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Electrospray©ionization©tandem©mass©spectrometry©has©been©used©to©characterize©the©micro-
structure©of©a©nitroxide-mediated©poly(ethylene©oxide)/polystyrene©block©copolymer,©called
SG1-capped©PEO-b-PS.©The©main©dissociation©route©of©co-oligomers©adducted©with©lithium©or
silver©cation©was©observed©to©proceed©via©the©homolytic©cleavage©of©a©C–ON©bond,©aimed©at
undergoing©reversible©homolysis©during©nitroxide©mediated©polymerization.©This©cleavage
results©in©the©elimination©of©the©terminal©SG1©end-group©as©a©radical,©inducing©a©complete
depolymerization©process©of©the©PS©block©from©the©so-formed©radical©cation.©These©successive
eliminations©of©styrene©molecules©allowed©a©straightforward©determination©of©the©PS©block
size.©An©alternative©fragmentation©pathway©of©the©radical©cation©was©shown©to©provide
structural©information©on©the©junction©group©between©the©two©blocks.©Proposed©dissociation
mechanisms©were©supported©by©accurate©mass©measurements.©Structural©information©on©the
SG1©end-group©could©be©reached©from©weak©abundance©fragment©ions©detected©in©the©low©m/z
range©of©the©MS/MS©spectrum.©Amongst©fragments©typically©expected©from©PS©dissociation,
only©�©ions©were©produced.©Moreover,©specific©dissociation©of©the©PEO©block©was©not©observed
to©occur©in©MS/MS,©suggesting©that©these©rearrangement©reactions©do©not©compete©effectively
with©dissociations©of©the©odd-electron©fragment©ions.©Information©about©the©PEO©block©length
and©the©initiated©end-group©were©obtained©in©MS3©experiments.© (J©Am©Soc©Mass©Spectrom
2008,©19,©1163–1175)©©©2008©American©Society©for©Mass©Spectrometry

Block©copolymers©have©become©a©central©compo-
nent©of©numerous©nanotechnologies©[1]©because
of©their©highly©ordered©nanostructures©[2,©3]©and

the©development©of©design©paradigms©[4]©to©generate
nanostructures©of©particular©size©and©shape.©Unique
properties©in©selective©solvents©can©be©obtained©with
amphiphilic©copolymers,©consisting©of©hydrophilic©and
hydrophobic©parts.©Copolymers©containing©poly(ethyl-
ene©oxide)©(PEO)©as©hydrophilic©segment©are©the©most
extensively©studied©and©industrially©significant©due©to
their©numerous©biological©and©chemical©properties©[5].
In©particular,©combinations©of©PEO©with©polystyrene
(PS)©in©PS-b-PEO©diblock©or©PS-b-PEO-b-PS©triblock
copolymers©are©used©in©many©industrial©applications
such©as©polymeric©surfactants,©compatibilizers©in©poly-
mer©blending,©dispersions,©stabilizers,©and©templates©for
the©preparation©of©inorganic©nanoparticles©[6–8].©Novel
applications©have©recently©been©developed©using©the
self-assembly©ordered©nanostructures©of©PEO-b-PS©and

PS-b-PEO-b-PS,©e.g.,©the©preparation©of©mesoporous
silica©films©with©different©pore©sizes©[9]©and©electrolyte
for©rechargeable©batteries©[10].

In©the©last©decade,©the©major©breakthrough©in©block
copolymer©synthesis©has©been©the©development©of©con-
trolled©radical©polymerization©(CRP)©techniques©[11].
More©particularly,©an©original©method©based©on©nitrox-
ide©mediated©polymerization©(NMP)©allows©well©de-
fined©structure©copolymers©to©be©synthesized©both©on
laboratory©and©industrial©scale.©The©principle©of©NMP
technique©is©to©establish©a©dynamic©equilibrium©be-
tween©a©small©fraction©of©growing©free©radicals©and©a
majority©of©dormant©species©(Scheme©1).©The©reversible
termination©of©the©growing©polymeric©chains©is©the©key
step©for©the©reduction©of©the©overall©concentration©of©the
propagating©radical©chain©end,©allowing©polymerization
to occur in a living fashion with a high degree of control
over the entire polymerization process.

