, 267–279.

    Article  Google Scholar 

  • Montalenti, F., G. Sena, P. Cappella and P. Ubezio (1998). Simulating cancer cell kinetics after drug treatment: application to Cisplatin on ovarian carcinoma. Phys. Rev. E 57, 5877–5887.

    Article  Google Scholar 

  • Moore, J. V., P. S. Hasleton and C. H. Buckley (1985). Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br. J. Cancer 51, 407–413.

    Google Scholar 

  • Moore, J. V., H. A. Hopkins and W. B. Looney (1980). Dynamic histology of a rat hepatoma and the response to 5-fluorouracil. Cell Tissue Kinet. 13, 53–63.

    Google Scholar 

  • Moore, J. V., H. A. Hopkins and W. B. Looney (1983). Response of cell populations in tumor cords to a single dose of cyclophosphamide or radiation. Eur. J. Cancer Clin. Oncol. 19, 73–79.

    Article  Google Scholar 

  • Moore, J. V., H. A. Hopkins and W. B. Looney (1984). Tumour-cord parameters in two rat hepatomas that differ in their radiobiological oxygenation status. Radiat. Environ. Biophys. 23, 213–222.

    Article  Google Scholar 

  • Sena, G., C. Onado, P. Cappella, F. Montalenti and P. Ubezio (1999). Measuring the complexity of cell cycle arrest and killing of drugs: kinetics of phase-specific effects induced by taxol. Cytometry 37, 113–124.

    Article  Google Scholar 

  • Smith, G. D. (1965). Numerical Solution of Partial Differential Equations, London: Oxford University Press.

    Google Scholar 

  • Tannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273.

    Google Scholar 

  • Tannock, I. F. (2001). Tumor physiology and drug resistance. Cancer Metastasis Rev. 20, 123–132.

    Article  Google Scholar 

  • Tannock, I. and A. Howes (1973). The response of viable tumor cords to a single dose of radiation. Radiat. Res. 55, 477–486.

    Google Scholar 

  • Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14, 39–69.

    Google Scholar 

  • Ward, J. P. and J. R. King (1999). Mathematical modelling of avascular-tumour growth II: modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211.

    Google Scholar 

  • Ward, J. P. and J. R. King (2003). Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math. Biosci. 181, 177–207.

    Article  MathSciNet  Google Scholar 

  • Webb, G. F. (2002). The steady state of a tumor cord cell population. J. Evolut. Equat. 2, 425–438.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bertuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertuzzi, A., D’Onofrio, A., Fasano, A. et al. Regression and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65, 903–931 (2003). https://doi.org/10.1016/S0092-8240(03)00054-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00054-5

Keywords

Navigation