Skip to main content
Log in

Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The need to study spatio-temporal chaos in a spatially extended dynamical system which exhibits not only irregular, initial-value sensitive temporal behavior but also the formation of irregular spatial patterns, has increasingly been recognized in biological science. While the temporal aspect of chaotic dynamics is usually characterized by the dominant Lyapunov exponent, the spatial aspect can be quantified by the correlation length. In this paper, using the diffusion-reaction model of population dynamics and considering the conditions of the system stability with respect to small heterogeneous perturbations, we derive an analytical formula for an ‘intrinsic length’ which appears to be in a very good agreement with the value of the correlation length of the system. Using this formula and numerical simulations, we analyze the dependence of the correlation length on the system parameters. We show that our findings may lead to a new understanding of some well-known experimental and field data as well as affect the choice of an adequate model of chaotic dynamics in biological and chemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, H. D. I. (1996). Analysis of Observed Chaotic Data, New York: Springer.

    MATH  Google Scholar 

  • Allen, J. C., W. M. Schaffer and D. Rosko (1993). Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232.

    Article  Google Scholar 

  • Bascompte, J. and R. V. Solé (1994). Spatially induced bifurcations in single-species population dynamics. J. Anim. Ecol. 63, 256–264.

    Google Scholar 

  • Bohr, T., M. H. Jensen, G. Paladin and A. Vulpiani (1998). Dynamical Systems Approach to Turbulence, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Davidson, F. (1998). Chaotic wakes and other wave-induced behavior in a system of reaction-diffusion equations. Int. J. Bifurcation Chaos 8, 1303–1313.

    Article  MATH  MathSciNet  Google Scholar 

  • Denman, K. L. (1976). Covariability of chlorophyll and temperature in the sea. Deep Sea Res. 23, 539–550.

    Google Scholar 

  • de Roos, A. M., E. McCauley and W. G. Wilson (1991). Mobility versus density-limited predator-prey dynamics on different spatial scale. Proc. R. Soc. Lond. B 246, 117–122.

    Google Scholar 

  • Durrett, R. and S. A. Levin (2000). Lessons on pattern formation from planet WATOR. J. Theor. Biol. 205, 201–214.

    Article  Google Scholar 

  • Epstein, I. R. and K. Showalter (1996). Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13132–13147.

    Google Scholar 

  • Gray, P. and S. K. Scott (1990). Chemical Oscillations and Instabilities, Oxford: Oxford University Press.

    Google Scholar 

  • Hassell, M. P., H. N. Comins and R. M. May (1991). Spatial structure and chaos in insect population dynamics. Nature 353, 255–258.

    Article  Google Scholar 

  • Hofbauer, J. and K. Sigmund (1988). The Theory of Evolution and Dynamical Systems, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Holmes, E. E., M. A. Lewis, J. E. Banks and R. R. Veit (1994). Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29.

    Article  Google Scholar 

  • Jansen, V. A. A. (1995). Regulation of predator-prey systems through spatial interactions: a possible solution to the paradox of enrichment. Oikos 74, 384–390.

    Google Scholar 

  • Kaneko, K. (1989). Spatiotemporal chaos in one-and two-dimensional coupled map lattices. Physica D 37, 60–82.

    Article  MathSciNet  Google Scholar 

  • Kopell, N. and L. N. Howard (1973). Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. 52, 291–328.

    MathSciNet  MATH  Google Scholar 

  • Kuramoto, Y. (1984). Chemical Oscillations, Waves and Turbulence, Berlin: Springer.

    MATH  Google Scholar 

  • Levin, S. A. (1990). Physical and biological scales and the modelling of predator-prey interactions in large marine ecosystems, in Large Marine Ecosystems: Patterns, Processes and Yields, K. Sherman, L. M. Alexander and B. D. Gold (Eds), Washington: AAAS, pp. 179–187.

    Google Scholar 

  • Lorenz, E. N. (1964). The problem of deducing the climate from the governing equations. Tellus 16, 1–11.

    Article  MathSciNet  Google Scholar 

  • Luckinbill, L. S. (1974). The effects of space and enrichment on a predator-prey system. Ecology 55, 1142–1147.

    Article  Google Scholar 

  • Malchow, H. and S. V. Petrovskii (2002). Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Math. Comput. Modelling 36, 307–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Malchow, H., S. V. Petrovskii and A. B. Medvinsky (2002). Numerical study of plankton-fish dynamics in a spatially structured and noisy environment. Ecol. Modelling 149, 247–255.

    Article  Google Scholar 

  • Marsden, J. E. and M. McCracken (1976). The Hopf Bifurcation and Its Applications, Berlin: Springer.

    MATH  Google Scholar 

  • May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature 261, 459–467.

    Article  Google Scholar 

  • May, R. M. and W. Leonard (1975). Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Medvinsky, A. B., S. V. Petrovskii, D. A. Tikhonov, I. A. Tikhonova, G. R. Ivanitsky, E. Venturino and H. Malchow (2001). Biological factors underlying regularity and chaos in aquatic ecosystems: simple models of complex dynamics. J. Biosci. 26, 77–108.

