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In this study, electrospray ionization mass spectrometry (ESI-MS) was used for the evaluation
of the binding selectivity of a polyamide probe to single-base pair different DNA in an A·T-rich
region. In this procedure, �Ir(dsn) was introduced as a parameter to compare the binding
affinities of the polyamides with the duplex DNA. The results show that ESI-MS is a very
useful tool for analysis of binding selectivity of a polyamide probe to single-base pair
different DNA. (J Am Soc Mass Spectrom 2006, 17, 1742–1748) © 2006 American Society
for Mass Spectrometry

Single base pair different (SBPD) DNA is a very
important phenomenon in biological systems.
The difference of a single-base pair at some

promoters could cause differential activation of tran-
scription [1] and expression [2]. The discrimination of
SBPD in DNA sequences allows exploration of bio-
logical phenomena [3].

Polyamides containing N-methylpyrrole have at-
tracted considerable attention in the fields of chemical
biology and medicine because they can permeate cell
membranes, then recognize and bind with a high affin-
ity in the minor groove of predetermined DNA se-
quences [4–14].

There are several solution phase methods for deter-
mining binding affinities and sequence selectivities; for
example, quantitative DNase I footprint titrations,
NMR studies, and spectrophotometry [15–18]. DNase I
footprint titrations have been used in recent years to
determine binding affinities and calculate the equilib-
rium association constant Ka, especially for studies of
specificity toward mismatches [15, 16]. However, this
method is labor-intensive in the preparation of 32P-
labeled, PCR-amplified DNA fragments and for the
titrations, and may require large quantities of material.

Electrospray ionization mass spectrometry (ESI-MS)
is a rapid method with a high level of sensitivity for the
analysis of noncovalent complexes between drugs and

DNA. ESI-MS also gives direct information about the
stoichiometry of the complexes [19–26].

In this study, the ATATAA element in the HIV-1
promoter, which is a natural binding site for the TATA
box-binding protein (TBP) and plays a key role in the
activation of the transcription of HIV-1 [27–30], was
selected as the target, and a novel polyamide probe,
PyPyPyPy�Dp, was designed and synthesized accord-
ing to the pairing rules derived by Dervan [31] for the
recognition of the ATATAA element. The goal of this
research is to develop an ESI-MS method for evaluating
the binding selectivity of PyPyPyPy�Dp to SBPD DNA.
The results show that ESI-MS is a very useful tool for
the analysis of the binding selectivity of the polyamide
probe to SBPD DNA.

Experimental

DNA

Single-stranded oligonucleotides were purchased from
AuGCT (Beijing, China). Oligodeoxynucleotides were
dissolved in deionized water and diluted with 500 mM
ammonium acetate. For duplex DNA (Table 1), two
complementary single-stranded oligonucleotides were
mixed in equimolar proportions, annealed at 90 °C and
cooled slowly to room temperature (over 4 h) to allow
the formation of the duplex (dsn, n � 1–7, 11–16).

Probe

A polyamide, PyPyPyPy�Dp, was designed and syn-
thesized in our laboratory [32, 33].
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Sample Preparation for Noncovalent Interaction
Assays

Desalting was performed three times with Microcon
filters (Amicon, Beverly, MA) with a 3000 Da cut-off.
The resulting DNA stock solution was 500 �M in
100–150 mM NH4OAc.

The polyamide was dissolved at a concentration of
500 �M in methanol/water (50:50, vol/vol). Each 2.0 �L
DNA sample was mixed with 2.0–12 �L of a polyamide
solution, and then diluted with methanol/100 mM
ammonium acetate (20:80, vol/vol) to 40 �L. Methanol
was used to obtain a good spray [20, 21]. To avoid
formation of nonspecific dimers between identical sin-
gle-stranded oligonucleotides, a final concentration of
the oligonucleotide as low as 2.5 � 10�5 M was required
in each solution.

Mass Spectrometry

ESI mass spectra were obtained with a Finnigan LCQ
Deca XP Plus ion trap mass spectrometer (Thermo
Finnigan, San Jose, CA), and all the experiments were
carried out in the negative ion mode. We infused the
complex solution directly into the mass spectrometer at
a flow-rate of 2 �L/min. The electrospray source con-
ditions were optimized to favor the observation of the
noncovalent complexes; in our case, spray voltage was
2.0 kV and capillary temperature was 120 °C. Data were
collected and analyzed with the Xcalibur software de-
veloped by Thermo Finnigan, and 10 scans were aver-
aged for each spectrum.