The performance of copolymer materials depends on
structurally related parameters, such as molecular
weight distribution, chemical nature of the end-groups,
random or block nature of copolymer, and balance
between hydrophobic and hydrophilic segments. Un-
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ambiguous characterization of copolymer microstruc-
ture is thus an important analytical issue. Since the
development of soft ionization techniques, mass spec-
trometry (MS) has been shown to be a powerful tool for
copolymer analysis. MS spectra obtained after matrix-
assisted laser desorption/ionization (MALDI) or elec-
trospray ionization (ESI) allow copolymer samples to be
easily distinguished from homopolymers [12]. Since
copolymers contain more than one type of repeat unit,
MS spectra are significantly more complicated. How-
ever, as MS allows individual co-oligomer ions to be
measured, the overall composition and mass of end-
groups can be reached, as long as any peak overlap can
efficiently be resolved [13]. Data from MS spectra could
thus indicate the number of each co-monomer but not
the position of the repeat units throughout the mole-
cule. To distinguish block from random copolymers,
ion fragmentation is required since fragmentation pat-
terns are specific of a polymer type [12]. Alternatively,
ion mobility was reported to provide useful informa-
tion as long as cross-sections of copolymer differ upon
variation in the co-monomer sequence [14]. Fragmenta-
tion can be produced in hard ionization sources [15] or
after ions are activated in MS/MS or post-source decay
(PSD) experiments. Copolyethers [16–20] and copolyes-
ters [13, 21–24] have been the most studied synthetic
copolymers in terms of fragmentation. A larger number
of product ions are usually generated from copolymer
than from homopolymer precursor ions [12]. However,
some block copolymers have been reported to undergo
selective fragmentation of a function between the two
blocks, thus providing clear information about the
block size from a simple PSD spectrum [17]. Electron
capture dissociation has also been described to cause
minimal rearrangement of copolymer ions, thus simpli-
fying the fragment ion spectra while maintaining useful
structural information [18]. Significant differences be-
tween product ion spectra enable differentiation be-
tween block and random copolymers [19]. First, al-
though usually larger than for homopolymers, the
number of fragment ions arising from dissociation of a
block co-oligomer is smaller than for a random one
because many more sequences are present in the latter

[12]. More importantly, fragmentation pathways along
the chain allow the copolymer to be sequenced since
each co-monomer shows distinct dissociation behavior.
MS/MS or PSD data of copolymers can then be ana-
lyzed based on the knowledge of the fragmentation
behavior of homopolymers consisting of each of the
co-monomers.

We report here on a MS/MS study of poly(ethylene
oxide)/polystyrene block copolymer (PEO-b-PS), syn-
thesized by nitroxide-mediated polymerization (NMP)
[25]. The main steps of this synthesis are described in
Scheme 2. Such PEO-b-PS diblock copolymer with well
defined structure has CH3- as the � end-group, SG1
nitroxide as the � end-group and a linkage group
between the two blocks, as illustrated in Scheme 2.
Fragmentation pathways of PEO oligomers have al-
ready been demonstrated, using fast atom bombard-
ment (FAB) [16, 26], MALDI [27–32], ESI [33–35], or
desorption electrospray ionization (DESI) [36] to gener-
ate oligomer adducts. Structural characterization of PS
ions produced by MALDI has been reported using
collision-induced dissociation (CID) [27, 37–42], sus-
tained off-resonance irradiation (SORI)-CID [43], or
PSD [39], and fragmentation pathways were described.
These established dissociation routes were then used to
reach structural information from CID spectra of the
studied SG1-capped PEO-b-PS copolymer.

Experimental

Chemicals

Methanol and HPLC grade water were purchased from
SDS (Peypin, France). Salts used to promote electros-
pray ionization were LiCl and AgNO3 from Sigma-
Aldrich (St. Louis, MO).

All reaction steps for the preparation of SG1-capped
PEO-b-PS (3) were performed under a dry nitrogen atmo-
sphere. Poly(ethylene glycol) methyl ether (PEO-Me) with
Mn � 350 g mol�1, styrene (99%), acryloyl chloride (96%)
and triethylamine (TEA, 99%) were all purchased from
Sigma-Aldrich and were used as received without further
purification. The SG1-based alkoxyamine derived from
methacrylic acid, also called MAMA-SG1 (acid 2-methyl-
2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethyl
propyl)aminoxy] propanoic) was kindly supplied by
ARKEMA. All solvents were used without any further
purification.

