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A library-search procedure that identifies structural features of an unknown compound from
its electron-ionization mass spectrum is described. Like other methods, this procedure first
retrieves library compounds whose spectra are most similar to the spectrum of an unknown
compound. [t then deduces structural features of the unknown compound from the chemical
structures of the retrievals. Unlike other methods, the significance of each retrieved spectrum
is weighted according to its similarity to the spectrum of the unknown compound. Also, a
" peaks-in-common’’ screening step serves to reduce search times and an optimized dot
product function provides the match factor. If the molecular weight of the unknown
compound is provided, the identification of certain substructures can be improved by
including ““neutral loss’’ peaks. Correlations between the presence of a substructure in a test
compound and its presence among library retrievals were derived from the results of
searching the NIST/EPA/NIH reference library with a 7891 compound test set. These
correlations allow the estimation of probabilities of substructure occurrence and absence in
an unknown compound from the results of a library search. This method may be viewed as
an optimization of the ““K-nearest neighbor” method of Isenhour and co-workers, with
improvements that arise from spectrum screening, peak scaling, an optimal distance mea-
sure, a relative-distance weighting scheme, and a larger reference library. (] Am Soc Mass

Spectrom 1995, 6, 644-655)

ass spectral library searching is commonly
Memployed to assist in the task of identifica-
tion of unknown compounds. Widely avail-
able “identification” methods provide a “hit list”” of
compounds in a reference library whose spectra most
closely match a submitted unknown spectrum [1-3].
These methods are designed to identify compounds
represented in the library that might have generated
the submitted spectrum, allowing for instrument-
dependent variations of mass spectra. However, when
the unknown compound is not in the library, these
methods are less useful. Although nonidentical, but
structurally similar compounds can appear in the hit
list, most identification systems are not optimized to
find them, and deriving reliable substructural informa-
tion is not straightforward. In many cases, no similar
spectra are retrieved, which indicates to the user only
that the unknown compound is not in the library.
“Interpretive” library search systems [2-5], on the
other hand, are designed to produce structural infor-
mation for compounds not represented in the reference
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library. These methods typically employ a predefined
set of spectral “features” designed to correlate with
the presence of chemical substructures. Searching iden-
tifies the library spectra that have features most similar
to those of the unknown spectrum. The frequency of
occurrence of a substructure in the hit list is then used
to estimate the probability that it is present in the
unknown compound.

The identification of a substructure from a given
mass spectrum can be difficult or even impossible,
because its effect will depend on relative rates of
competitive processes that depend, in turn, on other
structural features of the molecule. Even for substruc-
tures that commonly produce characteristic patterns,
actual “signatures” can be highly variable. Library
searching deals with this variability by comparison of
the submitted unknown spectrum to spectra of refer-
ence compounds that contain each substructure in a
variety of chemical “environments.” Substructures
embedded in similar environments have an increased
chance of having spectral features in common. Another
virtue of the library search procedures in common use
is that because they are derivatives of “K-nearest
neighbor” methods, which have been shown to be
especially effective for chemical classification [6-8].

Two well-developed interpretive search systems are
SISCOM* [9,10] and STIRS {11-13]. The reference
compounds that produce library spectra most similar
to an unknown spectrum, as measured by predefined
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features, comprise the hit list. Structures of these com-
pounds are then analyzed to deduce whether a struc-
tural feature is present or, in a preliminary report of
SISCOM extensions [14], absent in the unknown com-
pound.

At the present time, a large proportion of modern
mass spectrometer data systems allow library search-
ing for compound identification. In this work, we de-
scribe and analyze an interpretive search system well
suited for use alongside these systems. Not only does
this system use algorithms and libraries similar to
those commonly used for compound identification, but
it is relatively easy to implement and relies on match
factors already familiar to many users. It also can
generate readily understood substructure present and
absent probabilities for a wide range of structural
groups. These probabilities may be directly used by
the analyst for structure elucidation or may serve as
input to automated structure generators [15, 16].

Background

It is well known that certain chemical substructures
often reveal themselves as characteristic “‘signatures”
in electron-ionization mass spectra. However, owing to
the complex and often subtle relationships between the
structure of a compound and its mass spectrum, the
actual effect of a substructure on a spectrum can be
hard to predict. As a consequence, the prediction of a
complete spectrum from a structure is not generally
possible, and large libraries of reference spectra are in
common use. Gasteiger et al. [17] have, however, re-
ported some recent progress in the prediction of mass
spectra.

The reverse process, that of deducing the structure
of a compound from its spectrum, is even more diffi-
cult. In fact, because many structural features have no
clear signature, spectra for most compounds do not
contain sufficient information for this purpose. How-
ever, mass spectra do commonly contain enough infor-
mation to identify certain structural features with high
reliability. A quantitative measure of the ability of a
system to perceive a substructure is often expressed in
terms of “‘recall.” Recall is the percent of all com-
pounds that contain a given substructure for which
that substructure can be identified above a prespeci-
fied level of confidence. Recall depends on both the
uniqueness of the ‘’signature” of the substructure and
the capability of the analysis system to perceive it.

Library searching has been shown to be an effective
method to derive structural information from mass
spectra. It avoids the need for a complex set of rules
that relate spectra to substructures by, instead, com-
parison of the input spectrum to spectra in a compre-
hensive library that contain these substructures in a
diversity of chemical surroundings. If characteristic
features of a substructure in the unknown compound
are revealed both in its spectrum and in some library
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spectra, search systems are responsible for finding these
library spectra and placing them prominently in the hit
list.

