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Trp-cage is a synthetic 20-residue miniprotein that uses tertiary contacts to stabilize its native
conformation. NMR, circular dichroism (CD), and UV-resonance Raman spectroscopy were
used to probe its energy landscape. In this quadrupole/time-of-flight study, electrospray
ionization charge state distribution (CSD) and solution-phase H/D exchange are used to probe
Trp-cage’s tertiary structure. The CSDs of Trp-cage and its mutant provide spectra showing a
pH-dependent conformation change. Solution-phase H/D exchange in 30% deuterated triflu-
oroethanol solution of the wild type shows increased protection of one labile hydrogen in the
native state. Together, CSDs and solution-phase H/D exchange are demonstrated to constitute
a simple but effective means to follow conformation changes in a small tertiary
protein. (J Am Soc Mass Spectrom 2007, 18, 195–200) © 2007 American Society for Mass
Spectrometry

Trp-cage is a synthetic 20-residue miniprotein of
sequence N1LYIQWLKDG10GPSSGRPPPS, which
resulted from a de novo design effort [1]. The effort

began with an examination of a poorly folded 39 residue
long saliva protein of a Gila monster. Using an iterative
design effort with selective mutations and truncations,
Neidigh et al. [1] created different variants and character-
ized their folded states using NMR and circular dichroism
spectroscopy (CD). Trp-cage, originally referred to as
Tc5b, exhibited the most structure in terms of the cage
motif. It was found to be 95% folded under physiological
conditions.
Trp-cage consists entirely of natural amino acids and

has been shown to exhibit elements of tertiary structure
in the absence of disulfide bridges, metal ion chelation,
or stabilization through oligomerization [2]. NMR and
CD data of Neidigh et al. [1] suggest a simple two-state
unfolding mechanism. Using the intrinsic fluorescence
of Trp, Qiu et al. [3] determined the folding time to be
4 �s, which makes Trp-cage the fastest folding polypep-
tide to exhibit a tertiary structure.
Several groups previously reported theoretical sim-

ulations of Trp-cage’s folding [4–11]. Simmerling et al.
[4], in their all atom molecular dynamics simulation,
calculated a native-state topology consistent with the

NMR structure reported by Neidigh et al. [1]. Their
simulation at 325 K, which modeled the folding of
Trp-cage, found that it converges to a native-state
topology within 20 ns. Snow et al. [6] carried out
stochastic dynamics simulations over a total modeled
folding time of 100 �s and found that the unfolded state
retains features resembling the native-state topology.
Ahmed et al. [12] recently°used°UV-resonance°Ra-

man spectroscopy (UVRR) to examine the thermal
unfolding behavior of Trp-cage. The authors demon-
strated that at physiological pH, Trp-cage initially melts
to a more compact intermediate state as temperature is
increased from 4 to 20 °C, while retaining its native-
state secondary structure. Increasing the temperature to
70 °C results in partial unfolding of this maximally
compact intermediate, although it still retains some
native-like features even at high temperatures, as sug-
gested by the invariance of the trytophan’s �2 dihedral
angle°[12].
Recently,°Adams°et°al.°[13]°applied°electron°capture

dissociation mass spectrometry to examine the confor-
mation of different charge states of Trp-cage. The au-
thors propose that the �2 state retains the solution-
phase native conformation, whereas the �3 charge
state, dominated by ionic hydrogen bonds, adopts a
more open gas-phase conformation. Furthermore, Ad-
ams°et°al.°[13]°demonstrated°that°D-Tyr°substitution
denatures Trp-cage’s native structure. The D-isomer
prevents stabilization of the tryptophan side chain that
destabilizes the hydrogen-bond network and increases
the°interior°solvent°accessibility°[13].
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In this study, we use the conformational dependency
of protein charge state distributions (CSDs) in electros-
pray ionization mass spectrometry (ESI-MS) to examine
the pH dependency of Trp-cage’s conformation. Well
documented for over a decade, protein CSDs in ESI-MS
show a shift toward higher charge state values upon
protein°unfolding°[14°–17].°Through°this°marker,°we°can
discriminate between different global conformations of
Trp-cage as the solvent pH is varied. Furthermore, we
also probe Trp-cage conformation by solution-phase
hydrogen/deuterium exchange, which is an established
mass spectrometric technique for protein conformation
and°dynamics°studies°[18].