Copolymer Synthesis

The synthetic procedure of (3) involves three steps: the
preparation of PEO-acrylate (1), the intermolecular rad-
ical addition of MAMA-SG1 alkoxyamine onto (1) and
the polymerization of styrene using PEO-acrylate-
MAMA-SG1 (2) as an initiator (Scheme 2). PEO-acrylate
(1) was obtained by esterification of PEO-Me (Mn �
350 g.mol�1) with an acryloyl chloride. One of the vinyl
protons of the acrylate group in (1) could be observed

Scheme 1
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by 1H NMR at � � 6.40-6.45 ppm. The reaction yield of
this first step (95%) was determined by comparing the
integration of this proton peak and the CH3 �-end-
group protons (� � 3.38 ppm). Addition of the MAMA-
SG1 alkoxyamine to the PEO-acrylate (1) occurs via a
thermal homolysis of the C-ON bond leading to the
formation of the two radicals: the transitory alkyl rad-
ical MAMA and the stable SG1 nitroxide. Because of the
high dissociation rate constant of the MAMA-SG1
alkoxyamine [44] a high concentration of SG1· is re-
leased at the onset of the reaction. The persistent radical
effect [45] is then strongly pronounced, and neither
oligomerization nor dimerization is expected. The pres-
ence of activated olefin (1) leads to an intermolecular
radical 1,2-addition. The 1H NMR spectrum of the
PEO-acrylate-MAMA-SG1 shows that the signals due to
the vinyl protons of the acrylate group (� � 5.75–6.45
ppm) disappear, indicating a 100% yield for this addi-
tion reaction. The PEO-acrylate-MAMA-SG1 (2) was
then used to initiate the bulk polymerization of styrene
at 105 °C for 150 min under inert atmosphere. The
styrene/PEO-acrylate-MAMA-SG1 concentration ratio
was such that a theoretical PS molar mass of 1700 g
mol�1 at 100% conversion was expected. The polymer-

ization was stopped by quenching the reaction in an ice
bath. The SG1-capped PEO-b-PS diblock copolymer was
precipitated in cold n-hexane, rinsed with diethyl ether
and dried under vacuum at room temperature. Styrene
conversion was determined by 1H NMR spectroscopy
(conversion � 26.5%, expected Mn(PS) � 400 g mol�1).
The 1H NMR spectrum of the final PEO-b-PS copolymer
in CDCl3 shows new peaks (� � 6.5–7.2 ppm) corre-
sponding to the phenyl protons of the PS block. This
confirms the formation of the block copolymer as sche-
matized in Scheme 2. The final copolymer composition
was thus determined from the ratio between the inte-
grals of the PS phenyl 1H signals and the methyl 1H
signal of the �-end-group. Considering the molar mass
values given by supplier for the PEO block (Mn � 350 g
mol�1), the 1H NMR compositional analysis indicated a
PS block molar mass of 300 g mol�1.

Mass Spectrometry

MS and MS/MS experiments were performed with a
QStar Elite mass spectrometer (Applied Biosystems
SCIEX, Concord, ON, Canada) equipped with an elec-
trospray ionization source operated in the positive ion
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mode. The capillary voltage was set at 5500 V and the
cone voltage at 80 V. In this hybrid instrument, ions were
measured using an orthogonal acceleration time-of-flight
(TOF)mass analyzer. A quadrupolewas used for selection
of precursor ions to be further submitted to collision-
induced dissociations (CID) in MS/MS experiments.

MS3 experiments were performed with a 3200 Q-
TRAP mass spectrometer (Applied Biosystems SCIEX)
equipped with an electrospray ionization source oper-
ated in positive mode. The capillary voltage was set at
4500 V and the cone voltage at 80 V. Primary precursor
ions generated in the ion source were selected in the
quadrupole analyzer and submitted to CID in a colli-
sion cell. Secondary precursor ions produced during
collisions were selected and then fragmented in a linear
ion trap.

In both instruments, zero-grade air was used as the
nebulizing gas (10 psi) whereas nitrogen was used as
the curtain gas (20 psi) as well as the collision gas.
Collision energy was set according to the experiments.
Instrument control, data acquisition and data process-
ing of all experiments were achieved using Analyst
software (QS 2.0 and 1.4.1 for the QqTOF and the
QqTrap instruments, respectively) provided by Ap-
plied Biosystems.

