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A new approach for automatic parallel processing of large mass spectral datasets in a
distributed computing environment is demonstrated to significantly decrease the total
processing time. The implementation of this novel approach is described and evaluated for
large nanoLC-FTICR-MS datasets. The speed benefits are determined by the network speed
and file transfer protocols only and allow almost real-time analysis of complex data (e.g., a
3-gigabyte raw dataset is fully processed within 5 min). Key advantages of this approach are
not limited to the improved analysis speed, but also include the improved flexibility,
reproducibility, and the possibility to share and reuse the pre- and postprocessing strategies.
The storage of all raw data combined with the massively parallel processing approach
described here allows the scientist to reprocess data with a different set of parameters (e.g.,
apodization, calibration, noise reduction), as is recommended by the proteomics community.
This approach of parallel processing was developed in the Virtual Laboratory for e-Science
(VL-e), a science portal that aims at allowing access to users outside the computer research
community. As such, this strategy can be applied to all types of serially acquired large mass
spectral datasets such as LC-MS, LC-MS/MS, and high-resolution imaging MS results. (J Am
Soc Mass Spectrom 2007, 18, 152–161) © 2007 American Society for Mass Spectrometry

Nowadays mass spectrometry (MS) is the
method of choice for the systematic analysis of
a proteome [1]. Moreover, mass spectrometry–

based proteomics is now one of the key players in
systems biology, i.e., the integrated approach of differ-
ent technical disciplines to study the physiological
processes in a cell or tissue [2]. The number of research-
ers using MS for protein and peptide analyses is still
rapidly increasing. Multiple instrumental develop-
ments have made MS accessible to a broader research
community and enabled automatic data acquisition. In
clinical research mass spectrometry has opened new
ways of (early) detection of diagnostic biomarker mol-
ecules. Their identification is done by differential anal-
ysis of protein-expression patterns in patient and con-
trol samples. These patterns often change dramatically
as a result of a disease and are thus helpful in early
detection. Additionally, detection of such biomarkers
can also play a significant role in prevention. In search

for these biomarkers Fourier transform ion cyclotron
resonance mass spectrometry (FTICR-MS) is a powerful
tool because of its distinguishing feature of ultrahigh
mass resolution. In a proteomics setup, FTICR-MS
provides high mass precision and high mass accuracy
of complex peptide mixtures, thus enabling peptide and
protein identifications with high confidence. It is well
known that the variation in protein concentration by
more than ten orders of magnitude is one of the major
challenges in proteomics [3]. The peptides that originate
from high abundant proteins usually cause suppression
of the low abundant peptide ions in electrospray ion-
ization (ESI). A protein or peptide separation step such
as gel electrophoresis or on-line liquid chromatography
(LC) is necessary to reduce the complexity of the
mixture. The FTICR mass spectrometer is perfectly
suited for on-line coupling to a nanoLC-system pro-
vided adequate differential pumping is applied.
NanoLC-FTICR-MS runs typically take 30–60 min and,
with an ion cyclotron resonance (ICR) scan time of 1–2
s, this results in 900–3600 individual transients. These
transients occupy 4 megabytes of disk space each and
Fourier transformation is required to obtain corre-
sponding mass spectra. The processing of these data has
become a more time-consuming task than the LC-MS
experiment itself and usually is carried out after the
measurement. From these considerations the need for
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automatic processing and improvement of speed is
evident. In this paper we present new methodologies
for processing large mass spectral datasets in a fully
automated way. It will be shown that the total analysis
time decreases dramatically upon using a flexible dis-
tributed computing environment. The increased pro-
cessing speed enables on-line data analysis.