Experimental

Mass spectrometry measurements were performed on a
hybrid quadrupole time-of-flight mass spectrometer
(Q-ToF MS, API-US, Micromass UK Ltd., Manchester,
UK), equipped with a Z-spray electrospray source. The
typical instrument operation parameters at the source
region for this study were: capillary voltage 3.5 kV,
cone voltage 40 V, source temperature 80 °C, desolva-
tion temperature 150 °C, cone gas flow 60 L/h, and
desolvation gas flow 600 L/h. Sample solutions were
injected from the embedded syringe pump at a flow
rate of 10 �L/min. Argon was used as the collision gas
with a pressure of 5� 10�5 bar at the analyzer pressure.
The collision energy was kept at 10 V in the ToF MS
mode. The instrument was calibrated externally by a
cesium iodide solution up to 2500 amu. Spectra were
accumulated at 1 s per scan at reflectron V mode with a
full-width half-maximum resolution of 10,000. Data
acquisition and processing were performed by use of
MassLynx V4.0 software (Waters Corp., Milford, MA).
Trp-cage peptide was obtained at 	95% purity from

the Pittsburgh peptide synthesis facility and was used
at 40 �M concentrations. D-Tyr substituted Trp-cage
peptide was provided by Dr. Zubarev at Uppsala
University and was used at 18 �M concentrations. The
pH in all of the experiments was adjusted using glacial
acetic acid (Aldrich, St. Louis, MO) and NH4OH
(Aldrich).
Charge state distribution analysis was carried out by

measuring the intensity differences of the ToF spectrum
of Trp-cage aqueous solutions at pH 3 and pH 7. A
complete deuterium-exchanged Trp-cage spectrum was
obtained from a 100% D2O Trp-cage solution buffered
at pH 7 using deuterated acetic acid and ammonium
hydroxide (Sigma Chemical, St. Louis, MO). By dissolv-
ing Trp-cage directly in 70% D2O and 30% deuterated
trifluoroethanol, CF3CH2OD (d-TFE, Sigma Chemical),
we examined the amide hydrogen protection against
hydrogen–deuterium (H/D) exchange in a 30% TFE
(Aldrich) solution by continuously monitoring the tem-
poral dependency of the spectrum up to 30 min.

Results and Discussion

Trp-cage charge state distributions were obtained at pH
3°and°pH°7.°As° shown° in°Figure° 1a,° the°ESI°mass
spectrum of the wild-type Trp-cage at pH 7 shows three
peaks corresponding to the �1, �2, and �3 charge
state, with �2 being the dominant state. The intensity
ratio of charge state �2/charge state �3 is 2.0. The
intensity ratios obtained at different solvent conditions
and°pH°values° are° summarized° in° Table° 1.°As° the
solution pH is decreased from pH 7 to pH 3, the CSD
shifts from the �2 to the�3 state and the intensity ratio
of �2 to �3 charge states decreases from 2.0 to 0.3. The
weak �1 state observed at pH 7 is no longer observed
at pH 3. Our results indicate that at low pH Trp-cage
denatures, adopting a more open conformation results
in a CSD shift to the �3 charge state. Contrary to the
behavior of wild-type Trp-cage, the D-Tyr substituted
mutant shows a dominant �3 state at either pH with
the intensity ratio of �2 to �3 charge states being 0.2 at
pH 3 and 0.6 at pH 7. The spectrum obtained at pH 7 is
shown°in°Figure°2b.°The°difference°in°intensity°ratio°at
the two pH values likely arises from charge repulsion.
The D-Tyr substituted mutant adopts a more open
conformation at either pH value compared to that of the
wild-type Trp-cage at pH 7. Our results offer further
support°of°the°proposal°introduced°byAdams°et°al.°[13]
that the substitution with the D-Tyr isomer within
Trp-cage denatures the native Trp-cage conformation.
We further probed the Trp-cage by examining its

conformation in an aqueous solution of 30% TFE. Helix-
stabilizing effects of aqueous TFE are well documented
[19].°Extensive°work°on°helix-stabilizing°effects°of°TFE
indicate that 30% vol/vol is the optimum concentration
of°TFE°needed°for°helical°stabilization°[1,°19].°Neidigh°et
al.° [1]° showed° that° Trp-cage° exhibits° a° pronounced
resistance to thermal denaturation in 30% vol/vol aque-
ous TFE solution. They reported an increased amide
protection of Leu HN and Trp H�1 hydrogens in TFE
solution, which indicates a more stable native state.
Based on this evidence Neidigh et al. argued that the
addition of TFE led to increased “nativeness” of the
protein.
Figure°2°shows°ESI-ToF°spectra°of°40°�M°Trp-cage°in

30% TFE and 70% H2O solution at pH 3 and pH 7. The
intensity ratio of �2 and �3 charge states at pH 7 is 2.5
and the value is comparable to the value of 2.0 observed
in aqueous solution. The stabilizing effect of TFE can be
seen from the intensity ratio of �2 and �3 charge states
at pH 3. The ratio is 0.3 in pure water, whereas the ratio
changes to 1.3 in 30% TFE aqueous solution. This
signifies an increase in “nativeness” or compactness of
Trp-cage in aqueous TFE solutions. Our conclusions
agree°with°the°observations°of°Neidigh°et°al.°[1].
We further probed the Trp-cage conformation by

examining the H/D exchange protection of labile hy-
drogens. The spectrum of Trp-Cage in 100% H2O is
shown°in°Figure°3a°and°in°100%°D2O, obtained within 1
min° after° dissolution,° is° shown° in° Figure° 3b.° The
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Figure 1. ESI-ToF spectrum of (a) 40 �M Trp-cage in H2O at pH 7; (b) 18 �M D-Tyr substituted
Trp-cage in H2O at pH 7.