The SG1-capped PEO-b-PS copolymer was dissolved in
THF, further diluted using methanolic salt solution (0.1
mM) to a final 1mgmL�1 concentration and introduced in

the ionization source at a 5 �L/min flow rate using a
syringe pump.

Results and Discussion

ESI-MS Analysis

ESI mass spectra of SG1-capped PEO-b-PS could be
obtained using lithium or silver salt to generate copo-
lymer adducts. The choice of these two particular
cations was based upon the nature of the co-monomers.
MS/MS spectra of lithiated PEO precursors were re-
ported to be the most informative [16, 26, 30–32, 46],
while characterization of PS oligomer systems is usually
performed with silver cation. Using lithium as the
cationizing agent, ions observed in the mass spectrum
were mostly singly charged molecules. Doubly charged
co-oligomers were detected with a 10 time lower inten-
sity compared with their singly charged homologues. A
small copolymer was chosen for this study to prevent
the formation of ions with multiple charge states, so
readily obtained during ESI of moderate size PEO [47],
which would both complicate the MS spectrum and
affect signal-to-noise ratio since signal of each molecule
would be distributed over multiple peaks. Figure 1
shows the ESI mass spectrum of lithiated SG1-capped
PEO-b-PS copolymer. Within the displayed m/z range
where singly charged ions were observed, homologue
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Figure 1. ESI-MS spectrum of SG1-capped PEO-b-PS block copolymer using lithium as the
cationizing agent. Most intense peaks are annotated as n, m, where n and m are the number of
ethylene oxide and styrene units in the co-oligomer ion, respectively.
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series could be defined from each peak by adding or
subtracting 44 or 104 Da, i.e., the mass of ethylene oxide
and styrene unit, respectively. As the molecular weight
of both end- and block linkage-groups are known,
monomer composition of each ion could be calculated
and is reported as n, m in Figure 1, where n and m are
the number of ethylene oxide and styrene monomers,
respectively. Only most intense peaks have been anno-
tated for better clarity. Due to the small size of the
copolymer and the respective mass of each co-monomer,
no peak overlap was to be deplored and resolution

provided by the orthogonal acceleration time of flight
(oa-TOF) mass analyzer was sufficient to propose un-
ambiguous composition for all detected ions. The m/z
values of lithiated copolymer molecules are reported in
Table 1 (usingm/z � 44n � 104m � 467 � 7). These data
are consistent with the indicated polymerization degree
of the two blocks, as determined by 1H NMR.

Using silver as a cationizing agent, the same n, m
co-oligomers could be detected. It should be noted,
however, that ions were of much lower abundance
compared with lithiated molecules.
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Figure 2. ESI-MS/MS spectrum of lithiated SG1-capped PEO7-b-PS4 co-oligomer at m/z 1198.7
(collision energy: 30 eV, laboratory frame).

Table 1. Detected m/z values of lithiated SG1-capped PEO-b-PS co-oligomer ions

n*

m*

1 2 3 4 5 6 7 8

1 830.5
2 770.4 874.5 978.6
3 814.5 918.5 1022.6 1126.6
4 754.4 858.5 962.6 1066.6 1170.7 1274.7
5 798.5 902.5 1006.6 1110.6 1214.7 1318.8 1422.8
6 842.5 946.6 1050.6 1154.7 1258.7 1362.8 1466.8
7 886.5 990.6 1094.6 1198.7 1302.7 1406.8 1510.9 1614.9
8 930.5 1034.6 1138.7 1242.7 1346.8 1450.8 1554.9 1658.9
9 974.6 1078.6 1182.7 1286.7 1390.8 1494.9 1598.9

10 1018.6 1122.7 1226.7 1330.8 1434.8 1538.9
11 1062.6 1166.7 1270.7 1374.8 1478.9 1582.9
12 1210.7 1314.8 1418.8 1522.9
13 1254.7 1358.8 1462.8
14 1298.8 1402.8
15 1446.9

*n and m indicate the number of ethylene oxide and styrene units, respectively.

1167J Am Soc Mass Spectrom 2008, 19, 1163–1175 MS/MS SEQUENCING OF A LIVING BLOCK COPOLYMER



Tandem Mass Spectrometry of Lithiated
SG1-Capped PEO-b-PS

Collision-induced dissociation of lithium and silver
adducts of the copolymer was performed. As the same
main fragments were observed from both types of
adduct and since higher intensity signal was obtained
using Li� cation, fragmentation pathways are described
in details for lithiated molecules. Any effect observed in
MS/MS spectra to be due to silver cation has also been
reported.