SISCOM, developed by Henneberg and co-workers
(9,10], first eliminates C-13 isotopic peaks and other
less significant peaks within peak series, and then
builds an initial hit list of library spectra that have the
most features in common with the unknown spectrum.
Peak intensities are then used to order the hit list.
Although this system was initially designed to find
similar compounds, it was later modified to identify
identical compounds also [10]. Details of SISCOM al-
gorithms and performance figures have not been pub-
lished.

STIRS has been described in a series of publications
and dissertations from McLafferty’s group at Cornell
[11-13,18]. A variety of match factors are computed
for each library and unknown spectrum pair and a
separate hit list is maintained for each factor. Three
general classes of spectral data are used for defining
match factors—peak series, characteristic ions, and
neutral losses. The use of the neutral losses requires
advance knowledge of the molecular weight of the
unknown compound. Following the creation of hit
lists, a single match factor is derived from a linear
combination of individual match factors and then used
to build a single overall hit list. The number of com-
pounds that contain each substructure among the top
15 retrievals are then counted. If, for any substructure,
it is sufficiently unlikely that its number of occurrences
in the hit list could have arisen by chance, then it is
reported as being present in the unknown. No screen-
ing method has been reported for STIRS, and match
factors are used only to find the top 15 retrievals. Also,
substructure-absent predictions are not made. Consid-
erable effort has been devoted to finding a comprehen-
sive set of substructures for use by STIRS.

The K-nearest neighbor (KNN) method, as imple-
mented by Isenhour and co-workers [7,8], uses Eu-
clidean distance to identify the “K" library spectra
closest to the unknown spectrum. When a prespecified
number of these library compounds contain (or do not
contain) a substructure, the substructure is indicated
as being present (or not present) in the unknown
compound.

Curry and Rumelhart [19] recently described a
promising new approach that uses library spectra to
train an artificial neural network (MSNet). Results were
comparable in accuracy to STIRS.

In a comparative study, Varmuza and co-workers
[20] tested the ability of a number of different sub-
structure identification methods to classify compounds
from their mass spectra. It was concluded that for most
substructures, mass spectrometry was not capable of
providing reliable yes/no classifications, and that li-
brary searching was necessarily the best method for
this purpose. These studies make it clear that if highly
reliable identifications are required, classification sys-
tems must allow a ““no-decision” result.
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Method

Reference and Test Spectra

Spectra for the 61,500 compounds represented by
chemical structures in the 1992 version of the
NIST/EPA /NIH Database [21] served as the reference
library. The test set was composed of a single spec-
trum for each of the 7891 compounds with structures
in the NIST Selected Replicates Library. These test
compounds are generally good quality, alternative
spectra that broadly represent compounds of general
interest. Retrievals of compounds identical to test com-
pounds, as identified by matching Chemical Abstracts
Service registry numbers, were omitted from hit lists.

Computer System

All library searching and analysis was done on an
MS-DOS personal computer equipped with a 66-MHz
Intel 486DX2 processor with 16-MB RAM. A modified
PC version of the NIST/EPA/NIH Database [21],
written in C, was used to search. The average search
time was approximately 10 s.

Search System

The analysis of an input mass spectrum is done in
three stages: screening, match factor calculation, and
substructure probability estimation.

Screening. In principle, a library search should in-
volve the direct comparison of the submitted unknown
spectrum to each spectrum in the library. However,
efficiency can be greatly increased by first rapid identi-
fication of a subset of library spectra with some simi-
larity to the unknown spectrum and then comparison
of only the spectra in this subset to the submitted
spectrum. For this purpose, the present system uses a
modified “ranked peaks-in-common’’ procedure to
identify library spectra that have the most abundant
peaks in common with the unknown. The INCOS iden-
tification search system [22] employs a similar proce-
dure, called the “presearch.” Library spectra that have
the largest numbers of major peaks in common with
the unknown spectrum, consistent with a specified
minimum number of spectra to be retrieved, are rapidly
identified in presorted files. The present system merges
four subsets of screened spectra, and each has a dif-
ferent set of the following three requirements: (a) num-
ber of largest peaks in the unknown spectrum, (b)
number of largest peaks in the library spectrum, and
(¢) minimum number of library retrievals. Specifically,
the sets of these requirements (a, b, ¢) for each of these
four subsets of screened spectra are: (1) 8,15,40; (2)
14,14,50; (3) 6,6,20; (4) 8,8,50. These values were
derived for compound identification searching; no at-
tempt was made to optimize them for the present
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substructure identification searching. It was found,
however, that fine details had no effect on perfor-
mance. These requirements led to an average of about
450 spectra per search. Overall identification accuracy
was not measurably improved by increasing this num-
ber by a factor of 2.

When neutral losses were used to search, screening
employed up to five of the largest loss peaks within
m/z 72 of the molecular ion and abundances greater
than 3% of the base peak. These values were found to
be near optimal in trial runs, although further opti-
mization might be possible. For a library loss peak to
match a corresponding peak in the unknown spec-
trum, their abundances were required to be within a
factor of 5 of each other.