Parallel Processing of Large Mass
Spectral Datasets

The analysis and interpretation of complex mass spectra
has always been a challenging task for scientists in the
field. Despite all modern computer facilities expert
manual examination of a mass spectrum is still very
common and necessary in an MS laboratory and thus
remains an indispensable skill. However, it is evident
that the amount and size of mass spectral datasets
generated by modern mass spectrometers are incom-
patible with manual analysis. Examples of such large
MS-based datasets are found in high-throughput pro-
teomics experiments [4] as well as in high-resolution
imaging MS experiments [5]. In a research lab real-time
analysis of the experiments is pursued so that results
can be used to adjust the parameters of the following
experiment. Manual analysis of complex datasets is
often inconsistent, incomplete, and error prone. Thus,
the automation of mass spectral data analysis and
interpretation of peptide profiling measurements is
pivotal for the extraction of valuable information from
each experiment and remains a key challenge in bioin-
formatics. Automation not only tackles the increasing
data volumes but also allows repeated use of data
analysis strategies with different parameters or data-
sets. This automated approach improves both flexibility
and repeatability of analysis of large MS based datasets.
The need for automation was already recognized

after the first ESI experiments [6] and has been further
developed since [7–10]. Modules for distributing the
computational MS/MS data searches have been de-
scribed [11]. Here we present a new approach that
combines preprocessing and postprocessing of serially
acquired mass spectral datasets (e.g., LC-FTMS data-
sets) in a distributed computing environment. The
speed of processing increases by making use of multiple
connected computers instead of one. This type of pro-
cessing is further referred to as parallel processing,
resulting in a decreased total analysis time. The off-line
processing of one single FT mass spectrum (in com-
puter science referred to as a job) easily takes 3–4 s,
mainly determined by the data transfer time and the
peak picking algorithms. As a result, sequential pro-
cessing of all jobs from one LC-FTMS dataset (such as
2000 spectra) amounts to a total processing time of at
least 2 h. A parallel distribution of this workload (i.e.,
jobs) over different computers significantly decreases
the total processing time. The requirements and details
of a parallel setup are described in the experimental

section. In short, a computer network (cluster) usually
consists of machines (nodes) that run the same operating
system and share a data storage facility. The server
starts processing the raw data using the available
nodes. In the final postprocessing step, the server
summarizes the results and sends these to the data
storage system as processed data, also referred to as
metadata. In our definition, the metadata describes the
original raw data on a higher abstraction level (i.e.,
processing results) in addition to how, when, and by
whom the dataset was collected. Thus, all acquisition
and processing parameters are stored, enabling tracking
and reuse of all such variables. It is also possible to use
different computer clusters simultaneously, which are
managed by a central server. In this type of data
processing a so-called grid approach is used. In a grid
environment the nodes are platform independent and
may be located at different geographical sites [12]. It is
beyond the scope of this paper to discuss the intricate
details of data processing using a grid. Here, the pro-
cessing speed of large mass spectral datasets will be
evaluated on both single processors (such as a desktop
PC) and dedicated computer clusters. The work on
automated data processing of large LC-FTMS datasets
described in this paper was embedded in the Virtual
Laboratory for e-science (VL-e). VL-e provides a science
portal for distributed analysis, such as creation and
submission of jobs on a distributed computer system in
a grid. Furthermore, VL-e aims at allowing access to
users outside the computer research community, thus
facilitating new scientific collaborations in grid environ-
ments.
An alternative way to speed up the processing of

large datasets is reducing the data during the measure-
ment (“on-the-fly”). This approach is implemented in
the hardware of the LTQFT. Here, the original measure-
ment (raw data) is discarded and only the reduced mass
spectra are saved. Clearly the advantage is that process-
ing of the data is finished immediately after the mea-
surement, thus reducing the total analysis time. Unfor-
tunately, this step is not a loss-less procedure and
excludes the possibility of reprocessing the raw data
with a different set of parameters. Thus, the storage of
all raw data is recommended, enabling future reanaly-
sis or reprocessing with a new set of parameters (e.g.,
calibration, apodization) [13]. Here we demonstrate an
approach that achieves full analysis on approximately
the same timescale as achieved with on-the-fly process-
ing but has the added advantage of safely storing the
original raw data for future reprocessing.
As an example, the parallel data processing ap-

proach described was tested using an algorithm that
was developed specifically for processing datasets ob-
tained from nanoLC-FTICR experiments. The serial
mass spectra from LC-FTICR-MS are perfectly suited
for parallel processing because the spectra are (at least
for the initial analysis) independent of each other—i.e.,
they can be analyzed separately. The setup of the
algorithm is modular, which enables easy addition of
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new processing modules or change of parameters or
routines. In this way the algorithm can be used for all
types of LC-MS and LC-MS/MS datasets. The modular
(workflow) nature of this approach also enables auto-
mated processing of other types of large mass spectral
datasets such as the results obtained from high-resolution
mass spectral imaging experiments [5].