Table 1. Intensity ratio of charge state �2/charge state �3 of Trp-cage and D-Tyr substituted Trp-cage under different solvent
conditions

Experimental conditions

Intensity of charge state �2

Intensity of charge state �3

Trp-cage in H2O, pH 3 0.3
Trp-cage in H2O, pH 7 2.0
D-Tyr substituted Trp-cage in H2O, pH 3 0.2
D-Tyr substituted Trp-cage in H2O, pH 7 0.6
Trp-cage in 30% TFE and 70% H2O, pH 3 1.3
Trp-cage in 30% TFE and 70% H2O, pH 7 2.5
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number of labile hydrogens in Trp-cage is 34, including
two N-terminal hydrogens, 15 backbone amide hydro-
gens, one C-terminal hydrogen, and 16 side-chain hy-
drogens. The number of labile hydrogens on each side
chain is indicated below:

N L Y I Q W L K D G G P S S G R P P P S

2 1 2 1 2 1 1 1 4 1
(1)

A total of 34 labile hydrogens are observed from com-
paring isotopic distribution of singly charged Trp-cage
peak at 100% H2O°and°100%°D2O°(Figure°3a°and°b).

Note that a 35-mass-unit shift is observed as a result of
the addition of a deuterium atom, instead of a proton, in
the singly charged Trp-cage ion electrosprayed from
100% D2O. Likewise, an 18-mass-unit shift is observed
in the doubly charged Trp-cage ion obtained from 100%
D2O as a result of the addition of two deuterium atoms.
The isotopic distribution of singly charged Trp-cage

ions in 70% D2O and 30% d-TFE is shown at 1- and
20-min°intervals°after°dissolution°in°Figure°3c°and°d.
After 20 min, the isotopic distribution showed an in-
crease of m/z value by 1 amu and is identical to the
spectrum obtained from Trp-cage in 100% D2O°(Figure

Figure 2. ESI-ToF spectrum of 40 �M Trp-cage in 30% TFE and 70% H2O solution at (a) pH 3 and
(b) pH 7. Some minor fragments arising from in-source fragmentation are observed.
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3b).°Beyond° the°20-min°mark° the° spectrum°remains
unchanged. The isotopic distribution of doubly charged
Trp-cage ion obtained at 1 and 20 min yields the same
result. Thus the time-dependent spectra of Trp-cage
show increased H/D exchange protection of only one
labile hydrogen atom. This increased protection against
H/D exchange supports the TFE’s stabilizing effect on
Trp-cage’s native state. The fact that native Trp-cage
does not show any significant protection of the labile
hydrogens in a water solution indicates that the native
and nonnative unfolded conformations are separated
by a small energy barrier. This allows for rapid inter-
conversion between the folded and unfolded conforma-
tions. In 30% TFE solution, the rate of interconversion is
sufficiently slowed down to afford some protection of
the protein’s labile hydrogen.
In this work we successfully applied ESI-MS CSD

methodology to Trp-cage, which is one of the smallest
known peptides to show conformationally dependent
CSD°shifts°[15–17,°20].°Our°results°indicate°that°Trp-
cage conformation is pH sensitive and has maximum
stability at around physiological pH. The lowering of
the pH beyond the pH 6–7 region disrupts ionic inter-
action in the native conformation leading to denatur-

ation of Trp-cage. TFE solutions are shown to stabilize
the native conformation and provide resistance against
acid denaturation. This study demonstrates the utility
of ESI-MS CSD in determining the compactness of
tertiary proteins/polypeptides in a rapid and efficient
manner.

Acknowledgments
The authors gratefully acknowledge NIH shared instrument grant
1S10RR017977-01 and NIH grant 8 RO1 EB002053201 for financial
support, Professor Asher for providing the wild-type Trp-cage,
and Professor Zubarev for providing the D-Tyr substituted Trp-
cage.

References
1. Neidigh, J. W.; Fesinmeyer, R. M.; Anderson, N. H. Designing a
20-residue protein. Nat. Struct. Biol. 2002, 9, 425–430.