Match factors. The normalized dot product of un-
known and library spectra provides the basic measure
of spectral similarity:

(T Al2412)

MF = 1000 ————
AL AL

Sums are over all peaks (mass-to-charge ratio values),
and Ay and A, are abundances for unknown (test)
spectra and library spectra, respectively. The 25 best
matching library spectra, ordered by decreasing match
factor, comprise the hit list. Tests showed that the
square-root abundance scaling used in this expression
was near optimal, similar to that found in earlier
compound identification studies [3]. However, unlike
the earlier studies, no improvement in performance
was gained by weighting peaks by their mass-to-charge
ratio values. Substructure identification, unlike com-
pound identification, makes effective use of both low
and high mass peaks [23].

Probability estimator. Match factors of retrievals rela-
tive to the highest match factor in the hit list are the
principal quantities used to estimate probabilities of
substructure occurrence. The weight of a retrieval of
rank r (rth member of a hit list) is

2(MF(r)— MF(]))/?S/N

where MF(r) is the match factor of the retrieval of rank
r and N is the hit list normalization factor,

25
Z 2(MF(r)— MF(1))/75

r=1

This functional form and the scaling factor of 75 were
found to be optimal by trial and error. The overall
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weight of substructure s is W,, the fractional weight of
retrievals that contain the substructure:

Zh 2(MF(r)—MF(1))/75
as §

s N

Correlations between W, and substructure occurrence
in test compounds were derived from search results.

Separate tests showed that a similar scheme in which
retrievals were weighted by their absolute match fac-
tors was not as effective as the present relative value
weighting scheme. Also, as demonstrated later, assign-
ing an equal weight to each of a fixed number of top
hits was less effective than the present scheme.

Substructure Definition

The term “‘substructure” is broadly defined here to
include any feature that can be derived from a molecu-
lar structure. Most substructures used here were taken
from two lists developed for use with STIRS. One of
these lists consisted of substructures that generally
correspond to simple functional groups [12]. However,
these substructures were derived from a linear struc-
tural representation, so special care had to be taken to
reproduce the original substructure definitions. The
subset of these substructures used in earlier compara-
tive studies [8] also is used here. The most common
substructures in a later, more comprehensive list [13]
are also examined in the present work.

Molecular Formula and Derived Quantities

In some cases, searching also can provide an estimate
of the molecular formula as well as two derived val-
ues: the nominal molecular weight and the number of
rings plus double bonds. To accomplish this, W, val-
ues are first computed for each formula, each molecu-
lar weight, and each ring plus double bond value
found among the library retrievals. For each of these
three properties, the result with the highest W, value
was then selected and marked as being correct or
incorrect. From these results, the relationship between
these highest W, values and the probability that each
of these properties was correct was derived.

Neutral Losses

Searches were done with and without the use of neu-
tral loss peaks (mass-to-charge ratio measured relative
to the molecular ion). Neutral loss peaks between the
molecular ion and one-half of the molecular ion were
employed in match factor calculations. For match fac-
tor computation, these peaks are simply added to the
conventional peaks. Tests also were done by using
only neutral loss peaks, but results were uniformly less
accurate.
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Substructure Present Probabilities

For convenience, W, values, which range from 0 to 1,
were divided into 26 segments, and each segment was
given a sequence number, w, from 0 to 25. The first
segment, w = 0, corresponds to W, = 0, whereas the
others were equally divided among nonzero W, val-
ues, each spanning a 0.04 range. The number of test
compounds that contain substructure s that produce
W, values in segment w is represented as N,"(w). The
corresponding number of test compounds that do not
contain the substructure is N, (w). For any w value,
these results can be converted to conventional recall,
RC (percent of test compounds containing substructure
s that have been identified as such), and percent cor-
rect, %C (or reliability [24)), pairs, as follows:

RC(w) 100Z% o N () (1)
YT TEBE NF(D
1002, N (i)
%C(w) = (2)

ORI 0)

While these averaged (integral) measures are appropri-
ate for comparison of and documentation of perfor-
mance, differential probabilities are better expressions
of the results of a single search. These can be expressed
in relative or absolute terms:

R* () = N (w) 3)
YT NC(w)
NYX(w) 1
P (w) = - (4)

N (w) + N_.(w)  1+R (w)

where R*(w) and P*(w) are relative and absolute
probabilities that a substructure is present at an ob-
served w value. These probabilities can show signifi-
cant statistical variations. Therefore, in actual probabil-
ity calculations, least-squares fits to N, (w) and N, (w)
are used in place of their original values.

Substructure Absent Probabilities

A small W, value will generally produce a small
P*(w) value, which reflects a low probability that the
substructure is present in the unknown compound. In
this case, it is convenient to express probabilities in
terms of substructure absence, P"=1—- P*, or R™=
1/R*. Corresponding RC and %C values may be de-
rived from egs 1 and 2, respectively, by interchanging
+ and — superscripts and summing from i =0 to
i = w. Of course, in this context recall refers to those
compounds that do not contain the specified substruc-
ture.

A problem, however, remains with reporting sub-
structure absent information. Uncommon substruc-
tures will often show high probabilities of being absent
that simply reflect their rarity. If, for instance, 5% of
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the compounds in the library contain fluorine, there is
an implicit 95% probability, before searching, that
fluorine is absent. Therefore, a 95% predicted probabil-
ity of fluorine being absent would simply imply that
the search provided no additional information. This
issue is discussed in detail by Curry [25]. To avoid
this problem, the following corrected relative substruc-
ture-absent probabilities are used:

Rc_orr = R_(Npresent/Nabsenl)

where Nyeceny and Nypeene are, respectively, numbers
of compounds in the reference library that contain and
do not contain the substructure. This new value re-
flects the change in confidence, caused by library
searching, that the substructure is not in the unknown.