Methodology

Algorithm for Processing Large FTICR-MS
Datasets

The main objective of this work is to enable processing
of complex and large mass spectral datasets in a fully
automated way using computational resources in the
grid. To this end, an algorithm is developed that
facilitates processing of large MS datasets in parallel.
Basically, this PP-VLAM algorithm (Parallel Processing
Virtual Laboratory AMsterdam) consists of two parts.

In the first part a mass list for each mass spectrum is
generated. The subsequent second part generates a
summary for the full dataset (written as an xml output
file). The contents of the first part of this algorithm
depend on the type of mass spectrometer used, whereas
the latter part of the algorithm is generic and thus
applies to all kinds of different LC-MS datasets (e.g.,
obtained from quadrupole, ion trap, or time-of-flight
instruments). Note that this approach also enables par-
allel processing of other two-dimensional mass spectral
datasets, such as linescans in mass spectral images [5].
As an example, the PP-VLAM algorithm is described
for datasets obtained from nanoLC-FTICR-MS experi-
ments in Figure 1. In the first part a transient file (raw
data) is located and, if necessary, transferred by the
network to the actual processing computer. Then the
transient is Fourier-transformed and calibrated, yield-
ing a mass spectrum. The required processing parame-
ters such as zero-filling, apodization, calibration, and

Figure 1. Structure and workflow of the PP-VLAM algorithms for parallel processing of datasets
obtained from nanoLC-FTICR-MS experiments.
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peak picking parameters have initially been user-
defined. After the mass spectrum is obtained, different
sets of isotopic peaks from a single molecular or frag-
ment ion entity (i.e., isotopic cluster) are identified
using either the Senko [7, 8] or our in-house–developed
AMOLF routine (as described later). The monoisotopic
mass of each identified isotopic cluster is calculated and
summarized in a so-calledmass list. These steps in the first
part of the algorithm are repeated until all transients are
processed and all mass lists have been completed. This
approach and its corresponding algorithms is extremely
suitable for massively parallel processing. The server
collects all the data after processing all transients in
parallel and uses a second postprocessing algorithm to
group all mass lists to generate a so-called group list. In
the following sections the design and the performance of
the PP-VLAM algorithm are discussed in more detail.

Parameter File and File Transfer Protocols

The parameters for data processing are specified in a
so-called properties file. In this file the location of the
data is defined together with all user-defined parame-
ters that are further used in the PP-VLAM algorithm
(e.g., apodization, threshold, mass tolerance). Different
file transfer protocols were implemented, such as the
windows network protocol, scp, sftp, gridftp, or mpicopy, or
by using the grid application toolkit (GAT, www.gridlab.
org). The communication between the server and the
compute nodes is by remote method invocation (rmi),
implemented either in Java or the Ibis language.

Peak Picking, Noise Filtering, and the Peak List

Peaks are identified by searching through the mass
spectrum until a value is found that exceeds a user-
defined threshold. The area in the proximity of the m/z
value where this occurs is subsequently searched for a
local maximum (peak picking). The search area for this
local maximum is defined by a mass width and the
number of neighboring data points to verify. After the
local maximum is found, the peak position (m/z) is
defined at the middle of the full peak width at half
height (FWHM). When the resolution of a peak is
higher than the theoretical Fourier resolution
((f�Ttransient)/2 [14] the peak is considered as a noise
signal and discarded. Note that all peaks that are not
recognized as a local maximum are not further ana-
lyzed in the algorithm. It is therefore crucial to detect as
many local maxima (peaks) as possible during the peak
picking routine. The result of this approach is an
extensive peak list.

