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Summary: There is a compelling need to develop cell and
pharmacological therapeutic approaches to be administered be-
yond the hyperacute phase of stroke. These therapies capitalize
on the capacity of the brain for neuroregeneration and neuro-
plasticity and are designed to reduce neurological deficits after
stroke. This review provides an update of bone marrow–
derived mesenchymal stem cells (MSCs) and select pharmaco-
logical agents in clinical use for other indications that promote
the recovery process in the subacute and chronic phases after

stroke. Among these agents are 3-hydroxy-3-methylglutaryl–
coenzyme A reductase inhibitors (statins), erythropoietin
(EPO), and phosphodiesterase type 5 (PDE-5) inhibitors and
nitric oxide (NO) donors. Both the MSCs and the pharmaco-
logic agents potentiate brain plasticity and neurobehavioral
recovery after stroke. Key Words: Stroke, neuronal plasticity,
angiogenesis, neurogenesis, synaptogenesis, MSC, pharmaco-
therapy.

INTRODUCTION

The time window for effective treatment to enhance
stroke recovery is likely to be far longer than that for
acute neuroprotective stroke treatments: perhaps days or
weeks, rather than minutes or hours after stroke. The
extended therapeutic window creates an opportunity to
treat most, if not all, stroke patients. Thus, the search for
novel cellular and pharmacological therapeutic ap-
proaches to be administered beyond the hyperacute
phase of ischemia, amplifying the intrinsic properties of
the brain for neuroplasticity and subsequent neurological
recovery, becomes critical.1 Poststroke recovery treat-
ments are likely to enhance structural and functional
reorganization (i.e., plasticity) of the damaged brain.
This review provides an update of select cellular and
pharmacological agents that facilitate neurobehavioral
recovery and brain plasticity following stroke.

BIOLOGICAL BASICS OF
NEURORESTORATIVE THERAPY

Neurorestorative events include neurogenesis, angio-
genesis, and synaptic plasticity, all of which contribute to

functional improvement after stroke. The adult rodent
brain generates neuronal progenitor cells in the subven-
tricular zone (SVZ) and in the dentate gyrus of the hip-
pocampus throughout the life of the animal. The persis-
tence of neurogenesis in the adult mammalian brain
suggests that endogenous precursors are a source for
neuronal replacement after brain injury. After stroke in
the adult brain, the neuroblast population is greatly ex-
panded in the SVZ, and these cells are recruited to areas
bordering the infarct, where they can differentiate into
neurons and thereby replace lost neurons.2,3 In addition,
neuroblasts may act synergistically with the microvascu-
lature to stimulate angiogenesis and synaptic activity in
the local microenvironment and thereby promote neuro-
logical recovery.
Synaptic plasticity is related to behavioral change and

functional recovery after brain injury.4 Increasing den-
dritic arborization and spine density are potential mor-
phological strategies for enabling the brain to reorganize
its neuronal circuits.5 Functional alterations in motor
cortex organization are accompanied by changes in den-
dritic and synaptic structure, as well as by alterations in
the regulation of cortical neurotransmitter systems.5,6 Af-
ter a stroke, synaptic activity is increased in the ischemic
boundary zone, as evidenced by increased expression of
synaptic proteins such as synaptophysin and growth-
associated protein 43. These proteins are amplified with
successful neurorestorative treatments.7
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Angiogenesis in the ischemic border creates a hospi-
table microenvironment for neuronal plasticity, leading
to functional recovery.8 Greater microvessel density in
the ischemic border correlates with longer survival in
stroke patients.9 Angiogenic vessels express trophic fac-
tors (e.g., brain-derived neurotrophic factor, BDNF) and
other soluble factors that stimulate recruitment of new
neurons and synaptic function.10,11 After stroke, neuro-
blasts are concentrated around blood vessels.12 Thus,
vascular signaling via angiogenesis influences neuroblast
migration and survival.12 Neuronal recruitment and an-
giogenesis are therefore mechanistically linked.
Angiogenesis, neurogenesis, and synaptogenesis com-