MS/MS experiments were performed on different
co-oligomer ions and observed CID patterns were stud-
ied with regard to the expected ionic structure. The CID
spectrum of [7,4 � Li]� (Figure 2) was chosen to
illustrate the MS/MS behavior of the studied copoly-
mer as this precursor ion possesses blocks of large
enough size to allow all the observed fragmentation
pathways to be described while being of relatively high
abundance to ensure a good quality of MS/MS data.
Dissociation of this m/z 1198.7 precursor ion gave rise to
an unexpectedly simple spectrum where only three
main series could be observed. Indeed, a more complex
MS/MS spectra was expected since, following Lattim-
er’s pioneering work [16, 26], all CID studies of PEO
homopolymers have described four main fragment ion
series [27–31, 33–36], and Jackson [27, 37, 38] and others
[39–42] have reported nine fragment ion series arising
from dissociation of PS oligomer ions.

The first reaction, yielding an intense peak at m/z
904.5, would consist of a very fast homolytic bond
cleavage, producing the release of SG1 as a nitroxide
moiety from the precursor ion. This mechanism is
supported by accurate mass measurement (904.5307,
error: 6.0 ppm) and is described in Scheme 3. The
release of this radical moiety during dissociation of the
copolymer cationic adducts would be one of the numer-
ous exceptions to the even-electron rule [48]. However,
formation of odd-electron ions from electrosprayed
cations was shown to be favored when the leaving
group was strongly electro-negative [49]. The thermal
instability of the C–ON bond between the last styrene
unit and the SG1 �-end-group in the studied PEO-b-PS
is the basis of the NMP process (Scheme 1). The same
homolytic cleavage would then occur upon collisional
activation, as reported by Polce et al. [42] in a recent
MS/MS study of PS homopolymers containing a labile
substituent at a chain end. The so-obtained m/z 904.5
fragment ion has the same structure as B ions described
by Jackson et al. [37, 38]. However, to avoid any
confusion with capital letters used in the nomenclature
proposed by Lattimer to describe PEO fragment ions
[16, 26], Jackson’s nomenclature for PS was used here
with lower case letters. As a result, m/z 904.5 was
named b7,4, numbers in subscript indicating the compo-
sition in ethylene oxide and styrene units, respectively.
The complementary [SG1· � Li]� ion was observed at
m/z 301.2 in the MS/MS spectrum. Relative intensity of
peaks at m/z 301.2 and m/z 904.5 suggests that lithium

cation would be more probably linked to the PEO chain
than to the SG1 end-group. This result is consistent with
data reported [35, 50–52], which show that stable con-
formation of lithiated PEO is obtained when the cation
is buried deep in the oligomer chain and coordinated to
as many oxygen atoms as possible.

The b7,4 radical cation further dissociates, inducing a
depolymerization process by radical �-scission (Scheme 3),
consisting of successive eliminations of a styrene molecule
(104 Da). This process gives rise to the following MS/MS
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filiation: b7,4 (m/z 904.5) ¡ b7,3 (m/z 800.4) ¡ b7,2 (m/z
696.4) ¡ b7,1 (m/z 592.3) ¡ b7,0 (m/z 488.3). The number
of 104 Da neutral losses indicates the size of the PS
block, as observed during CID of any of the studied
co-oligomer precursor ions. These results also imply
that the SG1 end-group was initially linked to the last
styrene unit. This mechanism contradicts the PS frag-
mentation mechanism proposed by Gies et al. [40] who
postulated multiple chain breaks and excluded consec-
utive monomer losses. On the other hand, the dissoci-
ation series shown in Scheme 3 agrees well with the
mechanism recently reported by Polce et al. [41, 42],
which includes styrene monomer losses from the radi-
cal ions formed after homolytic cleavages in the PS
chain. Relative abundance of ions in this series is

consistent with the proposed multiple step process: b7,m
peak intensity decreases with the number of styrene
units. The unexpected higher stability observed for b7,1
might be explained by a possible delocalization of the
unpaired electron onto the carbonyl oxygen atom via
the formation of a six-membered ring. Alternatively,
b7,1 fragment ion could also directly arise from b7,4
dissociation via a backbiting rearrangement (such a
1,5-H· transfer is thermodynamically [53, 54] and kinet-
ically [53] favored) followed by a radical-induced bond
cleavage [41, 42].