Single Processing Results: Isotopic Cluster
Identification, Decharging, and the Mass List

The peak list contains a significant amount of redun-
dant information. A single peptide will generate differ-

ent isotopomers and can present itself in different
charge states. To reduce this complexity the peak list is
converted into a mass list where all redundant informa-
tion is reduced to one single mass entry for each
compound. To achieve this a sequence of deisotoping
and decharging modules is introduced.
Decharging of the isotopic clusters after determina-

tion of their charge is performed using either the Senko
[7] or the Zscore algorithm [9, 10]. For the analysis of
our peptide spectra, an in-house (AMOLF) developed
routine was used for cluster identification and com-
pared with the results from Senko and Zscore. The
AMOLF routine matches a specific m/z distance 
m/z

between two different peaks to a certain charge state q
(q � 1, 2, 3Ê), defined as

�m/z� �Mneutron ⁄ q� * �1� ��

where Mneutron is the mass difference (in Daltons)
between two consecutive 12C/13C isotopic peaks be-
longing to the same compound, q is the charge state of
the cluster, and � is the user-specified precision with
which this distance is used.
Using different values for � enables the analysis of

mass spectra obtained from different instruments with
different peak resolutions. In addition, the ratio of the
intensities of the first and second isotopes is deter-
mined, and should be in agreement with expected
numbers of the compounds analyzed (e.g., for tryptic
peptides this ratio is between approximately 3 and 0.3
for peptides with masses of, respectively, 500 and 5000
Da). The results from the two different decharging
routines will be discussed in more detail in the results
and discussion section.
After processing a certain transient (or mass spec-

trum) a list of masses is generated. All peaks from a
spectrum are summarized in a table with their original
charge state, their intensity and resolution (FWHM),
and the position in the isotopic cluster. Note that at this
stage a peptide (or any type of compound) that is
detected with two (or more) different charge states in
one mass spectrum results in two (or more) almost
identical peptide masses in the mass list. The user
defines whether these different mass determinations
from the same peptide are averaged. When using
sub-ppm mass accuracies the consideration of two
different peptide masses of the same peptide proved to
be important, as will be exemplified in the results and
discussion section.

Final Processing Result: Grouping
and the Group List

The first part of the algorithm (either sequential or
parallel processing) results in a separate mass list for
each spectrum. Depending on the type of experiment
multiple mass lists may contain redundant information.
These entries in the mass lists are grouped together to
further reduce the complexity and redundancy of the
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parallel processing results. In this second part of the
process cycle two grouping criteria are used. A scan
number range is defined to ensure that the masses
found belong to the same LC-peak. A mass range is
defined (or tolerance) to ensure that the mass spectral
peaks found belong to the same molecule. The user may
additionally define a minimum amount of scans in
which a certain mass was detected (“group size”). In the
case of chromatographic separation before mass analy-
sis the mass of each eluting peptide is measured in
different (sequential) scans if the LC peak is wide
enough. Thus, different peptide masses are considered
as a single eluting LC peak provided they are within a
specific mass and time range. Moreover, this algorithm
enables the selection of (consecutive) scans within an
eluting LC peak and it is possible to generate a group
list of a certain part from an LC run. The resulting
group list, which is actually a peak list of all eluting
peptides during one specific LC-FTICR experiment, can
be used for further data analysis such as database
searching.

xml Output File

The xml format is used for storage of the processed data.
This format is encouraged by the HUPO Proteomics
Standards Initiative (PSI) that defines community stan-
dards for data representation in proteomics [15, 16]. All
metadata are stored in an xml file, i.e., all parameters
that were used for processing the mass spectral dataset
are documented. This xml file can be easily converted to
the mzdata format [15]. Additionally, all the processing
results from both the first and the second parts of the
algorithm (mass lists and the group list) are stored in
the same xml file. Each time a specific dataset is pro-
cessed using different parameters a new xml file is
generated, allowing for proper comparison between
different processing results.