prise an interrelated set of neurorestorative events that fa-
cilitate recovery of neurological function. Thus, cellular or
pharmacological agents that promote one or more of these
restorative events may improve neurological outcome after
a stroke. The cellular approach includes a variety of cells,
including neural stem and progenitor cells, cord blood, and
mesenchymal stem cells (MSCs).13–18 The search for phar-
macological therapies that potentiate the recovery process
after a neurological injury has intensified during the last
decade. Many therapeutic agents already marketed have
been shown to promote functional outcome after
stroke,7,19–22 including trophic and growth factors (e.g.,
vascular endothelial cell growth factor (VEGF), basic fibro-
blast growth factor (bFGF), and BDNF), granulocyte colo-
ny-stimulating factor (G-CSF), angiopoietin 1 (ANG1), an-
giotensin modulators, minocycline, and thiazolidinediones.
In addition, various agents with widespread application for
other medical indications have neurorestorative effects on
injured cerebral tissue. Among these are statins, erythropoi-
etin (EPO), and phosphodiesterase type 5 (PDE-5) inhibitors.
We now review the use of select cellular and pharmaco-

logical agents, all of which stimulate neurogenesis, angio-
genesis, and synaptogenesis and appear to possess neuro-
restorative properties. The eventual movement of these
agents into clinical use will depend on the rigorous dem-
onstration of efficacy in preclinical models of stroke, clin-
ical safety, and realistic dosing protocols. Here, we focus on
a particular cell-based therapy, MSC, and on three catego-
ries of neurorestorative agents: (1) the 3-hydroxy-3-meth-
ylglutaryl–coenzyme A reductase inhibitors (statins); (2)
EPO; and (3) PDE-5 inhibitors. This is by no means an
exhaustive list, but simply represents classes of cellular or
neurorestorative agents, some of which are likely candi-
dates for clinical use. A common thread in the neurorestor-
ative therapies is that they increase parenchymal cell ex-
pression of VEGF and angiogenesis.

MSC TREATMENT OF STROKE

MSC neurorestorative therapy
The regenerative potential of MSCs has been demon-

strated in myocardial, limb, and brain ischemia.23 MSC

administration starting 24 hours after stroke promotes
functional outcome after stroke, whether by intracere-
bral, intravenous, or intra-arterial route.17,18 In addition,
delayed treatment of stroke with MSCs at 7 days or at 1
month after stroke onset also increases brain plasticity
and improves long-term functional outcome.17,24,25

Mechanisms of MSC neurorestorative effect
MSCs are multipotential, and can differentiate into

various tissue lineages, including astrocytes, neurons,
and endothelial cells in the brain.18,26 When MSCs are
administered 24 hours after stroke, functional outcome is
significantly improved from 7 days after treatment.27

This benefit is probably not attributable to the very few
MSCs that differentiate into brain cells. Instead, the ac-
tive principle seems to be that MSCs secrete various
growth factors (e.g., VEGF, bFGF, and BDNF) that pro-
mote functional outcome after stroke,28–32 thus amplify-
ing their endogenous brain levels. These growth factors
support and amplify angiogenesis, neurogenesis, and
synaptic plasticity.33,34 MSCs thus behave as small bio-
chemical and molecular factories and catalysts, produc-
ing and inducing within parenchymal cells many cyto-
kines and trophic factors that enhance angiogenesis and
vascular stabilization in the ischemic boundary (which is
where the majority of MSCs that survive in the brain are
located).35

In addition, neurogenesis in the SVZ and synaptogen-
esis are greatly amplified by MSC treatment. MSCs also
induce other agents within injured brain, such as bone
morphogenetic proteins BMP2 and BMP4 or connexin
43 expression in astrocytes.36 In concert with enhancing
angiogenesis, neurogenesis, and synaptogenesis, MSCs
significantly decrease glial scar formation and promote
glial–axonal remodeling.24 Thus, MSCs act in a pleio-
tropic way to stimulate brain remodeling.
Basic and clinical data support the translation of MSC

therapy to clinical trials. Stroke patients treated with
autologous MSCs (i.v.) show improved functional recov-
ery after stroke.37 The procedures of ex vivo expansion of
autologous MSCs and of transplantation are safe and
well tolerated.37,38 MSCs are not immunorejective, and
allogeneic cells can be used.39,40 Thus, MSC treatment is
poised for clinical trials in stroke. Preclinical data point
to other cell therapies that appear highly efficacious in
reducing neurological deficits after stroke,15,22,41 and we
expect that these cells will also enter the clinical arena.
A major benefit of cell-based therapy is that cells

administered via a vascular route distribute themselves
throughout the entire region of compromised tissue.
They serve as a distributed network of polypharmacy and
a catalysis for neurorestoration. Benefit derives essen-
tially from stimulating and amplifying the endogenous
restorative mechanisms residing in brain. It is likely that
feedback loops sensitive to the microenvironment of the
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compromised tissue titrate the restorative response to
exogenous cells to safe and effective levels.