Analysis of Binding Affinity for a Polyamide Probe
with Duplex DNA

Using the ESI-MS approach, the stoichiometry and
relative abundance of both free DNA and the DNA–
polyamide complex can be determined simultaneously.
Under the solution conditions used, almost all of the
DNA signals come from the 5-charge state, and the
complex of polyamide (P) with the DNA does not
change the observed charge state.

Here, �Ir(dsn) was introduced as a parameter to
compare binding affinities of the polyamide to the
duplex DNA.

First, the abundance ratio of the complex ion to the
duplex ion, Ir(dsn), was calculated:

Ir�dsn� �
I�dsn � 2P�

I�dsn�
(1)

where I(dsn) and I(dsn � 2P) are the relative abundances
of [dsn]5� and [dsn � 2P]5�, respectively. The percent-
age for each sample in each trial was calculated, using
that of ds1 as a reference:

�Ir�dsn� �
Ir�dsn�
Ir�dsI�

� 100% (2)

Thus, the relative ratio �Ir(dsn) could be obtained for
the relative binding affinities of the polyamide to these
different DNAs.

Fluorescence Titration

The fluorescence was measured with a Hitachi F-4500
spectrofluorimeter (Tokyo, Japan). First, a 1-mL quartz
cuvette was loaded with Tris buffer (0.5 mL, 0.1 M
NaCl, 0.1 M Tris, pH 8.0) and ethidium bromide (7 �M
final concentration). Then the oligonucleotide dsn was
added (1 �M final concentration). Titrations were con-
ducted by adding aliquots of polyamide (1 �L, 0.1 mM)
and measuring the resultant decrease of fluorescence
after 5 min equilibration. Additions were continued
until the system reached saturation.

Results and Discussion

Binding of Polyamide to ds1

The ESI mass spectrum of duplex DNA d(CTG-
CATATAAGCAG/CTGCTTATATGCAG) shows that
the duplex ion ([ds1]5�) at m/z 1704 is a base peak
(100%), which is a target ion for the polyamide (P)
recognizing molecule (Scheme 1). The complexes

Table 1. The sequences and monoisotopic masses of the target duplex DNA (dsn)

Oligonucleotide (dsn) Sequence Monoisotopic mass (Da)

ds1 d(CTGCATATAAGCAG/CTGCTTATATGCAG) 8525.8
ds2 d(CTGCGGATAAGCAG/CTGCTTATCCGCAG) 8527.8
ds3 d(CTGCATATGGGCAG/CTGCCCATATGCAG) 8527.8
ds4 d(CTGCGGGTAAGCAG/CTGCTTACCCGCAG) 8528.8
ds5 d(CTGCATAGGGGCAG/CTGCCCCTATGCAG) 8528.8
ds6 d(CTGCAGCGCAGCAG/CTGCTGCGCTGCAG) 8529.8
ds7 d(CTGCCGCGCGGCAG)2 8531.8
ds11 d(CTGCGTATAAGCAG/CTGCTTATACGCAG) 8526.8
ds12 d(CTGCAGATAAGCAG/CTGCTTATCTGCAG) 8526.8
ds13 d(CTGCATGTAAGCAG/CTGCTTACATGCAG) 8526.8
ds14 d(CTGCATAGAAGCAG/CTGCTTCTATGCAG) 8526.8
ds15 d(CTGCATATGAGCAG/CTGCTCATATGCAG) 8526.8
ds16 d(CTGCATATAGGCAG/CTGCCTATATGCAG) 8526.8
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were analyzed by ESI-MS of mixtures of the duplex
DNA with P in different molar ratios, ranging from
1:1 to 1:6. The great advantage of mass spectrometry
over other methods is that all species of different
masses can be clearly distinguished. Generally, in
each spectrum, there were three kinds of ions: the free
duplex oligonucleotide ion (ds), the 1:1 and 1:2 com-
plex ions of duplex DNA, and polyamide (ds � nP, n
� 1 or 2). Stepwise addition of P to a 25 �M DNA
solution resulted in a gradual increase of the relative
abundance of the ion corresponding to [ds1 � 2P]5� at
m/z� 1963. Figure 1 shows an ESI mass spectrum in
which the polyamide as the probe binds the target
DNA(ds1) from the HIV-1 promoter. When the molar
ratio of the DNA to P is 1:4, the ions of the duplex and
the 1:1 complex ion, [ds1]5� and [ds1 � P]5� (m/z 1704
and 1833, respectively), had only poor abundance (no
more than 10%), while the 1:2 complex ion ([ds1 �
2P]5� at m/z 1963) became significant, with the great-
est abundance (100%). This result demonstrates that,
compared with the 1:1 complex, a significant amount
of the complex with a 1:2 (ds1 � 2P) ratio existed in
the solution as the mixing molar ratio was raised to
1:4. When the molar ratio of DNA to P was increased
to 1:6, the ions of the duplex and the 1:1 complex,
[ds1]5� and [ds1 � P]5�, almost could not be ob-
served, while the 1:2 complex ion ([ds1 � 2P]5�)
maintained the greatest abundance. These results

indicated that the binding stoichiometry of 1:2 ([ds1 �
2P]5� at m/z 1963) was dominant for complexes
observed under these conditions.