Experimental

NanoLC-FTICR-MS

The nanoLC system (LCPackings, Amsterdam, The
Netherlands) consists of an autosampler, a switching
unit, a nanoflow system, and UV detector. The switch-
ing unit is equipped with a reverse-phase capillary
precolumn (C18 PepMap 100, internal diameter 0.3 mm,
length 1 mm) and is used for preconcentration of the
sample at a flow rate of 30 �L/min. Peptide separation
is then carried out on an analytical column (PepMap
100, internal diameter 0.075 mm, length 15 cm) using
nanoflow elution at 300 nL/min. Typically, the injection
volume was 2 �L. The eluents used were 1% acetic acid
and 5% acetonitrile in water (A) and 1% acetic acid and
10% water in acetonitrile (B). The gradient used for the
separation of peptides was: 0–30 min, 0–50% B, fol-
lowed by 30–35 min, 50–90% B. The nanospray source
connecting the LC system to the mass spectrometer was

built in-house and equipped with New Objective
Picotips™.
All the peptide mass measurements were performed

in the positive ion mode using a modified APEX 7.0eT
FTICR-MS (Bruker Instruments, Billerica, MA),
equipped with a 7 T superconducting magnet and an
infinity cell [17]. The ions generated by the electrospray
ion source are accumulated in an octopole ion-trap
(typical accumulation time 0.4 s) before being trans-
ferred to the ICR cell by two quadrupole ion guides.
The ions were trapped in the ICR cell using side-kick. In
this way, a typical scan time was 1.3 s. All experimental
parameters were controlled using software and hardware
developed in-house as part of the continual evolution of
this proteomics/fundamental studies instrument.
The results of the nanoLC-FTICR-MS experiments

are displayed in the AWE3D module (Arbitrary Wave-
form Editor), which is part of the AWTools software
package [17]. This software is written in C�� and can
be used for a first evaluation of chromatographic sepa-
ration, mass spectral resolution, and sensitivity/inten-
sity. It displays total and selected ion currents as well as
a three-dimensional representation of the data. The
whole dataset can be recalibrated or apodized, zero-
filled in this mode.

Samples and Protein Identifications

NanoLC-FTICR-MS measurements of two different
protein samples were used to verify the performance
and outcome of the PP-VLAM algorithm: (1) a tryptic
digest of 20 �M/mL savinase (Sigma, St. Louis, MO)
and (2) a tryptic digest of a protein mixture (50 �M/mL
BSA (Sigma), 50 �M/mL ovalbumin (Sigma), and 50
�M/mL lysozyme (Fluka Chemie GmbH, Deisenhofen,
Germany). For protein identification, the peptide
masses were submitted to a Mascot database search
(MatrixScience, London, UK) with a mass tolerance of
20 ppm using the SwissProt database.
Also, different clinical cerebrospinal fluid (CSF) sam-

ples from breast cancer patients with leptomeningeal
metastasis (brain tumor) were used. The control sam-
ples originated from headache patients without brain
tumors. All samples were subjected to trypsin digestion
(Promega, Madison, WI) after addition of 0.2% Rapigest
(Waters Associates, Milford, MA) in a 50 mM ammoni-
umbicarbonate buffer. These CSF samples were pro-
vided by the Erasmus Medical Center (EMC) in Rotter-
dam and have been part of a more extensive biomarker
study based on MALDI-TOF measurements [18].

Programming Software PP-VLAM and Parallel
Processing

The PP-VLAM algorithm is written in Java and all
features are Java implementations, i.e., the algorithm is
platform independent and thus runs on every operating
system. In principle, this enables the use of all comput-
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ers that are not used at full capacity in the laboratory.
The PP-VLAM algorithm will be made available to the
scientific community through the Internet within the
framework of the Virtual Laboratory for E-science
(VL-e). Because of its modular setup this software is not
limited to the FTICR data discussed herein but can be
easily adjusted for a variety of mass spectral datasets.
For parallel processing ofmass spectral datasets several