An examination of false negatives (a substructure in
the unknown is predicted as being absent), showed
that they often arose from searches in which no similar
spectra were found. Further examination showed a
strong inverse correlation between the highest match
factor in a hit list and the likelihood of such a false
negative prediction. This is shown in Figure 1 for cases
where W, = 0. Incorporation of these trends into prob-
abilities of substructure absence can significantly re-
duce false positives. For instance, for substructure-
absent predictions based on W, = 0, such a correction
will decrease the number of erroneous predictions
(false negatives) by about two-thirds with only a 15%
reduction in recall.

A related, but much weaker, correlation between
false positives and match factors for the best-matching
retrieval also was detected.
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Figure 1. False negatives versus highest match factor when
substructure weight is 0. Percent of trials in which a substructure
weight (W,) was equal to zero (no substructures among re-
trievals), but where the substructure was actually present in the
test compound (filled circles). Values are reported at 25 unit
intervals and lines are shown only for clarity. Also shown is
the corresponding distribution of highest match factors for all
substructure-absent identifications (open circles). All substruc-
tures in Table 3 were used along with a number of others from
refs 12 and 13.
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Results

Table 1 shows results for substructures employed in
previous comparative STIRS and KNN studies [8].
Comparisons of results of the present system with
STIRS are given in columns labeled “With MW.”” STIRS
and these results both use neutral loss peaks and
therefore require the molecular weight of the unknown
compound as input. Prior KNN studies did not use
neutral losses, so neither did the comparisons shown
here (""Without MW" columns). All results are given
as the percentage of correct identifications at the level
of recall given in the earlier studies. By a "‘correct
identification,” we mean a search result in which a
substructure present in the test compound produces a
W, value above some prespecified minimum. These
minimum W, values are fixed as needed to achieve the
desired recall value. A compound in which the sub-
structure is absent, but whose search produces a W,
value above the minimum is a “false positive.” The
percent of all retrievals having W, above the specified
minimum is, therefore, the percent of correct identifi-
cations (%C or reliability [24]). Note that recall per-
tains only to searches in which substructure s is
present in the test compound; it represents the percent
of these searches in which substructure s is correctly
identified as being present.

Overall results of the present method, shown in
columns labeled “Dot full” (dot product algorithm,
full library) are dramatically better than these earlier
results (columns STIRS and KNN). To find the origin
of these differences, searches were done by using a
variety of modified algorithms and library sizes (Table
1).

Since the earlier STIRS and KNN studies used a
reference library with slightly more than one-quarter
of the compounds in the present library, most results
given in Table 1 were obtained by using a reduced
library that was generated by random rejection of
three-quarters of all retrievals. This simulates a library
that contains 17% fewer spectra than used in the
earlier studies. Also, earlier studies used 500 test spec-
tra, less than one-fifteenth as many as employed in the
present study. Significantly larger statistical deviations
are therefore expected in the earlier results, especially
for the less common substructures.

When the reduced library (Dot, in the “With MW"
section of Table 1) is used, identification accuracies of
the present algorithm are comparable to STIRS. The
slightly higher percent correct value of the present
system (85.8% versus 82.8%) is probably not signifi-
cant given the differences in library and test spectra.
The principal source of the improved performance of
the present system is clearly the fourfold larger library
size. This leads to a threefold reduction in false identi-
fications.

The present system, however, performs far better
than the earlier KNN method even when the reduced
size test library (Dot, in the “Without MW"’ section of
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Table 1. Percent correct identifications (%C) at fixed recall (RC)
With Mw?2 Without MW?®
Num. %C %C
in test % in Dot® _ i Dot*

Substructure? set® lib. RC STIRS'  Dot? full RC KNNM KE1  KEj KDot*  Dot® full
c=0 3111 47 31 100 95 99 51 1 78 80 83 88 96
OH 1558 23 42 78 82 95 45 71 62 67 67 74 86
—0— 2348 37 40 98 95 98 54 74 77 81 85 90 96
OCH,, OCH,4 1806 29 49 81 88 95 36 66 76 80 82 20 97
ocC=0 1435 22 55 87 86 94 29 61 81 87 89 92 97
Phenyllany) 2421 33 75 86 91 96 71 70 84 86 88 93 97
—NH, 396 5.3 44 69 55 87 17 62 60 65 71 83 92
> NH 430 11 19 58 83 94 25 41 43 55 61 69 75
—N < 875 18 30 89 89 97 51 72 65 65 72 77 87
-—S 653 11 35 86 96 100 32 60 83 88 95 97 100
—F 274 6.1 61 84 83 100 18 40 98 99 100 100 100
—Cl 834 8.8 74 96 96 100 54 89 82 91 96 97 100
Alkyl = C, 1612 19 56 70 79 85 54 68 72 75 77 78 86
Alkyl = C, 1554 19 19 78 80 95 32 49 55 57 60 65 85
c=C 1202 18 38 88 69 85 42 68 57 60 60 69 83
—CH < 2917 45 44 63 85 92 49 58 77 78 81 82 91
>C < 1464 27 20 85 96 99 41 57 80 80 81 20 96
C-ring 1090 15 50 83 91 98 54 70 85 83 87 89 96
Het-ring 1895 46 31 95 91 98 57 71 68 70 74 82 92
Average 428 82.8 858 95.1 427 64.1 727 773 79.4 845 922

2Uses neutral loss peaks based on input molecular weight.

