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Summary: Although primary brain tumors (PBTs) are generally
considered to be a multifactorial disorder, understanding the ge-
netic basis and etiology of the disease is essential for PBT risk
assessment. Understanding of the genetic susceptibility for PBT
has come from studies of rare genetic syndromes, linkage
analysis, family aggregation, early-onset pediatric cases, and
mutagen sensitivity. There are currently no effective mark-
ers to assess biological dose of exposures and genetic het-
erogeneity. The priorities recently recommended by the
Brain Tumor Epidemiology Consortium emphasized the
need for expanding research in genetics and molecular epi-
demiology. In this article, we review the literature to identify
molecular epidemiologic case-control studies of PBTs that

were hypothesis-driven and focused on four hypothesized
candidate pathways: DNA repair, cell cycle, metabolism,
and inflammation. We summarize the results in terms of genetic
associations of single nucleotide polymorphisms of these pathways.
We also discuss future research directions based on available evi-
dence and technologies, and conclude that high resolution whole
genome approach with significantly large sample size could rapidly
advance our understanding of the genetic etiology of PBTs. Literature
searcheswere done onPubMed inMarch 2009with the terms glioma,
glioblastoma, brain tumor, association, and polymorphism, and we
only reviewed English language publications.Key Words: Molec-
ular epidemiology, brain tumors, genome-wide association,
polymorphisms.

INTRODUCTION

The United States is among those countries where
higher incidence rates of primary brain tumors (PBTs)
are found.1,2 It is estimated that there are 22,000 new
cases of PBTs and 13,000 deaths annually in the U.S.
The Central Brain Tumor Registry of the United States
(CBTRUS)3 annual reports indicated that brain tumor
incidence was increasing over a 10-year period from
1985 to 1994. CBTRUS data also showed that glioma
accounts for 77% of PBTs, and patients with glioma have
very poor survival. Although high-dose ionizing radia-
tion and rare genetic syndromes are the only well estab-
lished risk factors,4,5 they seem to account for only a
small portion of all PBT cases. This observation supports
hypotheses that PBTs genetically are a multifactorial
disease rather than a condition that follows a mode of
Mendelian inheritance or results from a single exposure.
Moreover, variations at multiple loci might determine the

expression of each gene. Hundreds of susceptible loci
that are involved in single disorders are not always lo-
cated in genes associated with disease risk. The varia-
tions at multiple loci contribute to the expression of each
gene involved.6

Recently, genome-wide association studies (GWAS)
with very large sample sizes and carefully matched con-
trols have provided a powerful tool to identify genes
involved in common human genetic diseases.7-11 This
emergent technology can detect effects at the single nu-
cleotide level. The identification of susceptibility alleles
provides a greater understanding of carcinogenesis, po-
tentially offering targets for therapeutic interventions.
Unlike lifestyle exposure, single nucleotide polymor-
phisms (SNPs) do not change during the process of car-
cinogenesis. Therefore, SNPs could be suitable biomar-
kers in risk assessment. SNPs identified through this
approach are associated with modest risk of PBTs, but
this is just the beginning of the investigation of the
complicated genetic basis of phenotypic variation. The
most pressing challenge is how to link GWAS results
with observed clinical and phenotypic changes. Possibly
with genetic technology we might also be able to deter-
mine the racial differences of PBT incidence—in partic-
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ular why African Americans have such low incidence of
developing PBTs.
This article reviews the literature for findings concern-

ing the exploration of the genetic etiology of PBTs
(mainly glioma) and identification of the knowledge gap
in PBT research. Future direction is discussed based on
available evidence and technologies.