workers (computer nodes) request jobs (each consisting of
one spectrum to be processed) upon their availability. All
jobs are managed by a central server and the computa-
tional resources are linked by TCP/IP connections. The
Java program code is stored centrally on a file server to
ensure that every computer node will access the same
version. The properties file (containing the user-specified
set of processing parameters) can be stored in any location
accessible by the server. The processing details are only
read by the server module, which passes them on to the
worker modules. Each node transfers and processes raw
data (mass spectral file) separately and returns the results
to the server. The server and worker modules can run
either on one or on separate computers. The server and
worker programs can be started manually, in batch or by
any other system that has the ability to execute programs,
such as a grid job. Each worker requests the processing
parameters as specified in the properties file once. On
receipt of a job request the server responds with details
about a job, such as the filename. Then the worker loads
the corresponding mass spectrum from the data storage
system. When the worker has processed the job, it returns
the resultingmass list to the server and requests a new job.
The server stops and compiles a concise report when all
jobs have been processed. The final result list is generated
as an xml file (as described earlier) that is stored locally or
on the central data storage system.

Computer Hardware

The measurement data are stored on a 5.5 TB storage
system (SGI Origin 300, Lexington, MA) that is linked
by a 2 Gigabit fiber-channel connection to the acquisi-
tion computer (FTICR-MS acquisition). Different com-
puter platforms were used to test the performance of
the analysis software. The single desktop PC was a
Pentium4 processor (3.2 GHz) with Hyper Threading
and 1 GB RAM. The PC cluster consisted of five
personal computers running either Windows NT, 2000,
or XP, or Linux as an operating system. The internal
computer cluster that was used is located at AMOLF
and consists of 38 compute nodes, each equipped with
dual AMD opteron 2.2 GHz processors. The nodes are
internally linked by 1 gigabit Ethernet connections and
externally by a 1 gigabit glass-fiber connection. The
Dutch national computer cluster that was used (“Lisa”)
is located at SARA (Dutch Supercomputing Center [19])
and consists of 630 compute nodes, each equipped with
dual Xeon 3.4 GHz processors. The nodes are linked by
1 gigabit Ethernet connections and run on a Debia
Linux operating system.

Results and Discussion

Evaluation of the PP-VLAM Algorithm Using
Protein Standards

Two different nanoLC-FTICR mass spectral datasets were
used to evaluate the performance of the described PP-
VLAM algorithm. Five peptides from the resulting group
list from a tryptic digest of savinase were assigned within
a mass accuracy of 3 ppm after internal calibration. The
total sequence coverage (s.c.) in this case is 30%. From a
tryptic digest of a protein mixture (containing three well-
defined proteins; see experimental section), 17 peptides
from BSA (s.c.� 31%), 11 peptides from ovalbumin (s.c.�
41%), and 6 peptides from lysozyme (s.c.� 56%) from the
group list were assigned all within a mass accuracy of 20
ppm. The lower mass accuracy of peptides in the protein
mixture compared to savinase partly results from peptide
concentration differences in the protein mixture. For ex-
ample, peptides that elute in high concentration cause
overloading of ions in the ICR cell and thus increased
mass shifts. Moreover, in the protein mixture the relative
intensity of a single peptide compared to the total ion
intensity at different time points varies between 5% and
almost 100% negatively affecting the mass measurement
accuracy.
In conclusion, these results demonstrate the ability of

the PP-VLAM algorithm to process complex nanoLC-
FTICR data in an efficient way. The application of the
PP-VLAM algorithm to a peptide mixture generates a
peak list that is very well suited for database searches
and thus protein identification.

Evaluation of the Senko and AMOLF Routines
for Isotope Cluster Identification

For cluster identification and decharging of peptide
peaks the Senko and AMOLF routines both proved to
be extremely powerful (in terms of computing speed
and total amount of identified clusters) compared to the
Zscore- and averaging-based routine [9]. The latter two
methods are more suited for mass spectral analysis of
intact proteins. A detailed comparison between the
Senko and AMOLF routines was performed using the
standard protein datasets described earlier. For savi-
nase, all five identified tryptic peptides were found
using either the Senko or AMOLF routine for isotope
cluster identification. For the protein mixture, all 34
identified tryptic peptides were found with both the
Senko and AMOLF routines. Additionally, using the
AMOLF routine two more peptides (from BSA) were
identified. In general, the mass list contained roughly
20% more peptides using the AMOLF routine com-
pared to the Senko algorithm. This results from the
less-stringent requirement that only two peaks above a
defined threshold are sufficient for an isotope cluster in
the AMOLF routine, whereas in the Senko routine all
other peaks in the cluster area are also taken into
account.
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Scan Precision and Mass Accuracy