®Does not use neutral loss peaks, hence does not require input molecular weight.

°Present method with complete library.

9From ref 8. Except for ring-only substructures, they may be in a ring or chain. All H-atom attachments are explicit. Phenyl(any) is an
isolated benzenoid ring; C-ring is a ring that contains only C-atoms; Het-ring is a ring that contains one or more non-C atoms.
*Number of compounds that contain the substructure among the 7891 spectra test set.

'Erom ref 8 (500 spectra test set).

9Present method with reduced NIST/EPA/NIH library (one-quarter full size).

‘"K-nearest neighbor results from ref 8 that use three-fifths voting scheme, Euclidean distance, first order scaling.
'Present implementation of KNN (footnote h) with one-quarter size library.

'KNN that uses the square root of Euclidean distance with one-quarter size library.

“KNN that uses the dot-product distance measure with one-quarter size library.

Table 1) is used. This is primarily due to several
modifications made to the original KNN procedures.
Starting from the original KNN method, the cumula-
tive effect of each of these modifications on search
performance is shown in Table 1. The original KNN
system used a simple Euclidean distance to measure
spectral dissimilarity and a simple voting scheme to
classify compounds. Our implementation of the same
system (KE1) gives similar, though somewhat better
results (72.7% versus 64.1%). These differences pre-
sumably arise from statistical effects due to the small
test used in the earlier studies as well as from the use
of different reference libraries. Performances were re-
determined after sequentially making the following
modifications: (1) scaling abundances by their square
roots (KE1/2), (2) replacing the Euclidean distance
with the dot product comparison function (KDot), (3)
replacing the simple voting scheme with the present
distance-based weighting method (Dot), and (4) in-
creasing library size by a factor of 4 (Dot full).

A comparison of the present system with more
recent STIRS results is given in Table 2. This STIRS
study used a larger library of 25,598 organic com-
pounds (the earlier studies used nonorganics also), 899
test spectra, a newly defined set of substructures, and
somewhat modified algorithms. These results are com-
pared to results of the present method for all substruc-
tures contained in at least 40 test compounds in the
original study. These comparative studies also used
only organic compounds. The reduced size library con-
tained one-half of the spectra in the full-sized library,
which simulated a library with 15% more spectra than
the STIRS studies. By using this reduced library, per-
formances are again comparable.

The overall performance of the present system is
documented in Table 3 using the substructures in
Tables 1 and 2 and others of general interest. The
effectiveness of substructure recognition is presented
for searches with and without the use of neutral loss
peaks (labeled “With MW" and ““Without MW,” re-
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Table 2. Percent correct identifications® (%C) at fixed recall (RC)

Num. in %C

test % in Dot
Substructure set lib. RC STIRS Dot® full®
—CgHs 974 15 72 87 78 88
—OSi(CH,), 448 5.1 (100 93 90° 949
ArOCH, 406 7.7 56 86 91 95
—CO— OCH, 390 6.7 70 75 73 88
—CH, 5714 76 51 99 99 929
Ar—0— 488 10 56 88 75 82
Ar— OH 424 5.8 43 80 76 87
—OCH, 975 18 44 91 97 98
—C0—0 1291 20 53 90 94 96
—CO,H 266 35 a 70 68 88
—OCH, — 931 13 42 84 85 20
—Si(CH3)4 491 6.0 (100 67 99° 99°]
ArCl 474 44 58 79 95 96
—CO—0—CH, 469 6.6 57 71 78 87
.CH.CH.O 195 5.0 64 82 65 77
—{CH,); —* 1356 15 52 75 89 91
—CHI{CH,},° 588 6.8 27 48 50 58
—CO—CH, —CH,* 493 5.6 51 54 86 9
—CO — NH® 233 5.1 29 67 81 93
Totals' 50.9 78.0 81.2 88.5

?Except where noted, substructures and STIRS results are from ref 12 (899 spectra test set, 25,598
library compounds). Dashes (— ) represent chin (nonring) bonds; periods (. ) represent ring bonds.
bpresent system used with the reduced NIST/EPA/NIH library (one-half full size).

“Present system with full NISTVEPA/NIH library.

9Recall values computed at percent correct are shown in boldface [12]). 100% recall in ref 12 could

not be achieved by the present method.
°STIRS results from ref 18b.
'Does not include values in brackets.

spectively). Recall values are given for two accuracy
requirements. One is an average reliability (percent
correct) of 90%. The other is for a probability of being
correct, P*, of at least 90%. The former values are
useful for comparison of search performances of dif-
ferent systems, whereas the latter has a clearer practi-
cal meaning,.

The ability of the present method to predict the
absence of a substructure is given in two ways. First,
the reliability of a substructure-absent prediction is
given along with its recall value for searches where the
substructure is not found in the hit list (W, = 0). Also,
recall values for substructure-absent probabilities, P,
of at least 90% are given. Note that these values are
corrected for prior occurrence probabilities as de-
scribed in the foregoing text. However, the corrections
discussed earlier for false positives were not made.

Also shown in Table 3 are results for identification
of chemical formulas, molecular weights, and rings
plus double bonds. Results also are shown for searches
in which peak abundances were multiplied by the
square of their mass-to-charge ratio values.

Discussion

The ability of a library search system to identify a
substructure depends on two factors: (1) the number
and diversity of library compounds that contain the
substructure and (2) the strength of a substructure’s
“signature’’ and the ability of the system to perceive it.