An alternative fragmentation pathway of the b7,4
radical cation should also be envisaged. Accurate mass
measurement of the ion detected at m/z 817.4 (817.4861,
error: 10.7 ppm) indicates the loss of a C4H7O2

· moiety

Scheme 4
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from m/z 904.5, suggesting the elimination of the
MAMA group as a radical. To account for the formation
of this [b7,4-MAMA] cation, the proposed mechanism
would consist of a three-step pathway (Scheme 4). Two
consecutive 1,5-transfers of H· would first occur and the
subsequent release of MAMA· would proceed via a
radical �-scission process [40–42]. This mechanism
suggests that all b7,m fragment ions should eliminate a
MAMA· radical in a similar way. However, the number
of rearrangement steps involving H· transfers would
depend on the length of the PS block in each b7,m radical
cation. Moreover, whereas the reaction would mainly
proceed via 1,5-transfers of H· when m is an even
number, an additional 1,3-transfer (such as previously
reported in PS fragmentation [40]) has to be envisaged
to allow the final release of MAMA· when the fragment-

ing species contains an odd number of styrene units.
Accurate mass measurement of ions at m/z 713.4, 609.3,
505.3, and 401.2 supports these hypotheses and allow
the corresponding peaks to be annotated [b7,m-MAMA]
in Figure 2. It should be noted that, when using silver as
the cationizing agent, [b7,m-MAMA] ions containing an
odd number of styrene units were not detected in
MS/MS. MS3 experiments, in which b7,m silver adducts
were collisionally activated, were required to observe
the expected release of MAMA·. This result suggests
that the 1,3-hydrogen transfer is a minor pathway for
silver adduct dissociation, as previously reported by
Gies et al. [40]. The 104 Da spacing measured between
ions in this series could have suggested that [b7,m-1-
MAMA] would alternatively result from the elimina-
tion of a styrene neutral from [b7,m-MAMA]. However,
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MS3 experiments have shown that such a MS/MS
filiation did not exist. In contrast, dissociation of all
[b7,m-MAMA] was observed to yield the [b7,0-MAMA],

indicating the loss of a neutral molecule containing m
styrene units. This reaction would proceed via a 1,5-
proton transfer to the O atom, as described in Scheme 4.
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This result would account for the higher intensity of
[b7,0-MAMA], as compared to the other ions within this
series. No complementary ion could be detected, indi-
cating that the position of the cation on the co-oligomer
backbone was preferentially the PEO segment at the
time of dissociation.

Peaks observed at m/z 709.3, m/z 605.3, and m/z 501.3
in Figure 2 could be attributed to the PS specific �
fragments, and were respectively annotated �7,2, �7,1,
and �7,0. According to Jackson [37, 38], the mechanism
would proceed via a six-member ring rearrangement
within the PS block of the [7,4�Li]� precursor ion
(Scheme 5a), allowing three species to be produced. In
our case, only the species containing the PEO block was
detected, indicating again the preferential location of
Li�. However, the reaction depicted in Scheme 5a
involves a proton transfer to a saturated carbon atom
and has recently been questioned [41]. Alternatively,
the same �7,i ions could arise from the dissociation of
b7,i�2, as described in Scheme 5b. In this mechanism, a
1,5-transfer of H· would produce a lithiated inter-
mediate from which a �-scission would allow a 1,3-

diphenylpropanyl radical to be released [40–42].
Scheme 6 summarizes the fragmentation pathways pro-
ducing the main ions detected in Figure 2.