Usually, each eluting chromatographic peak is mass-
analyzed multiple times during an LC-MS experiment.
In practice, each mass spectrum (scan) from one peptide
results in a slightly different peptide mass. This varia-
tion in detected peptide mass, further referred to as scan
precision, is dependent on different factors such as the
type of instrument used, the chromatographic resolu-
tion, and the ion intensities itself. As mentioned earlier,
the high mass accuracy of FTICR-MS is a well-
distinguished feature. In modern FTICR analyzers this
accuracy has improved toward sub-ppm levels. Clearly,
high mass accuracy improves the reliability of database
searches and, moreover, it helps to identify peptides
that are not in a database (e.g., unsequenced species,
post-translational modifications) [20, 21]. The advan-
tage of the PP-VLAM algorithm compared to other
processing software packages is that all the different
peptide masses are stored in the xml file and thus can be
analyzed in more detail. In this way the precision of the
data can be significantly improved after data acquisi-
tion. As an example, in Figure 2 the elution profile of a
BSA peptide (theoretical mass 688.3656 Da) in the
protein mixture is shown. The peptide masses (shown
as squares) are measured after external calibration. The
difference between the highest and lowest measured
mass is 22 ppm. Clearly, in the tail of the eluting peptide
the variation increases. Upon user-defined selection of
scan numbers (retention time), as indicated with the
circle, the scan precision improves fourfold. This infor-
mation can be further used in an iterative way to
internally recalibrate the spectra and thus improve the
mass accuracy after the data acquisition. Often a pep-
tide is mass analyzed at two (or even more) different
charge states. From Figure 3 it can be seen that using the
PP-VLAM algorithm a singly and a doubly protonated
BSA peptide can be analyzed separately. In this case,
the scan precision of the doubly protonated species can
be improved to 3.6 ppm.

Visualization of Peptide Profiles from CSF
Samples: “A Real-Life Example”

More advantages of the processing and analysis tools
described herein are exemplified using a dataset ob-
tained from nanoLC-FTICR-MS measurements of cere-
brospinal fluid (CSF) samples. The cerebrospinal fluid
encloses the brain and is thus an ideal medium to
investigate diseases that affect the central nervous sys-
tem (CNS) such as Alzheimer’s disease or brain tumors.
Details of the samples are given in the experimental
section. In general, the objective is to compare peptide
profiles of healthy and diseased individuals for detec-
tion of possible biomarkers. Each nanoLC-FTICR-MS
measurement yields a large and complex dataset, and
processing and visualization of each dataset are pivotal
for proper comparison and thus extraction of valuable
information.
As an example, all sequential FTICR mass spectra

acquired during one nanoLC-experiment of a CSF sam-
ple are shown in Figure 4a. Obviously, the manual
comparison of such plots is extremely tedious and
error-prone. Application of the PP-VLAM algorithm to
this specific dataset results in an xml output file that
contains between 100 and 200 peptide masses (depend-
ing on the processing parameters). Clearly, such a list of
peptide masses can be easily compared with those
derived from replicate measurements (repeatability of
the LC-MS measurement of one sample) or with other
samples (e.g., patient and control comparison). For
comparison of the xml output files we developed a tool
for visualization of either the mass lists or group lists
from one or multiple samples (see Figure 1 for expla-
nation of the terms mass and group list). In Figure 4b an
example is shown for a CSF sample (same as in Figure
4a) processed with different parameters. In this case the
specific dataset is visualized for apodized and nonapo-
dized raw data, clearly showing the similarities and
differences between these two types of processing. The
complexity of this plot is far less compared to the
spectral data in Figure 4a. In addition, vertical lines that

Figure 3. NanoLC-elution profile of a singly and doubly proton-
ated BSA peptide. The different charge states of the same peptide
result in different scan precisions. It is thus recommended to
analyze these different species separately.