GENETIC CHANGES ASSOCIATED WITH
SUSCEPTIBILITY

PBT is considered to be a multifactorial disease. Accu-
mulative DNA damage responsible for tumor transforma-
tion is the result of interactions between environmental
exposure and genetic susceptibility. Although it is still hard
to quantitatively determine the magnitude of environmental
exposure and genetic susceptibility, the accuracy of risk
assessment is improved with the improvement of genotyp-
ing resolution and whole genome approaches. Genetic sus-
ceptibility of PBT comes from rare genetic syndromes,
family history of multiple cancers, chromosome changes,
and linkage analysis. The improved resolution of genetic
testing helps us understand the role of genetic polymor-
phisms, specifically in pathways such as DNA repair, cell
cycle, inflammation, angiogenesis, and metabolic genes
in the process of brain tumor carcinogenesis. It has been
suggested that the initial genetic event of PBT involves
genetic polymorphism and mutation of DNA repair and
apoptosis genes. Subsequent somatic mutations in cell
cycle control and angiogenesis genes are essential for
malignant transformation. Rare genetic disorders such as
Li-Fraumeni syndrome, neurofibromatosis (NF) type 1
and type 2, tuberous sclerosis, Turcot’s syndrome, and
familial polyposis support inherited predisposition to
PBTs.12-14 Comparative genomic hybridization (CGH)
analysis of familial PBTs aimed to reveal disease-spe-
cific chromosomal changes and thus identified a spec-
trum of chromosomal losses and gains.15,16 The epide-
miologic evidence is suggestive for association between
PBT and family history of cancer. Many studies have
reported familial aggregation of glioma.17-23 As familial
aggregation of cancers could be a sign of genetic etiol-
ogy, we suspect that there are alleles responsible for
familial aggregation observed in PBT patients and that
these alleles could be revealed by GWAS analysis. The
same assumption might be true for early-onset pediatric
PBT cases.

Cytogenetic markers used for molecular
epidemiology in PBTs
Molecular cytogenetic analysis of familial PBTs pri-

marily focused on studying genes possibly associated
with the disease, especially TP53, PTEN, CDKN2A, and
CDK4 genes. However, germline mutations did not in-
crease significantly for familial PBTs.24,25 In 2002,

Paunu et al26 performed the first linkage study for famil-
ial glioma, investigating 15 familial glioma pedigrees by
using a two-stage disease gene mapping strategy for
low-penetrance alleles. Their result indicated that 15q23-
q26.3 harbors a novel susceptibility allele for familial
glioma, and since their finding, improved higher resolu-
tion molecular genetic technology has marked the
progress of mapping genetic changes in PBTs. Bredel et
al27 conducted a high-resolution mapping by using
cDNA microarray CGH technology to profile genetic
changes with 42,000 cDNA clones in a cohort of 54
glioma patients and identified five novel minimally de-
leted loci thought to be important in gliomagenesis. The
study successfully predicted astrocytoma and oligoden-
droglioma with 92% and 88% accuracy, respectively,
based on 170 gene copy number patterns. Their findings
implied that some early genetic changes necessary for
gliomagenesis may be shared within the same histolog-
ical groups and might be used for tumor classification.
The first genome-wide analysis of pediatric PBTs for
DNA copy number changes and loss of heterozygosity
(LOH) by using SNP array was reported by Wong et al,28

who used a chip containing 11,562 SNPs, and analyzed
14 high-grade and 14 low-grade pediatric glioma. Wong
et al found no detectable LOH for low-grade glioma,
various degrees of LOH for high-grade cases, and am-
plification on EGFR and PDGFRA loci. They eventually
validated their results by sequencing and quantitative
PCR.

PBTs molecular epidemiologic studies with focus on
DNA repair
DNA repair genes are a key factor in maintaining