PHARMACOLOGICAL TREATMENT OF
STROKE

Statins
Statins are potent inhibitors of cholesterol biosynthesis

and also benefit stroke. The mechanism by which statins
provide benefit against stroke is likely multifactorial,
involving reduction of low-density lipoprotein choles-
terol along with stabilization of vulnerable plaques.
Statins also render cortical neurons more resistant to
NMDA-induced excitotoxic death. Many of the pleiotro-
pic effects of statins are cholesterol independent, such as
improvement of endothelial function, increased NO bio-
availability, antioxidant properties, inhibition of inflam-
matory responses, immunomodulatory actions, upregu-
lation of endothelial nitric oxide synthase (eNOS),
decrease of platelet activation, and regulation of progen-
itor cells.42,43 Pretreatment of stroke with statins reduces
brain infarct size and improves neurological outcome by
directly upregulating brain eNOS.44,45 Combination ator-
vastatin and recombinant human tissue plasminogen ac-
tivator (rhtPA) treatment 4 hours after stroke induces
downregulation of tissue factor, protease-activated re-
ceptor 1, intercellular adhesion molecule 1, and matrix
metalloproteinase 9 (MMP 9); concomitantly, it reduces
cerebral microvascular thrombosis and enhances micro-
vascular integrity.46 Patients who had taken statins prior
to the onset of stroke have significantly decreased mor-
tality and improved outcome after acute ischemic
stroke.47,48 The results of the recently reported in stroke
prevention by aggressive reduction in cholesterol levels
(SPARCL) trial indicate that atorvastatin is likely effi-
cacious in reducing the incidence of recurring stroke.119

Neurorestorative effects of statins. Low-dose statin
administered 24 hours after stroke promotes angiogene-
sis, neurogenesis, and synaptic plasticity and improves
neurological functional outcome after stroke in young
and in older retired breeder rats (middle age).49,50 Treat-
ment of patients within 4 weeks after acute ischemic
stroke with statins significantly increased favorable out-
come at 12 weeks.51 In addition, the efficacy, safety, and
tolerability of statins have been confirmed in random-
ized, controlled, multicenter trials involving large num-
bers of patients aged�65 years.52 Elderly patients taking
lipid-lowering agents, such as statins, at the time of an
ischemic stroke have lower poststroke mortality and a
lower risk of worsening during hospitalization.48

Mechanisms of statin-induced neurorestoration.
Molecular mechanisms underlying the role of statins in
the induction of brain plasticity and subsequent improve-
ment of neurological outcome after treatment of stroke
include the statin-mediated increase of eNOS, VEGF–

VEGFR2, BDNF, tPA, phosphatidylinositol 3=-kinase
(PI3K)–AKT, and small G proteins in the ischemic
brain.53 These proteins play an important role in regu-
lating vascular and neurogenic, neuroprotective, and
neurorestorative effects.54,55

Specific cell populations and neurorestorative pro-
cesses are targeted by statins. Statins increase brain en-
dothelial cell expression of VEGF–VEGFR2 and eNOS
and thereby activate the PI3K–AKT pathway, which reg-
ulates endothelial cell proliferation and migration and
increases angiogenesis.56 Statins also increase vascular
stabilization and decrease blood–brain barrier (BBB)
permeability after stroke.57 The effect of statins on the
induction of angiogenesis, however, is dose dependent
and biphasic.58 Some authors particularly highlight the
proangiogenic effects of statins caused by low, nanomo-
lar concentrations and regarded as beneficial for the
treatment of vascular diseases.58 Others have found that
a high dose of statins promotes endothelial cell death and
inhibits experimental angiogenesis induced by growth
factors or tumor, laying a foundation for developing
statin-based angiopreventive strategies.59

In addition to their effects on cerebrovascular func-
tion, statins increase neurogenesis in ischemic brain, pro-
tect cortical neurons from excitotoxicity, and increase
neurite outgrowth and synaptic plasticity.50,53,60,61 Ator-
vastatin treatment after stroke induces endogenous SVZ
progenitor cell proliferation and migration to the isch-
emic border and neuronal differentiation.50,53 Statins in-
crease the expression of BDNF and synaptic proteins and
also increase neuroblast migration to blood vessels.53