An increased representation in the library will in-
crease the number of chemical environments that the
substructure is “embedded” in and therefore will in-
crease the likelihood of finding similarly configured
substructures in an unknown compound. Identification
of even common functional groups can benefit from an
increased representation. This is evident in Tables 1
and 2, which show that identification of even very
common groups, such as carbonyl, benefits from in-
creased library size.

The strength and uniqueness of a signature and the
ability of a search method to perceive it is of course
crucial for substructure identification. A sufficiently
unique signature can fully compensate for a small
representation in the library. The trimethylsilyl group,
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Table 3. Substructures identified (recall, RC) at fixed levels of accuracy

Feature present®

Feature absent®

) RC values Without MW

Nt:s't" oin  Without MW With MW W,=0
Substructure®  set lib. %C=90 P*>09 %C=90 P*>08 RC %C P >09
Elements and compound class
F 274 6.1 73 64 75 61 78 925
(o] 834 8.8 82 66 89 76 66 94.0 86
Br 317 3.1 72 56 83 56 76 94.2
| 60 0.70 58 45 65 63 93 82.1
N 2484 44 88 70 90 69 37 987 77
0 5156 76 96 73 98 75 16 99.9 67
S 653 11 70 58 72 56 62 946 84
P 156 2.5 70 53 72 58 91 944 97
HC 1053 6.1 88 75 95 76 61 99.7 87
Sat'd. HC 320 1.6 74 58 77 61 83 99.6 85
Unsat'd. HC 733 45 80 53 89 72 67 99.2 85
Aromatic 35569 50 98 86 99 84 71 993 88
CH&O 2571 28 85 61 91 70 27 100. 76
Substructures fromrefs 11 and 12
Alkyl C4+ 3002 399 79 58 79 56 18 98.9 60
c=0 3111 46.9 70 44 76 51 15 98.5 48
OH 1558 226 40 23 58 40 19 99.0 43
oC=0 1435 22.0 36 55 47 67 30 96.6 53
Phenyl{any) 2421 325 88 76 90 72 63 99.1 80
—NH, 396 5.3 25 20 40 21 61 926
> NH 430 11.1 28 23 28 18 58 91.1
>N— 875 17.7 44 30 44 29 57 9538 76
OCH,, OCH,4 1806 29.0 65 45 67 45 27 98.7 62
C-ring 1090 165 69 56 75 51 47 971 73
—Si(CH4)4 591 6.0 97 92 99 99 90 99.3 97
Cyclohex 209 2.3 51 42 57 39 85 90.9
PhCO,H 58 0.64 16 16 18 18 92 925
c=C 1202 18 17 12 19 15 18 97.7 45
—0— 2348 37 74 53 80 59 21 99.2 65
—CH < 2917 45 53 37 43 37 4 100. 36
>C< 1464 27 58 45 61 47 23 96.1 50
Het-ring 1895 46 62 45 66 40 28 987 64
—CgHs 974 15.2 68 56 67 50 64 98.7 79
—OSi(CH3); 448 5.1 96 70 98 76 92 995 97
ArOCH, 405 7.7 66 45 73 45 76 98.0 80
CO —O0CH;, 390 6.7 56 40 68 56 67 927
—CHj 5714 76.1 95 74 97 76 5 99.7 54
Ar— 0 — 488 10.3 7 5 33 33 70 97.7 75
Ar— OH 424 5.8 23 23 28 22 70 96.3 75
—OCH, 975 183 49 48 74 67 45 97.9 67
co—o0 1291 195 59 45 73 58 35 976 59
—CO,H 266 35 20 30 38 20 61 87.1 VA
—OCH, — 931 134 43 27 47 19 39 976 63
Si{CH;)5 491 6.0 97 92 28 88 90 99.3 97
ArCl 474 44 79 65 80 65 89 95.7
CO—O0—CH, 469 6.6 37 27 51 40 61 944
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Table 3. (continued)
Feature present® Feature absent®
) RC values Without MW
Nt:s't" o%in _ Without MW With MW w,=0
Substructure® set lib. %C=90 P*>09 %C=90 P*>09 RC %C P >09
.CH.CH.O 195 5.0 29 20 37 24 78 90.1
—(CH,); — 1356 14.8 49 35 54 35 37 974 61
CH(CH;), 588 6.8 9 7 7 6 44 944 53
CO—CH,—CH, 493 5.6 53 29 53 38 65 93.5 84
—CO—NH 233 5.1 24 21 33 27 73 87.
Formula and related
Formula 18 28
34¢ 21¢
MW 39 23
54¢ 34°
Rings + double
bonds® 60 38
58 34°

2Substructure-present identifications that use neutral losses (With MW) and without neutral losses
{(Without MW). Recall values are given for two requirements: (1) 90% of all identifications are correct
{%C = 90); (2} the probability of each identification being correct is greater than 0.9 {(P*> 0.9).

bSubstructure-absent identifications. No neutral loss peaks are used (Without MW). Recall and

percent correct values are given weight factor W, = 0 (no substructures in hit list). Also shown are
percent of correct substructure-absent predictions where the probability of being correct is greater than
0.9. All values are corrected for substructure-occurrence probability as discussed in the text and do not

use corrections for top match factor (Figure 1).
°Nonring bonds are denoted by lines (—, >

, =) ring bonds are denoted by periods (.). HC=

hydrocarbon, CH & O = contains C, H, and O atoms and no others, Ar= aromatic atom, Ph = single

benzenoid ring.