    Google Scholar 

  • Merkin, J. H., V. Petrov, S. K. Scott and K. Showalter (1996). Wave-induced chemical chaos. Phys. Rev. Lett. 76, 546–549.

    Article  Google Scholar 

  • Murray, J. D. (1989). Mathematical Biology, Berlin: Springer.

    MATH  Google Scholar 

  • Nayfeh, A. H. and B. Balachandran (1995). Applied Nonlinear Dynamics, New York: Wiley.

    MATH  Google Scholar 

  • Neubert, M. G., H. Caswell and J. D. Murray (2002). Transient dynamics and pattern formation: reactivity is necessary for Turing instabilities. Math. Biosci. 175, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Nihoul, J. C. J. (Ed.) (1980). Marine Turbulence, Elsevier Oceanography Series 28, Amsterdam: Elsevier.

    Google Scholar 

  • Nisbet, R. M., E. McCauley, A. M. de Roos, W. W. Murdoch and W. S. C. Gurney (1991). Population dynamics and element recycling in an aquatic plant-herbivore system. Theor. Popul. Biol. 40, 125–147.

    Article  MATH  Google Scholar 

  • Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models, Berlin: Springer.

    MATH  Google Scholar 

  • Okubo, A. (1986). Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys. 22, 1–94.

    Article  Google Scholar 

  • Pascual, M. (1993). Diffusion-induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. B 251, 1–7.

    Google Scholar 

  • Pascual, M. and S. A. Levin (1999). From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology 80, 2225–2236.

    Article  Google Scholar 

  • Pearson, J. E. (1993). Complex patterns in simple systems. Science 261, 189–192.

    Google Scholar 

  • Petrovskii, S. V. and H. Malchow (1999). A minimal model of pattern formation in a prey-predator system. Math. Comput. Modelling 29, 49–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Petrovskii, S. V. and H. Malchow (2001a). Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol. 59, 157–174.

    Article  MATH  Google Scholar 

  • Petrovskii, S. V. and H. Malchow (2001b). Spatio-temporal chaos in an ecological community as a response to unfavourable environmental changes. Adv. Complex Syst. 4, 227–249.

    Article  MathSciNet  MATH  Google Scholar 

  • Petrovskii, S. V., K. Kawasaki, F. Takasu and N. Shigesada (2001). Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species. Japan. J. Ind. Appl. Math. 18, 459–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Platt, T. (1972). Local phytoplankton abundance and turbulence. Deep Sea Res. 19, 183–187.

    Google Scholar 

  • Powell, T. M., P. J. Richerson, T. M. Dillon, B. A. Agee, B. J. Dozier, D. A. Godden and L. O. Myrup (1975). Spatial scales of current speed and phytoplankton biomass fluctuations in Lake Tahoe. Science 189, 1088–1090.

    Google Scholar 

  • Rai, V. and W. M. Schaffer (2001). Chaos in ecology. Chaos Solitons Fractals 12, 197–203.

    Article  MathSciNet  MATH  Google Scholar 

  • Rand, D. A. and H. B. Wilson (1995). Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially extended ecosystems. Proc. R. Soc. Lond. B 259, 111–117.

    Google Scholar 

  • Rasmussen, K. E., W. Mazin, E. Mosekilde, G. Dewel and P. Borckmans (1996). Wave-splitting in the bistable Gray-Scott model. Int. J. Bifurcations Chaos 6, 1077–1092.

    Article  MATH  Google Scholar 

  • Ranta, E., V. Kaitala and P. Lundberg (1997). The spatial dimension in population fluctuations. Science 278, 1621–1623.

    Article  Google Scholar 

  • Sherratt, J. A. (2001). Periodic travelling waves in cyclic predator-prey systems. Ecol. Lett. 4, 30–37.

    Article  Google Scholar 

  • Sherratt, J. A., M. A. Lewis and A. C. Fowler (1995). Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA 92, 2524–2528.

    Article  MATH  Google Scholar 

  • Sherratt, J. A., B. T. Eagan and M. A. Lewis (1997). Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality? Philos. Trans. R. Soc. Lond. B 352, 21–38.

    Article  Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika 38, 196–218.

    Article  MATH  MathSciNet  Google Scholar 

  • Solé, R. V. and J. Bascompte (1995). Measuring chaos from spatial information. J. Theor. Biol. 175, 139–147.

    Article  Google Scholar 

  • Truscott, J. E. and J. Brindley (1994). Ocean plankton populations as excitable media. Bull. Math. Biol. 56, 981–998.

    Article  MATH  Google Scholar 

  • Weber, L. H., S. Z. El-Sayed and I. Hampton (1986). The variance spectra of phytoplankton, krill and water temperature in the Antarctic ocean south of Africa. Deep Sea Res. 33, 1327–1343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Petrovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovskii, S., Li, BL. & Malchow, H. Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Bull. Math. Biol. 65, 425–446 (2003). https://doi.org/10.1016/S0092-8240(03)00004-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00004-1

Keywords

Navigation