Figure 2. NanoLC-elution profile of a singly protonated BSA
peptide. The dotted line indicates the theoretical mass of this
peptide, the squares show the FTICR-measured masses in each
scan. Upon post-acquisition selection of scan numbers the differ-
ence between the highest and lowest measured peptide mass
decreases 4-fold, thus improving scan precision.
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result from chemical and electronic noise in Figure 4a
are efficiently removed in the processed dataset. In a
similar way, this viewer enables visual comparison of
replicate measurements or of different samples.

Speed Benefits of Distributed Computing
of Large Mass Spectral Datasets
Several hardware configurations ranging from a single
desktop computer to supercomputers (clusters) were

evaluated for parallel processing of large mass spectral
datasets. For a dataset obtained from nanoLC-
FTICR-MS of the protein mixture (877 spectra, 3.4
gigabyte) the total processing time was more than 2 h
using a single desktop computer. Using a cluster of five
desktop computers the processing time decreases to
0.5 h, although this time is limited by the file transfer
speed (i.e., the speed depends on the quality of the
internal network between the computers and the central

Figure 4. (a) NanoLC-FTICR-MS measurement of a trypsin digested cerebral spinal fluid (CSF) sample
displayed with the AWE3D software. The m/z-values are plotted on the x-axis, the scan numbers (linear
with nanoLC retention times) on the y-axis and the peak intensities on the z-axis (out-of-plane). (b)
Visualization of a processed nanoLC-FTICR-MS measurement of a digested cerebral spinal fluid (CSF)
sample. The peptide masses are plotted on the x-axis (from 1450 to 1980 Da) and the scan numbers
(corresponding to retention time) on the y-axis (50-450). A peptide mass is visualized provided that it is
detected in at least 3 sequential scans with amass precision � of 0.05 Da (see methodology). Here, different
processing results are overlayed in one plot, i.e. no apodization on the raw data (light grey squares),
apodization and AMOLF isotope cluster identification (grey triangles) and apodization and Senko isotope
cluster identification (black circles). The inserts show the similarity between AMOLF and Senko cluster
identification results (i.e. each triangle is overlapped by a circle). However, without apodization additional
clusters are detected or the cluster is observed at a slightly different peptide mass.
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raw data storage). A summary of the results on different
clusters is given in Figure 5. Clearly even on a dedicated
computer cluster the amount of spectra processed per
minute is limited by the network speed. This limitation
in speed up of distributed computing is well known
from computer sciences. The transfer of raw data from
the central storage site outside the cluster to the multi-
ple computer nodes becomes inefficient using more
than seven nodes. As an alternative, the total raw
dataset from an LC-MS experiment can be locally stored
on the shared storage of the cluster itself or copied
temporarily to all individual nodes using the mpicopy
protocol (this takes less than 3 min [19]). In the latter
case the total 3.4 gigabyte dataset is processed on 40
computer nodes within 2 min, resulting in a total
processing time of less than 5 min.

Conclusions

Automatic processing of large mass spectral datasets in a
distributed computing environment allows for a substan-
tial reduction of the analysis time. We showed full pro-
cessing of a 3 gigabyte raw dataset from a nanoLC-
FTICR-MS experiment is within 5 min using an in-house–
developed algorithm on a dedicated computer cluster.
Because of its modular setup the algorithm can be applied
to all other types of hyphenated or serial mass spectral
datasets (e.g., LC-MS, LC-MS/MS, TOF imaging MS). In
our approach the storage of all data is preferred to
discarding raw data during the measurement, thus en-
abling future reanalysis or reprocessing using a new set of
parameters. Furthermore, automatic processing improves
the repeatability of the analysis over the more error-prone
manual analysis. The ability to reuse the parallel process-
ing modules described in this paper in a distributed

workflow environment allows for new scientific collabo-
rations to be realized in the virtual laboratory. This in turn
enables the scientists to share processing tools and strate-
gies and enhances the quality of experimentation with
large mass spectral datasets.
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