According to the ESI mass spectra of the mixtures of
ds1 with� P� and the rules for DNA recognition [31], in
which Py/Py targets A·T or T·A, P (PyPyPyPy�Dp) in a
2:1 model binds to the ATATAA sequence in the minor
groove of ds1 (Scheme 2).

Binding Selectivity of P with Two to Six Base
Pairs Different DNA

To evaluate the binding characteristic of P to the
ATATAA sequence of the target DNA, we examined six
variants of DNA, ds2 to ds7, of which 2 to 6 A·T base
pairs were changed to G·C in the ATATAA element
(Table 1). To better understand the interaction of�P�with
DNA, the abundance ratio of the complex ion to the
duplex ion and the relative binding affinities are calcu-
lated in the forms of Ir(dsn) and �Ir(dsn) by eqs 1 and 2.

The ESI mass spectra of the noncovalent interac-
tion were analyzed by mixing ds2 to ds7 DNA with P
in different molar ratios, ranging from 1:1 to 1:6;
Figure 2 shows the ESI mass spectra of� ds2 as
examples. Generally, in each spectrum, the type of
ion is similar to that of ds1 at each titration point: i.e.,
the duplex ions (dsn) and the complex ions of duplex
DNA and the polyamide (dsn � P and dsn � 2P) with
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Scheme 1. Structure of PyPyPyPy�Dp (P).

Figure 1. Negative ion ESI mass spectrum of the mixture of ds1 with P in a 1:4 M ratio.

Scheme 2. The 2:1 binding motif for PyPyPyPy�Dp and ds1.
Open circles represent pyrrole. Open diamonds represent �-
alanine (�) and dimethylaminopropylamide (Dp).
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the charge state of 5�. The stepwise addition of P to
the DNA solution resulted in a gradual increase of
the relative abundance of the ion corresponding to
[ds2 � 2P]5� at m/z 1963, which became significant
with the greatest abundance at the 1:4 M ratio. The
relative abundance of [ds2 � P]5� complex ion at m/z
1833 increased to no more than 20% as the molar ratio
increased from 1:1 to 1:4, and then decreased when
the molar ratio was increased to 1:6.

The negative-ion ESI mass spectrum of the mixture of
ds3 with P in a 1:4 M ratio contains three main monoiso-
topic peaks of m/z 1704.5 ([ds3]

5�), 1833.5 ([ds3 � P]5�),
and 1963.0 ([ds3 � 2P]5�) and their relative intensities are
100, 10, and 58%, respectively. In the case of ds5, three
main peaks are m/z 1704.8 (82%), 1833.9 (22%), 1963.4
(100%), and m/z 1705.4 (100%), 1834.6 (19%), 1963.9 (7%)
for ds7. The ESI mass spectra of mixtures of ds2 to ds5 with
P in the molar ratio of 1:4 showed the higher [dsn � 2P]5�

peak. However, the relative abundance of [dsn � 2P]5� in
ds6 and ds7 is much lower than that between P and other
target DNA; it shows very low binding affinities because
there are no continuous A·T base pairs.

The ESI MS results show the effects of the molar ratio of
the duplex to P (1:1–1:6) on the abundance ratio of [ds1 �
2P]5� to [ds1]

5�, in the form of Ir(dsn). In the case of ds1,
the abundance ratio Ir(ds1) increased dramatically as the
molar ratio of the polyamide to duplex increased. The
value of Ir(ds1) was found to be 0.22 for the molar ratio of

1:1, while the value was increased considerably, to 92, as
the mixing molar ratio was changed to 1:6. However, all
Ir(dsn) values of ds2 to ds5 are less than 4, at a mixing
molar ratio of 1:1 nearly a 5-fold decrease in the Ir(dsn)
values could be approximated for ds2 to ds5, and when the
mixing molar ratio was increased to 1:6, the results
showed a more than 20-fold decrease in the value of
Ir(dsn) compared with that of ds1. The Ir(dsn) values of ds6

and ds7 are less than 1 for molar ratios from 1:1 to 1:6.
These results show that the change of Ir(dsn) values for P
binding to the target DNA, ds1 to ds7, is remarkable for
discrimination of two to six base pairs difference between
the DNA sequences.