2. Gellman, S. H.; Woolfson, D. N. Mini-proteins Trp the light fantastic.
Nat. Struct. Biol. 2002, 9, 408–410.

3. Qiu, L.; Pabit, S. A.; Roitberg, A. E.; Hagen, S. J. Smaller and faster: The
20-residue Trp-cage protein folds in 14 microseconds. J. Am. Chem. Soc.
2002, 124, 12952–12953.

4. Simmerling, C.; Strockbine, B.; Roitberg, A. E. All-atom structure
prediction and folding simulations of a stable protein. J. Am. Chem. Soc.
2002, 124, 11258–11259.

Figure 3. Isotopic distribution of singly charged Trp-cage in (a) 100% H2O, pH 7; (b) 100% D2O, pH
7; (c) in 30% d-TFE D2O solution pH 7 after 1-min incubation; (d) in 30% d-TFE D2O solution pH 7 after
20-min incubation.

199J Am Soc Mass Spectrom 2007, 18, 195–200 Q-ToF STUDY OF TRP-CAGE



5. Simmerling, C.; Strockbine, B.; Roitberg, A. E. Personal communication.
Department of Chemistry, University of Florida, 2004.

6. Snow, C.; Zagrovic, B.; Pande, V. S. The Trp cage: Folding kinetics and
unfolded state topology via molecular dynamics simulations. J. Am.
Chem. Soc. 2002, 124, 14548–14549.

7. Chowdhury, S.; Lee, M. C.; Xiong, G.; Duan, Y. Ab initio folding
simulation of the Trp-cage mini-protein approaches NMR resolution. J.
Mol. Biol. 2003, 327, 711–717.

8. Zhou, R. Exploring the protein folding free energy landscape: Coupling
replica exchange method with P3ME/RESPA algorithm. J. Mol. Graph.
Model. 2004, 22, 451–462.

9. Zhou, R. Trp-cage: Folding free energy landscape in explicit water. Proc.
Natl. Acad. Sci. USA 2003, 100, 13280–13285.

10. Chowdhury, S.; Lee, M. C.; Xiong, G.; Duan, Y. Characterizing the
rate-limiting step of Trp-cage folding by all-atom molecular dynamics
simulations. J. Phys. Chem. B 2004, 108, 13855–13865.

11. Pitera, J. W.; Swope, W. Understanding folding and design: Replica-
exchange simulations of “Trp-cage” miniproteins. Proc. Natl. Acad. Sci.
USA 2003, 100, 7587–7592.

12. Ahmed, Z.; Beta, I. A.; Mikhonin, A. V.; Asher, S. A. UV-resonance
Raman thermal unfolding study of Trp-cage shows that it is not a
simple two-state miniprotein. J. Am. Chem. Soc. 2005, 127, 10943–10950.

13. Adams, C. M.; Kjeldsen, F.; Zubarev, R. A.; Budnik, B. A.; Haselmann,
K. F. Electron capture dissociation distinguishes a single d-amino acid

in a protein and probes the tertiary structure. J. Am. Soc. Mass Spectrom.
2004, 15, 1087–1098.

14. Grandori, R. Origin of the conformation dependence of protein charge-
state distributions in electrospray ionization mass spectrometry. J. Mass
Spectrom. 2003, 38, 11–15.

15. Grandori, R. Electrospray-ionization mass spectrometry for protein
conformational studies. Curr. Org. Chem. 2003, 7, 1589–1603.

16. Samalikova, M.; Matecko, I.; Mueller, N.; Grandori, R. Interpreting
conformational effects in protein nano-ESI-MS spectra. Anal. Bioanal.
Chem. 2004, 378, 1112–1123.

17. Lin, H.; Dass, C. A mass spectrometry investigation of the conforma-
tional changes in adrenocorticotropic hormones. Eur. J. Mass Spectrom.
2002, 8, 381–387.

18. Kaltashov, I. A.; Eyles, S. J. Studies of biomolecular conformations and
conformational dynamics by mass spectrometry. Mass Spectrom. Rev.
2002, 21, 37–71.

19. Lednev, I. K. K.; Anton, S.; Sparrow, M. C.; Asher, S. A. Alpha-helix
peptide folding and unfolding activation barriers: A nanosecond
UV resonance Raman study. J. Am. Chem. Soc. 1999, 121, 8074–
8086.

20. Alomirah, H.; Alli, I.; Konishi, Y. Charge state distribution and hydro-
gen/deuterium exchange of �-lactalbumin and �-lactoglobulin prepa-
rations by electrospray ionization mass spectrometry. J. Agric. Food
Chem. 2003, 51, 2049–2057.

200 LIN ET AL. J Am Soc Mass Spectrom 2007, 18, 195–200