genomic stability. We have listed about 20 epidemiolog-
ical studies reporting positive associations between DNA
repair polymorphisms and cancer risk (Table 129-45).
Only a small proportion of studies were large (five stud-
ies were more than 500 pair cases and controls) and
population based; however, some consistencies in results
are apparent. Primarily, of the 17 genes associated with
glioma risk, eight were from the double-strand breaks
repair (DSBR) pathway, suggesting a strong link be-
tween DSBR and glioma. Although the etiology of gli-
omas remains unclear, ionizing radiation (IR) has been
identified as the well established risk factor. IR induces
various types of DNA damages, particularly DSBs that
are the major threats to the genomic integrity of cells.
Considering that DSBR is the most important DNA re-
pair pathway to deal with such damage, it is very likely
that the SNPs in the DSBR could play an important role
in carcinogenesis. Second, three genes, ERCC1, ERCC2,
and especially MGMT, a gene involved in repairing al-
kylated quinine in DNA, were consistently associated
with glioma risk across three different studies from three
different populations (whites, Japanese, and Caucasians),
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which strongly suggests that they may be involved in
carcinogenesis. A recent European study revealed that
CHAF1A, a gene coded for Chromatin assembly factor,
is associated with increased glioma risk. Additional ep-
idemiological analyses of these and other DNA repair
gene polymorphisms will provide essential information
about the in vivo relationships between the DNA repair
mechanisms and carcinogenesis and will complement in
vitro analysis.

PBTs molecular epidemiologic studies with focus on
cell cycle
Glial cell proliferation is considered important in glio-

magenesis. Studies that looked at the correlations be-
tween cell cycle genes and glioma risk did not generate
a clear pattern (Table 243,46-70). The positive association
between EGF/EGFR and glioma risk was observed in
majority of the case-control studies published. However,
studies of PTEN and TP53 genes and glioma risk gave
contradictory results. CASP8, a gene that plays a critical
role in the execution phase of programmed cell death,
CDKN2A (cyclin-dependent kinase inhibitor 2A), an im-
portant tumor suppressor gene that is frequently deleted
in many tumors, and CX3CR1, a chemokine receptor 1
gene, have recently been reported to be risk-bind genes

and will need further validation. HRAS and MDM2,
genes involved in signal transduction pathway and inac-
tivation of tumor protein p53, were reported to be not
associated with glioma risk.MMP7, NF1, and TP53 were
linked to the risk of astrocytoma, but the results require
further confirmation. CASP8 is also reported to be asso-
ciated with the risk of meningioma. Results for astrocy-
toma and meningioma risk were not sufficient to draw
any conclusions.

PBTs molecular epidemiologic studies with focus on
metabolism
Our review indicated that currently available studies

do not provide enough supportive information to estab-
lish genes involved in metabolism for PBT risk assess-
ment (Table 371-83). Contradictory results were observed
forMTHFR,MTRR, NAT2, and PON1 for glioma. SOD2,
SOD3, and CAT were positively linked to glioma risk in
a recent study. The association was not indicated for
CYP1A1, GSTT11, GSTM1, GSTM3, and NQO1. This is
inconsistent with data from meta-analysis. A meta-anal-
ysis of eight studies with 1,630 gliomas, 245 meningio-
mas, and 7,151 controls found no association between
glutathione S-transferases (GST) variants and adult brain
tumors.84 Neural carcinogens, such as dietary N-nitroso

Table 1. PBT Molecular Epidemiologic Studies with Focus on DNA Repair

Disease
Type Pathway Gene

Association
Y/N Population Sample Size

References
(Year)

Glioma Double strand break repair
XRCC3 Y Chinese 771 cases, 752 controls 29 (2009)

Y Caucasian 844 cases, 1560 controls 30 (2008)
XRCC4, LIG4 Y Chinese 771 cases, 752 controls 31 (2008)
XRCC5, XRCC6 Y Chinese 771 cases, 752 controls 32 (2007)
XRCC7 Y Caucasian 309 cases, 342 controls 33 (2004)
BRCA1, EME1 Y Caucasian 112 cases, 112 controls 34 (2008)

Base excision repair
APEX1, XRCC1, PARP1 (ADPRT) Y Caucasian 373 cases, 365 controls 35 (2009)
XRCC1 Y Caucasian 844 cases, 1560 controls 30 (2008)

Nucleotide excision repair
ERCC1 Y White 122 cases, 159 controls 36 (2000)

Y White 450 cases, 500 controls 37 (2005)
Y Caucasian 373 cases, 365 controls 35 (2009)

ERCC2 (XPD) Y White 187 cases, 169 controls 38 (2001)
Y White 141 cases, 108 controls 39 (2005)
Y White 450 cases, 500 controls 37 (2005)