The relative binding affinity [�Ir(dsn)] is defined in eq 2
and the �Ir(ds1) value of ds1 was defined to be 100% as the
reference. In Figure 3, histograms of the ratio �Ir(dsn)
summarize the relative binding affinity of the probe P to
the target DNA for each titration point. Compared with
100% for ds1�with the mixing molar ratio of 1:1 (Figure 3a),
the �Ir(dsn) values for targets ds2 to ds7 were 21, 16, 27, 23,
12, and 7%, respectively, which revealed a substantial
decrease in the overall signal intensity for the sequences
that are not a perfect match with the polyamide P.
Similarly, the �Ir(dsn) values of the 1:6 mixing ratio for ds2

to ds7 were decreased to 4.9, 3.4, 5.6, 2.7, 0.5, and 0.2%,
respectively (Figure 3d). Figure 3 shows that, when the
concentration of P was increased, the difference of the
relative affinity became greater between ds1 and other

Figure 2. Negative ion ESI mass spectra of the mixtures of ds2 with P in the molar ratio of (a) 1:1; (b)
1:2; (c) 1:4; (d) 1:6.
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changed sequences, dsn (n � 2–7). It is because the
perfectly matched sequence ds1 could be bound more
efficiently by the probe P that the abundance of the
complex ion increased considerably, compared with other
DNA sequences.

These results demonstrated the selectivity of P for ds1,
and the probe P displays a discrimination function be-
tween the different A·T-rich sequences. The �Ir(dsn) val-
ues show that a clear difference existed between ds1-P and
dsn-P (n � 2–7) interactions, indicating that ESI-MS can be
used to detect sequence-dependent affinity; namely, to
determine the relative binding affinities of P with the
A·T-rich recognition sequence of DNA in the minor
groove.

Binding Selectivity of P to SBPD DNA

This method has been used to validate the sequence-
dependent affinity of P to target DNA with 2–6 base
pairs difference in the ATATAA element. Here, our
goal is to evaluate the utility of ESI-MS for analysis of
binding selectivity of P to SBPD DNA. For this purpose,
the single base pair substitution of G·C for A·T within
the ATATAA element of the HIV-1 promoter was
chosen as the mutation model. The corresponding se-
quences were introduced as ds11 to ds16, each of which
has only one base pair difference from the natural DNA
sequence, ds1.

The ESI mass spectra of the noncovalent interaction

Table 2. The values of �Ir (dsn) for different molar ratio (n � 1, 11–16)*

DNA 1: 1 1: 2 1: 4 1: 6

ds1 100.0 100.0 100.0 100.0
ds11 69.4 � 4.0 45.8 � 12.2 26.8 � 8.7 34.9 � 6.9
ds12 46.1 � 14.5 56.5 � 2.0 30.4 � 8.8 29.6 � 9.9
ds13 75.9 � 8.6 71.2 � 9.8 40.5 � 8.6 33.6 � 7.8
ds14 48.0 � 17.0 40.9 � 4.0 29.0 � 7.0 26.9 � 6.0
ds15 35.8 � 11.9 53.9 � 13.4 50.0 � 11.5 34.3 � 17.3
ds16 42.6 � 1.7 68.0 � 5.8 35.8 � 7.0 29.7 � 11.2

*dsn with P in molar ratio of 1:1, 1:2, 1:4, 1:6; Value is the average of three measurements.
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Figure 3. The relative binding affinities [�Ir(dsn)] of dsn (n � 1–7) with P, in the molar ratio of (a) 1:1;
(b) 1:2; (c) 1:4; (d) 1:6 (�Ir(dsn) are average values of three measurements).
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were analyzed by mixing ds11 to ds16 with P in different
molar ratios, respectively. Here, the typical ESI mass
spectra of mixtures of dsn (n � 11–16) with P in a 1:4 M
ratio are described as examples. The spectra contain
three main peaks of m/z 1704.3 ([dsn]5�), 1833.6 ([dsn �
P]5�), and 1963.1 ([dsn � 2P]5�). The relative abun-
dances of [dsn � 2P]5� ions are all 100% for ds11 to ds16.
The abundances of [dsn � P]5� are 6, 7, 4, 26, 8, and 6%,
and that of [dsn]5� are 21, 26, 32, 14, 28, and 22% for ds11

to ds16, respectively. Using the method mentioned
above, the relative abundances of [dsn � 2P]5� and
[dsn]5� in the ESI-MS spectra of the titration experi-
ments of P binding with variants of duplex DNA ds11 to
ds16 were monitored with increasing the concentration
of P.