Neurogenesis and synaptic reorganization are impor-
tant for functional improvement after stroke. Neurogen-
esis declines with advancing age. Thus, repairing the
aged ischemic brain and promoting functional outcome
may be significantly more challenging than in the young
brain. Several signaling cascades play important roles in
the regulation of statin-induced neurogenesis. Transcrip-
tion factors with basic helix–loop–helix (bHLH) motifs
are essential elements in neurogenesis. The Mash1 pro-
tein encodes a bHLH transcription factor, which controls
the correct timing of differentiation during neuronal de-
velopment.62 Atorvastatin increased Mash1 gene and
protein expression in the ischemic brain, and promoted
neuronal differentiation in retired breeder rats.49 Thus,
the molecular mechanisms by which statins alter vascu-
lar and neurogenic status in young and older brains are
becoming more clear.
Given the wide use of statins, their favorable safety

profile in patients, the extensive preclinical data showing
both neuroprotection and neurorestoration, and provoc-
ative positive clinical data in stroke patients, clinical
studies are warranted to determine neuroprotective and
neurorestorative properties of statins after stroke.

CHEN AND CHOPP468

NeuroRx�, Vol. 3, No. 4, 2006



Erythropoietin
EPO as a neurorestorative agent. EPO is a hemato-

poietic growth hormone that regulates survival, prolifer-
ation, and differentiation of erythroid progenitor cells.
EPO is widely used in the treatment of anemia in cancer
patients undergoing chemotherapy. EPO and EPO recep-
tor (EPOR) are weakly expressed in normal adult brain,
but they are dramatically upregulated in response to
brain hypoxia and metabolic distress of neurons.63

EPOR is important for adult neurogenesis and for
migration of regenerating neurons during postinjury re-
covery.64 EPO can pass the BBB,55 and is well tolerated
and safe in the stroke patient.65,66 In preclinical studies,
treatment with EPO at 24 hours after onset of stroke
significantly improved functional outcome.67 EPO treat-
ment in rodent initiated 1 day after experimental trau-
matic brain injury is neurorestorative (by enhancing neu-
rogenesis) and neuroprotective, and it significantly
improves spatial memory function.68 EPO inhibits ax-
onal degeneration and therefore may be therapeutically
useful in a wide variety of human neurological diseases
characterized by axonopathy.69

In clinical studies, stroke patients receiving recombi-
nant human EPO (rHuEPO) within 5 hours of the onset
of cerebral ischemic symptoms showed a significantly
improved clinical progress, as well as a reduced infarct
size as measured by MRI, compared with placebo-treated
patients.65 The Gottingen EPO Stroke Study, a multi-
center pilot study for proof of concept (preceding the
necessary phase III trial), is ongoing in Germany.65,70

EPO is the first compound with a favorable safety profile
to show significant beneficial effects in stroke patients.
Although the use of rHuEPO is not without side-effects
(e.g., hypertension, thrombosis, and increased hemato-
crit), the clinical benefits of rHuEPO in other applica-
tions cannot be ignored. Recently introduced, carbamy-
lated erythropoietin (CEPO) does not stimulate
erythropoiesis but retains the antiapoptotic and neuropro-
tective effects of EPO.71,72 Treatment with CEPO 24
hours after stroke reduces perifocal microglial activation
and white matter damage, and significantly improves
functional outcome after stroke.73

Mechanisms of EPO-induced neurorestoration. EPO
is a pleiotropic cytokine that is proangiogenic.74 EPO and
EPOR are expressed in the vasculature during embryogen-
esis. EPO regulates endothelial cell proliferation and migra-
tion and it increases angiogenesis, erythropoiesis, and vas-
cular resistance.75 EPO also engages diverse cellular
pathways, such as those involving Janus kinase 2 (JAK2),
signal transducers and activators of transcription (STATs),
mitogen-activated protein kinases (MAPKs), Bcl-xL, pro-
tein kinase B, protein kinase C, and cysteine proteases to
provide plasticity to vascular systems through highly con-
served mechanisms.76 Moreover, EPO upregulates ANG1

expression under normoxic conditions77 and protects the in
vitro BBB against VEGF-induced permeability.78

Treatment of stroke rats with EPO increases angiogen-
esis in the ischemic border.67 EPO promotes endothelial
cell secretion of MMP 2 and MMP 9, which are chemo-
tactic for neuroblast migration.79 VEGF and BDNF ex-
pression in the ischemic brain are increased in response
to EPO, and may provide a vascular niche, a microenvi-
ronment supporting migrating neuroblasts. EPO infusion
into the adult lateral ventricles increases the number of
newly generated cells migrating to the olfactory bulb,
and thereby increases new olfactory bulb interneurons.80

The JAK2–STAT3 and PI3K–AKT pathways activated
by EPO may also underlie the EPO-mediated neuronal
regeneration.81 Thus, multiple signaling pathways may
regulate the EPO-induced angiogenesis and neurogenesis
that promote neurorestorative effects after stroke.