LIG1 Y Caucasian 373 cases, 365 controls 35 (2009)
Direct reversal of damage

MGMT Y White 453 cases, 526 controls 40 (2007)
Y Japanese 74 cases, 255 controls 41 (2003)
Y Caucasian 373 cases, 365 controls 35 (2009)

Chromatin Structure
CHAF1A Y Caucasian 1013 cases, 1016 controls 42 (2008)

Others
EXO1 Y Caucasian 112 cases, 112 controls 34 (2008)
WRN N Brazilian 94 cases, 100 controls 43 (2008)

Meningioma ERCC2, Ki-ras Y Israel 440 cases 44 (2005)
RAD54L Y Spain and Ecuador 70 cases, 287controls 45 (2003)
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compounds (NOCs) from consumption of cured meats,
were studied for the risk of gliomas. A pooled analysis of
nine population-based studies failed to establish NOCs
as a causal agent for glioma.85

PBTs molecular epidemiologic studies with focus on
inflammation
An inverse association between IL-4RA, IL-13, and

glioblastoma was observed and the relationship was not
affected by allergic conditions (Table 486-92). The studies
also provide evidence to establish allergies as a risk
factor for glioma and thus urge the identification of more
candidate genes to be studied under this category. Fur-
thermore, a meta-analysis of 3,450 gliomas and 1,070
meningiomas from eight observation studies found a
strong inverse relationship between history of asthma,
eczema, hay fever, or allergy and brain tumor.93 SNP
analysis of IL-4, IL-4RA, and IL-13 was demonstrated to
be a better approach for overcoming the recall bias of
self-reporting allergies and increased post diagnostic im-
munoglobulin E levels. However, it remains unclear
whether allergies protect against tumors or whether im-
munosuppressive gliomas inhibit allergies. The consis-
tency of these findings suggests a possible role in glio-

magenesis for immunologic factors and inflammation,
clearly warranting more investigation of immune func-
tion genes.

DISCUSSION AND FUTURE DIRECTIONS

In summary, among the polymorphisms in DNA re-
pair, cell cycle, metabolism, and inflammation pathways,
the DNA repair and inflammation pathways, in particular
the DSBR sub-pathway, may play important roles in the
initiation of glioma. However, despite the promise of all
of the molecular epidemiology information accumulated
over the years, there is currently little or no knowledge of
the functional relevance of these polymorphisms that are
being studied. Therefore, in addition to emphasizing
large, well designed epidemiological studies, gene envi-
ronment and gene-gene interactions, future studies
should emphasize the functional relevance of poly-
morphisms and their correlation with repair pheno-
types to help further illuminate the complex landscape
of molecular epidemiology and PBT risk. (Studies in
which the pathway gene was not specified are shown
in Table 5.39,94-101)

Table 2. PBT Molecular Epidemiologic Studies with Focus on Cell Cycle

Disease Type Pathway Gene Association Y/N Population Study Info
References
(Year)

Glioma TP53 Y 135 cases 46 (2005)
Y USA 22 cases only (mutations) 47 (1995)
Y Chinese 44 cases only (mutations) 48 (1999)
N Brazilian 94 cases, 100 controls 43 (2008)
N Japanese 113 cases 49 (2004)

EGF Y USA 42 cases only (mutations) 50 (2004)
Y Caucasian 188 cases, 176 controls 51 (2006)
Y 197 case, 570 controls 52 (2007)
N Caucasian 209 cases, 214 controls 53 (2007)

EGFR Y 70 cases only (mutations) 54 (1997)
N Brazilian 193 cases, 200 controls 55 (2008)
Y USA 174 cases; cohort 56 (2001)
N Japanese 113 cases 49 (2004)

PTEN Y Japanese 26 cases only (mutations) 57 (2004)
N Turkish 62 cases only 58 (2007)
Y USA 174 cases; cohort 56 (2001)

MDM2 N 98 cases, 102 controls 59 (2008)
N Japanese 254 cases, 50 controls 60 (2007)