9Peaks are multiplied by the square of their mass-to-charge ratio values for match factor determina-

tion.

°Number of rings and double bonds, also known as double bond equivalents.

for instance, is the best identified of all substructures
even though it is present in only 6% of library com-
pounds. On the other hand, certain structural features
that have no unique fingerprint can often be identified
when present as a part of larger substructures that do
have characteristic fingerprints. For instance, although
tertiary carbon atoms (—CH <) themselves have no
characteristic fingerprint, their presence can be identi-
fied with good reliability because a large proportion of
structural groups that contain tertiary carbon atoms do
have clear signatures.

Neutral Losses

Certain substructures tend to be readily eliminated
from ionized molecules. Their expulsion leads to the
formation of “primary neutral loss’’ peaks at mass-to-
charge ratio values lower than the molecular ion by an
amount equal to their mass. For these substructures,
identification can be improved by using neutral loss
peaks in addition to conventional peaks for match
factor determination. This improvement is evident for
several of the substructures in Table 3, such as hy-
droxyl, carboxyl, amino, and ester groups. The practi-
cal problem with this approach is the requirement that

the molecular weight be known in advance. Conven-
tional electron ionization mass spectrometry cannot be
reliably provided this value. Approximately 20% of
library compounds show no easily identifiable molecu-
lar ion.

Reference Library

As is evident from the major improvements in identi-
fication accuracy gained by increased library size
(compare Dot and Dot full columns in Tables 1 and 2),
to obtain the most reliable results, a large, comprehen-
sive, structure-based library is required. Furthermore,
it is not clear that such libraries can ever be too large.
Any increases in the number of compounds repre-
sented by good quality spectra appear certain to fur-
ther improve the ability to identify substructures, even
if the compounds added are themselves not of direct
interest.

Performance

Spectrum screening retrieves an average of 450 spectra
per search, or about 0.7% of all library spectra, for
subsequent peak-by-peak comparison to the submitted
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unknown spectrum. As implemented, the comparison
step consumes about 80% of the total search time.
Screening, therefore, reduces overall search times by
over a factor of 100, which results in search speeds that
are comparable to those of a conventional compound
identification search. If desired, tighter screening could
further reduce search times with little loss in identifi-
cation accuracy. Tests showed that a twofold reduction
is the average number of spectra that passed through
the screen had a barely measurable effect on perfor-
mance (1-2% reduction in recall).

Peak Weighting Schemes

Identification of substructures that have characteristic
peaks might be expected to improve if these peaks
were specifically weighted. A number of such schemes
were tested, but, as described in the following text,
none of them markedly improved substructure identi-
fication accuracy.

Because low mass peaks are often more important
for substructure identification than high mass peaks
[23], attempts were made to improve performance by
increasing the relative weighting of low mass peaks.
This is the opposite of what is typically done for
compound identification [3], where the highest mass
peaks in a spectrum are the most diagnostic. Several
schemes that used different weighting functions and
mass ranges were applied, but none of them improved
overall performance. For some substructures, modest
improvements of 2—-3% recall at a fixed reliability were
observed, but reductions in performance were ob-
served for others.

A more specific peak weighting scheme was tested
for peaks that belong to the “aromatic series” [11].
Although this resulted in a noticeable improvement for
identification of aromatic substructures, effects were
small. For instance, at 90% percent correct for singly
substituted phenyl, recall increased from 68 to 70%
(neutral loss peaks were not used). For chloroaromatics
(ArCl), corresponding recall values increased from 79
to 82%.

A number of other substructure-specific weightings
schemes were implemented, with similar results. The
present unweighted match factor appears to be near
optimal for general purpose use. Only modest im-
provements appear possible with the use of substruc-
ture-specific weighting schemes. It is not clear whether
these modest improvements justify the added com-
plexity and risk of “overtraining.”

For the case of molecular weight estimation, how-
ever, where peaks near the molecular ion contain im-
portant information, increasing the contribution of high
mass peaks to the match factor significantly improved
performance. As shown in Table 3, after multiplying
peaks by the square of their mass-to-charge ratio val-
ues, a nearly 50% improvement in recall was observed.
A modest improvement in formula prediction resulted
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from this scaling, but ring plus double bond prediction
actually worsened.

Probability Estimation

The mass spectral comparison function used here for
substructure identification provides a single overall
measure of spectral similarity and, except for the ab-
sence of peak weighting, is identical to that commonly
used for compound identification. It relies on the sim-
ple premise that the more similar two spectra are, the
more likely it is that the compounds that produced
them have substructures in common. This obviously
applies to the limiting case of nearly identical spectra
for a single compound. As pairs of spectra become
more dissimilar, the likelihood that the compounds
that produce them have substructures in common di-
minishes. According to the present similarity measure,
a difference of 75 match factor units implies a reduc-
tion in this likelihood by a factor of 2.

The sum of the weights of all retrievals (the hit list
normalization factor, N, defined earlier) may be viewed
as the effective number of reference spectra used for
deriving probabilities. Its average value was 6.7, which
indicates that the top hit, on average, contributed about
one-seventh of all of the substructure information.