PDE-5 inhibitors, cGMP, and NO donors
cGMP is a molecular messenger involved in diverse cel-

lular processes, including regulation of cellular prolifera-
tion.82 Increases in cGMP levels enhance proliferation of
endothelial cells and motor neurons.83 Thus, increased
cGMP production may facilitate neuroprotection and neu-
rorestoration after stroke. cGMP levels in brain may be
increased by cGMP production via increases in NO or
inhibition of cGMP hydrolysis. NO activates soluble gua-
nylyl cyclase and leads to the formation of cGMP in target
cells. PDE-5 inhibitors are a new class of vasoactive drugs
(including sildenafil, vardenafil, zaprinast, and tadalafil) de-
veloped for treatment of erectile dysfunction in patients.84

These drugs competitively inhibit cGMP hydrolysis by
PDE-5, thereby fostering cGMP accumulation and relax-
ation of vascular smooth muscle.85 Sildenafil significantly
increases cerebral cGMP.86,87

Neurorestorative effect of PDE-5 inhibitors. Chronic
treatment of stroke-prone, spontaneously hypertensive
rats with DA-8159, a new PDE-5 inhibitor, increases
cerebral blood flow in the ischemic brain, plasma NO,
cGMP, and the total antioxidative status and attenuates
endothelial dysfunction.88 Treatment of stroke with sil-
denafil starting at 24 hours after stroke significantly in-
creased brain levels of cGMP, evoked neurogenesis, and
reduced neurological deficits after stroke in both young
adult and aged rats.86,89 Increasing age decreases the
number of new neurons in the dentate gyrus and the
SVZ.90 Sildenafil not only enhances angiogenesis and
neurogenesis in young adults, but also augments angio-
genesis and neurogenesis in aged ischemic rats.91

Molecular mechanisms underlying functional benefit in-
clude a sildenafil-mediated increase in phosphorylated
AKT, which increases phosphorylation of glycogen syn-
thase kinase 3.92 Sildenafil also attenuates learning impair-
ment induced by blockade of cholinergic muscarinic recep-
tors in rats by modulating NO-cGMP signal transduction, a
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pathway implicated in age-related cognitive decline and
neurodegenerative disease.93 Therefore, in addition to pro-
moting neuroregeneration after stroke treatment, sildenafil
may also enhance cognitive function, and can be used to
treat cholinergic dysfunction in age-related cognitive de-
cline and Alzheimer’s dementia (AD).

Neurorestorative effect of NO donors. NO donors
produce neurorestorative effects after stroke both by in-
creasing cGMP and through other complementary path-
ways. In the CNS, NO is an important physiological
messenger involved in the modulation of brain develop-
ment, synaptic plasticity, neuroendocrine secretion, sen-
sory processing, and cerebral blood flow.94

Cerebrovascular protection by various NO donors after
experimental stroke has been reported in rat.95 NO pro-
motes angiogenesis and neurogenesis, and increases neuro-
blast migration. Stroke rats exhibit significant improve-
ments of neurological outcome during recovery from
ischemic stroke when administration of DETA-NONOate
to rats is initiated at 24 hours after stroke.96,97 NO has a
prominent role in the regulation of cerebral blood flow and
the modulation of cell-to-cell communication in the brain.98

L-arginine increases cerebral blood perfusion and improves
vasomotion of microvessels by enhancing NO levels.99

Systemic administration of a low dose of the NO donor
DETA-NONOate to rats 24 hours after stroke significantly
induced angiogenesis in the ischemic boundary regions.96

NO donors such as SNAP, GSNO, and NOC also
regulate HIF-1-mediated VEGF gene activation and pro-
mote angiogenesis.100 In addition, NO upregulates ex-
pression of �v�3 integrin (a critical mediator of cell–
matrix adhesion and cell migration) on endothelial cells
and promotes angiogenesis.101 NO also increases vascu-
lar stabilization96,100 via upregulation of the ANG1–Tie2
pathway102 and mediates mural cell recruitment and ves-
sel morphogenesis in murine melanomas and tissue-en-
gineered blood vessels.103