CDKN2A Y 45 cases only 61 (2003)
N 36 families, with 44 patients 62 (1997)

NF1 Y 12 cases only 63 (2003)
PIK3CA Y US 73 cases only 64 (2006)
MMP1 Y 81 cases, 57 controls 65 (2005)
MMP7 Y Chinese 221 cases, 366 controls 66 (2006)
HRAS N White 73 cases, 65 controls 67 (2000)
CASP8 Y Caucasian 1005 cases, 1011 controls 68 (2008)
CDKN2B, CDK4 N 36 families, with 44 patients 62 (1997)
CX3CR1 Y France 208 cases only 69 (2008)

Meningioma CASP8 Y White, Black, and
Other

623 cases, 799 controls 70 (2007)
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We constructed a working hypothesis diagram for
gliomagenesis because most of the studies reviewed
were predominantly dealing with glioma (FIG. 1). Un-
derstanding the genetic etiology of PBT is essential to
understand the familial aggregation, ethnic differences,
age preferences, and high-risk exposure of the disease.
High-penetrance genetic abnormalities that influence
PBTs involve the NF1 gene, p53 gene,MMR genes, APC
gene, and only rarely the PTEN, p16 (INK4A)/p14
(ARF), and CDK4. However, risk from high-penetrance
germline mutations only accounts for a very small por-

tion of overall risk when compared to those from low-
penetrance germline mutations. It is evidenced that many
newly identified susceptibility SNPs via high-throughput
whole genome approaches are significantly associated
with only low risk of the disease, suggesting multiple
gene groups involved in different steps of the genetic
pathway. Although it is not established that the effects at
the single nucleotide level might be causative for the
disease, we presented studies of the genetic polymor-
phisms of both high and low penetrance genes, especially
multiple genes that regulate various DNA repair path-

Table 3. PBT Molecular Epidemiologic Studies with Focus on Metabolism

Disease Type Pathway Gene
Association
Y/N Population Study Info

References
(Year)

Acoustic neuroma,
Glioma,
Meningioma

CYP1A1, CYP1B1,
GSTM3, NQO1,
EPHX1

N White, Black and
Other

782 cases, 799 controls 71 (2006)

CYP2E1 Y White, Black and
Other

673 cases, 799 controls 72 (2003)

SOD2, SOD3, CAT Y Non-Hispanic White 465 cases, 494 controls 73 (2008)
Glioma GSTM1 Y 394 cases only 74 (2002)

N Caucasian 725 cases, 1612 controls 75 (2007)
NAT2 Y Caucasian, African-

American
90 cases, 90 controls 76 (1998)

N 159 cases, 163 controls 77 (2001)
PON1 Y Turkish 84 cases, 50 controls 78 (2006)

N White, African-
American, Asian
and Other

66 cases, 236 controls 79 (2005)

MTHFR, MTR Y UK Caucasian 1005 cases, 1101 controls 80 (2008)
N Caucasian 328 cases, 400 controls 81 (2006)

NQO1 N Caucasian 725 cases, 1612 controls 75 (2007)
N 159 cases, 163 controls 77 (2001)

GSTP1 Y 394 cases only 74 (2002)
GSTs N Caucasian, African-

American, and
Other

367 cases, 428 controls 82 (2004)

GSTM3, GSTT1,
CYP1A1

N Caucasian 725 cases, 1612 controls 75 (2007)

MDR1 N Caucasian 458 cases, 528 controls 83 (2005)

Table 4. PBT Molecular Epidemiologic Studies with Focus on Inflammation

Diseases Type Pathway Gene
Association
Y/N Population Study Info References (Year)

Glioma IL4R Y Caucasian 694 cases only 86 (2008)
Y Caucasian 456 cases, 541 controls 87 (2007)
Y 111 cases, 422 controls 88 (2005)
Y Caucasian 217 cases, 1171 controls 89 (2007)

IL4 Y 756 cases, 1190 controls 90 (2007)
Y Caucasian 456 cases, 541 controls 87 (2007)