The derived probability of a substructure being in
the unknown compound, P*, is related to the proba-
bility, described in earlier work [3], that a retrieved
compound precisely matches the unknown compound.
Both were derived from relative match factors that, in
turn, correlated with the probability that a retrieval
was correct. For probability estimation, however, the
earlier work made direct use of the observation that
differences in match factors were directly related to
relative probabilities that a retrieval matched the un-
known compound. This direct approach could not be
used here because for substructure identification, mul-
tiple retrievals can be correct (i.e., contain a substruc-
ture present in the unknown compound). A simple
exponential function, discovered by ftrial and error,
was used instead. Also, probabilities of matching the
unknown compound reported in the earlier work were
roughly four times as sensitive to match factors than
are the substructure-present probabilities.

Earlier studies [26] showed that for exact compound
matching, the highest match factor in the hit list was
related to the probability that the compound was in
the library. No equivalent relation could be derived for
the present analysis. However, in the present work, the
highest match factor value did (inversely) correlate
with the likelihood of falsely predicting that a sub-
structure was absent in the unknown compound (Fig-
ure 1).

Comparison to STIRS

Tables 1 and 2 show that STIRS and the present method
give comparable results when used with reference
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libraries of comparable size. Because of the different
test sets and reference libraries in the two studies, it is
not possible to usefully discuss differences in detail.

The present distance-based retrieval weighting
scheme is quite different from the equal weighting
assumption for the top 15 retrievals in STIRS. The
effective number of retrievals used by the present
scheme depends on the match factors found; the num-
ber ranges from near unity when only one retrieval is a
good match to up to 25 when all retrieved spectra are
equally similar to the spectrum of the test compound.

A screening strategy has not been proposed for
STIRS. Two other key differences are the requirement
by STIRS that the molecular weight of the unknown
be provided and the inability of STIRS to report
substructure-absent probabilities. Also, the large test
set in the present work allows easier to interpret dif-
ferential probabilities (P* and P7) to the reported.
The reported lack of sensitivity of STIRS performance
to library size [13] is a surprising difference.

The use of multiple hit lists, each created from a
different set of mass spectral features, has been shown
to significantly benefit the performance of STIRS [18].
An examination of the benefits of the addition of such
features to the present system is underway.

Comparison to the K-Nearest Neighbor Method

Isenhour and co-workers [8] have reported a method
that identifies substructures in an unknown compound
by using the K-nearest library spectra as measured by
their Euclidean distance from the unknown spectrum.
A substructure is considered to be present in the un-
known when it is contained in a prespecified number
of the K-nearest library compounds. This method did
not perform as well as STIRS in a comparative study
[8].

The present system may be viewed as an improved
version of this KNN procedure. Effects of each im-
provement are shown in Table 1 for a three out of five
“voting” scheme (identification requires that three or
more of the five “nearest’” library compounds contain
the substructure). The percent correct at fixed recall for
the present implementation of the original algorithm
are shown in column KNN in Table 1. They show
trends similar to the original implementation, but
overall results are 8.6% better. Some of this difference
may be statistical because only 500 test compounds
were used in the earlier studies. The biggest single
difference in performance is for fluorine, which was
present in only 16 of the original test compounds.
Exclusion of this one value reduces the differences to
about 6%.

Column KE3 in Table 1 shows an improvement of
4.6% correct that results from square-root scaling of
the abundance. Replacement of the Euclidean distance
with the dot product function results in a further 2.1%
improvement (KDot). Previous compound identifica-
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tion studies [26] showed similar performance gains for
such modifications.

The next column, Dot, shows a further 5.1% im-
provement when the present retrieval weighting
scheme replaced the original three out of five voting.
Finally, a fourfold increase in library size (Dot full)
showed the largest increase in percent correct, 7.7%,
which corresponds to a 50% decline in missed identi-
fications. The overall improvement in reliability due to
algorithm improvement and library size is dramatic; it
goes from 72.7 to 91.2% correct at fixed recall, or a
threefold decline in incorrect identifications.

Comparison to MSNet

An artificial neural network method for identification
of substructures from mass spectra has been reported
by Curry and Rumelhart [19]. It employed a large
number of mass spectral features, most of them taken
from STIRS, along with a reference library of 31,926
library spectra. By using a test set of 12,671 spectra,
results were found to be similar, though somewhat
better than results reported for STIRS in ref 12. Consid-
ering the significantly smaller library size in the STIRS
studies, the inherent ability of the two systems to
identify substructures appears to be similar. This sug-
gests, in turn, that the ability of MSNet to identify
substructures is comparable to the present system.

Three disadvantages that were cited for library-
search systems by Curry and Rumelhart [19] and
repeated by Warr [5], include: (1) lack of absolute
identification probabilities, (2) inability to report
substructure-absent probabilities, and (3) slow search
speed. All three deficiencies are eliminated in the
present system.

Conclusions

A practical library search procedure that extracts
chemical substructure information from conventional
electron-ionization mass spectra has been developed
and tested. By using results of a library search, this
method derives probabilities that a given substructure
is present or absent in the unknown compound. The
reliable reporting of substructure-occurrence probabili-
ties was significantly enhanced by selection of optimal
methods for processing spectral match factors as well
as by using a large test set. Advance knowledge of the
molecular weight of the unknown compound is not
required, although 1identification of certain substruc-
tures can benefit if it is provided. Identification of all
substructures, even very common ones, has been
shown to benefit greatly from an increase in library
size. An efficient spectrum screening procedure has
been designed to enhance the speed of substructure
identification, which resulted in search times compara-
ble to those typical of conventional compound identi-
fication searches. The overall performance, when linked
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to a large structure-based mass spectral library, is
sufficient to recommend it for routine use as a first
step in the structural elucidation of compounds not
represented in reference libraries.
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