Ir(dsn) and corresponding �Ir(dsn) values were
obtained at different molar ratios (1:1, 1:2, 1:4 and 1:6)
using eqs 1 and 2, and the mean values were calcu-
lated from ESI mass spectra of three measurements.
Table 2 shows that there are only some decreases in
the �Ir(dsn) values for ds11 to ds16 in the molar ratio
of 1:1, compared with that of ds1. This may be
attributed to the weak signal intensities of the com-
plex ions when the concentration of P is only 25 �M
at the first titration point. In this case, the background
noise in the ESI mass spectra would have consider-
able influence on the signal intensity. However, with
the concentration of P increased, 1:2 complex ions
([dsn � 2P]5�) became significant with greater abun-
dance. As shown in Table 2, the ratio contrast be-
tween ds1-P and dsn-P (n � 11–16) could be clearly
observed with the mixing molar ratio changing from
1:2 to 1:6. For the reliability of the experimental
results, the measurements with the mixing molar
ratio of 1:4 and 1:6 are more suitable for evaluation of
the binding selectivity of the polyamide to single-
base pair different DNA. The relative binding affini-
ties [�Ir(dsn)] are decreased remarkably for the inter-
action of ds11 to ds16 with the probe P, these values
were less than half (50%) of that for the natural
sequence ds1(100%), and with better reproducibility
in most cases. These results show that P has a high
selectivity for ds1, and relative binding affinities,
�Ir(dsn), could be used for the evaluation of binding
selectivity of P to SBPD DNA in the A·T-rich region.

Fluorescence Titration

A fluorescence titration assay was used to compare and
confirm the ESI-MS results. Since the fluorescence of
both DNA and the polyamide is too weak to be mea-
sured directly, a fluorescent intercalator displacement
(FID) assay, based on the displacement of ethidium
bromide, was chosen instead of direct titration [34, 35].
Using eqs 3–6, a Scatchard plot was generated where
�F/[Free P] was plotted versus �F, the slope of the
linear portion provided a measure of the binding con-
stant Ka [34].

��F ⁄ �Fsat��1 ⁄ X� � Fraction of �dsn � P� complex (3)

1 � ��F ⁄ �Fsat��1 ⁄ X� � Fraction of free P (4)

�DNA�T�X � ��F ⁄ �Fsat�� � �Free P� (5)

Ka � �slope (6)

where [free P] is the concentration of free polyamide,
[DNA]T is the total concentration of DNA, X is the
molar ratio of polyamide versus DNA, �F is the change
in fluorescence, and �Fsat is the change in fluorescence
at the point where DNA is saturated with the ligand.

The results of the FID assays given in Table 3 are in
good agreement with those obtained by ESI-MS. There
are prominent decreases in the Ka values for the two to
six base pair different DNAs (ds2 to ds7), compared
with that of ds1. For SBPD DNA, the Ka values of ds11 to
ds16 (�4.3 � 106 M�1) for interaction with P were less
than half of that for ds1 (9.3 � 106 M�1); and the binding
affinity order of P to dsn (n � 1–7, 11–16) is almost the
same as that obtained by ESI-MS.

However, the FID assay is often labor-intensive and
may require large quantities of DNA. The advantages of
ESI-MS for binding affinity studies include the speed of
analysis and the ability to obtain stoichiometric infor-
mation.

Conclusions

This study has succeeded in the development of an
ESI-MS method for the evaluation of the binding selec-
tivity of a polyamide to SBPD DNA. The analysis
procedure can be accomplished within a few minutes
because of the speed of mass spectrometry and the
efficient selective recognition of the polyamide. This
ESI-MS method should be applicable to rapid analysis
of the binding selectivity of a polyamide probe to an
SBPD DNA in gene fragments for the exploration of
biological phenomena, and developing the potential of
polyamide applications in the life sciences. Additional
information, discussing the description of the ESI mass
spectra of the mixtures of dsn with P in 1:2 molar ratio
(n � 1-7, 11-16) and the fluorescence titration assays of
the polyamide probe P versus ds1 and ds11, is available
in the Supplementary Material section, which can be
found in the electronic version of the article.

Table 3. Binding constants (Ka) of P with dsn (n � 1–7,11–16)
by fluorescence analysis

DNA Ka [M�1] DNA Ka [M�1]

ds1 9.3 � 106 ds11 4.1 � 106

ds2 1.5 � 106 ds12 3.7 � 106

ds3 1.4 � 106 ds13 4.0 � 106

ds4 1.0 � 106 ds14 4.3 � 106

ds5 1.3 � 106 ds15 4.0 � 106

ds6 4.4 � 105 ds16 4.3 � 106

ds7 3.7 � 105
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