Additional peaks were detected in the low m/z range
of the MS/MS spectrum and mechanisms proposed to
account for these weak abundance ions were based on
accurate mass measurements. The ion detected at m/z
329.2 would arise from the dissociation of [b7,0-MAMA],
as described in Scheme 7a. This mechanism would
involve a 1,5-proton transfer between a C atom from the
last ethylene oxide unit to the central C atom of the
allenic group, allowing a lithiated vinyl-terminated
PEO oligomer and an acrylic acid neutral to be pro-
duced. The ion detected at m/z 347.2 would result from
the dissociation of b7,0. The acidic proton of the MAMA
group would be transferred to the O atom of the ester
function, yielding a lithiated hydroxyl-terminated PEO
oligomer (m/z 347.2) after elimination of a 141 Da
radical (Scheme 7b). Based on their structure, these two
ions were named B6

� and A7
�, respectively, according to

Lattimer’s nomenclature [16, 26].
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Ions detected at m/z 158.1, 139.1, and 102.1 were all
proposed to arise from the dissociation of m/z 301.1,
previously identified as [SG1·�Li]�. According to accu-
rate mass values, these three ions do not contain the
lithium atom, indicating that Li was eliminated in
nonionic species. According to Scheme 8a, a Li–O bond
would be created, involving the O atom from the
phosphonate group while a transfer of H· would occur
from a C atom of an ethyl group to the nitroxide O.
Further reduction of the phosphorus oxidation state
would allow the m/z 158.2 fragment to be produced.
This ion would consecutively eliminate an isobutene
molecule to yield m/z 102.1. The mechanism proposed
for the formation of m/z 139.1 would also involve the
creation of a Li-O bond (Scheme 8b). Two successive
radical transfers, namely Li· and H·, would then be
required to allow the m/z 139.1 phosphonium ion to
be produced. Although of very weak abundance,
these three fragment ions provide structural informa-
tion on the SG1 end-group.

It should be noted that although collision energy was
increased (up to 110 eV, laboratory frame), no fragmen-
tation was observed from the PEO block. The absence of
dissociations within the PEO block could result from
the fact that the C–C and C–O bonds in the PEO chain
are stronger than the C–C(Ph) bonds in the PS chain.
Moreover, all mechanisms involved in cationized PEO
fragmentation consist of rearrangement reactions [16,
26] and, as such, would not compete effectively with
dissociations of the b7,n odd-electron ions. Specific PEO
fragments could only be observed in MS3 experiments,

from [b7,0-MAMA] dissociation (Figure 3). All peaks in
the MS3 spectrum could have been accounted for ac-
cording to mechanisms established for PEO dissociation
[16, 26] and using a slightly modified nomenclature
[35]. The dissociation reactions would thus only be
briefly described here. Lithiated hydroxyl terminated
PEO (n � 3–6), named An

� since the �-end-group is
retained, were produced during a charge-induced reac-
tion. Charge-remote mechanisms would produce vinyl-
terminated Bn

� (n � 2–6) and formyl-terminated Cn
�

(n � 2–5) ions, as well as their complementary An
� (n �

2–4) ions. Internal elimination of a dioxane molecule
would produce E5 from [b7,0-MAMA], as well as E3
from E5. Fragment ions named here B’n (n � 2–5) are
vinyl- and hydroxyl-terminated PEO oligomer ions
which would result from the secondary dissociation of
An

�, according to the same mechanism as described to
produce a B fragment from a PEG precursor ion [16, 26].

Conclusions

The microstructure of a living block copolymer could be
successfully characterized by tandem mass spectrome-
try. In spite of the complex chemical structure of the
living end-group, unexpectedly simple MS/MS spectra
were obtained while maintaining a high level of infor-
mation. In fact, the high propensity of the �-end-group
to be eliminated, upon activation, as a radical moiety
was conferred by the copolymer synthesis technique.
The mass of the �-end-group could thus be reached
from this main reaction. The so-formed odd-electron
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ion allowed new fragmentation pathways to proceed. In
particular, a complete and fast depolymerization of the
PS segment occurred, from which the block nature of
the copolymer as well as the size of the PS block could
be confirmed. This depolymerization process produced
a cationized PEO homopolymer, which size and end-
groups could be reached from its m/z value. All results
presented here are consistent with data recently re-
ported for PS homopolymers, which show that if a
labile substituent is at a chain end, this substituent is
easily eliminated by homolytic bond cleavage and sub-
sequent depolymerization coupled with backbiting is
observed [42]. In case of unknown PEO-b-PS copoly-
mers, characterization of the PEO side would require
MS3 experiments to be performed since PEO specific
dissociations did not compete effectively with homo-
lytic mechanisms demonstrated for the PS block. An
additional dissociation route was also shown to provide
structural information about the block junction, allow-
ing to confirm the structure of the alkoxyamine initially
used in the living polymerization process.
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