NO regulates neurogenesis in the adult brain.97 DETA-
NONOate promotes neuronal differentiation and neurite
outgrowth in both young and older SVZ neurospheres.104

DETA-NONOate modulation of SVZ cell differentiation is
controlled by N-cadherin, �-catenin, and neurogenin 1 gene
expression.104 The NO–cGMP–protein kinase G (PKG)
signaling pathway facilitates communication between neu-
rons and glia,105 and enhances neurotrophin-induced neu-
rite outgrowth.106 As described above, EPO and EPOR
promote adult neurogenesis and migration of regenerating
neurons during postinjury recovery.64 NO modulates hy-
poxic stimulation of EPO production107 and L-arginine res-
cues decreased EPO gene expression by stimulating
GATA-2 with NG-monomethyl-L-arginine.108 Therefore,
NO upregulation of EPO production may also play an im-
portant role in promoting brain plasticity. Thus, agents that
chronically increase NO in brain appear to be neurorestor-
ative and may be candidates for clinical development.

VASCULAR ENDOTHELIAL GROWTH
FACTOR

VEGF is a trophic factor common to both cell and
pharmacological neurorestorative therapy.
Administration of MSCs and agents such as statins,

EPO, or PDE-5 inhibitors (e.g., sildenafil and tadalafil)
and NO donors (e.g., DETA-NONOate) after stroke all
significantly increase ischemic brain VEGF expression
and promote functional recovery without affecting lesion
volume.53,67,86,96,97 Thus, induction of VEGF is likely a
major contributor to neurorecovery after stroke. Direct
administration of VEGF or indirect upregulation of
VEGF in ischemic brain by cell or pharmacological
means may promote functional recovery after stroke.
VEGF is an angiogenic protein with a wide variety of

physiological and molecular effects; it has therapeutic
potential in ischemic disorders, including stroke. VEGF
increases endothelial cell proliferation, migration, and
angiogenesis after stroke; it also modulates the PI3K–
AKT–nuclear factor kappa B signaling pathway, inhibits
caspase-3 activity, and reduces ischemic neuronal apo-
ptosis.109,110 However, early postischemic (1 hour) ad-
ministration of recombinant human VEGF165 (rh-
VEGF165) to ischemic rats increased BBB leakage and
infarction volume in the ischemic brain.111 In contrast,
late (48 hours) administration of rhVEGF165 to ischemic
rats enhanced angiogenesis in the ischemic penumbra
and significantly improved neurological recovery,111 and
combination ANG1–VEGF treatment decreased BBB
leakage and promoted angiogenesis.112

VEGF stimulates angiogenesis and neurogenesis, and
improves functional outcome after stroke, through mul-
tiple mechanisms.113,114 Among other effects, VEGF is a
chemoattractant for bFGF-stimulated neural progeni-
tors.115 VEGF increases ischemia-induced tyrosine phos-
phorylation of Kv1.2 potassium channel proteins via ac-
tivation of the PI3K pathway, enhances proliferation and
migration of neural progenitors in the SVZ, and im-
proves striatal neurogenesis, neuronal differentiation,
and maturation of neuroblasts in adult rat brains after
stroke.109,116,117

VEGF can be induced in ischemic brain by both cell-
based and pharmacological restoration therapies. In most
preclinical and clinical studies, however, the introduction
of these factors as single agents has resulted in the for-
mation of stabilized blood vessels of only limited dura-
tion.118 Drawbacks of administering VEGF directly in-
clude the potential adverse effects of inducing
hemorrhage. To our knowledge, no clinical trials are
planned or proposed to treat stroke using VEGF. A more
reasonable approach to capitalizing on the potential ben-
efit of VEGF is through pharmacological agents that
stimulate endogenous production of VEGF.
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CONCLUSION

Here we have partially summarized the use of MSCs
and pharmacological agents in clinical use that have
potential to improve neurological function when admin-
istered, after stroke, or later. All of these agents increase
VEGF levels and activate signal transduction pathways
that remodel brain by inducing neurogenesis, angiogen-
esis, synaptic plasticity, and structural changes that aug-
ment functional improvement after a stroke. MSCs and
many of these therapeutic molecules have long and safe
medical histories from their use in treatment of other
medical conditions. The literature reviewed here shows
that the injured brain can be stimulated to improve neu-
rological function. Many of these restorative events, such
as angiogenesis, neurogenesis, and synaptic plasticity
occur naturally after stroke, but they can also be ampli-
fied by cell and pharmacological interventions to restore
neurological function after a cerebral insult.
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