IL13 Y 111 cases, 422 controls 88 (2005)
Y Caucasian 373 cases, 365 controls 91 In press (2009)
Y Caucasian 456 cases, 541 controls 87 (2007)

IL10, COX2 Y Caucasian 373 cases, 365 controls 91 In press (2009)
IL6 Y 756 cases, 1190 controls 90 (2007)
PTGS2, ADAM33 Y 111 cases, 422 controls 88 (2005)
TNFb4 Y Italy 58 cases, 95 controls 92 (1999)
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ways, which is important to understand the predisposi-
tion to PBTs. Initial predisposing events involve genes
regulating DNA repair and apoptosis that lead to further
somatic events and the formation of PBTs. It occurs
more frequently in families with a history of multiple
cancers, early-onset pediatric PBTs, and occasionally in
random PBTs. On the other hand, the majority of PBT
risk is from unknown somatic mutations and the inter-
action between all mutations and environmental expo-
sure. Few studies have detailed measurements of expo-

sures or gene-exposure interactions. Better exposure
measurements, such as internal dose and biological ef-
fective dose, need to be developed so that both genetic
susceptibility and exposure may be accurately estimated
for overall PBT risk assessment. The heterogeneity of
exposures, susceptibility, and tumor types requires cur-
rent and future research to identify additional germline
polymorphisms. A long-term goal would be to incorpo-
rate these associations with epidemiologic data to de-
velop a risk-assessment model, an effort which could

Table 5. PBT Molecular Epidemiologic Studies with Pathway Gene not Specified

Diseases Type Pathway Gene
Association
Y/N Population Study Info

References
(Year)

Glioma IDH1 Y 22 cases only (mutations) 94 (2008)
Y 445 cases, 494 controls 95 (2009)

IDH2 Y 445 cases, 494 controls 95 (2009)
hTERT Y France 352 cases, 305 controls 96 (2007)
CTNNB1, APC N UK 77 cases only 97 (2006)
GLTSCR1 Y Caucasians 141 cases, 108 controls 39 (2005)
IGF1, IGF1R, IGF2,

IGF2R, IGFBP3
N Non-Hispanic White 487 cases, 495 controls 98 (2008)

Meningioma ALAD Y Caucasian, African-
American, and
Other

686 cases, 799 controls 99 (2006)

Y Caucasian, African-
American, and
Other

782 cases, 799 controls 100 (2005)

Glioma and
Memingioma

SULT1A1 Y Turkish 60 cases, 156 controls 101 (2008)

FIG. 1. Working hypothesis of gliomagenesis.
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also improve classification of PBTs into more homoge-
nous groups by using molecular markers.
In order to study familial aggregation by using the

whole genome SNPs approach, an international consor-
tium, GLIOGENE,102 was assembled in 2007 with the
aim of identifying families with two or more glioma
cases for linkage analysis. GLIOGENE is considered the
first international collaborative effort to investigate fa-
milial glioma regarding shared genetic defects. Recent
molecular epidemiologic studies of PBTs included larger
samples sizes and better designed SNP analysis, but most
of these studies were based on the molecular pathway
proposed and covered limited genetic loci. As the tech-
nology improves, a whole genome non-hypothesis driven
approach with higher resolution will be able to identify
disease-specific susceptibility loci in order to better un-
derstand the genetic etiology associated with PBT risk.
To further expedite our understanding of the molecular
basis of cancer, a comprehensive and coordinated effort
from the Cancer Genome Atlas (TCGA), funded by the
National Institutes of Health, has been put forward to
apply several profiling modalities in a high throughput
fashion to three cancer types. Glioblastoma,103 squamous
cell lung cancer, and ovarian carcinoma were selected
due to their poor prognosis and the relatively large
amounts of high-quality tissue samples in bioreposito-
ries. The modalities used to characterize the numerous
samples include DNA sequencing of a select number of
genes, gene expression by microarray, CGH arrays,
methylation arrays, and microRNA microarrays. The
output from TCGA and other high-throughput projects is
still being evaluated, and it is likely that further exciting
findings will be made in these datasets.
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