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Gas-phase fragmentation reactions of [ArPd(PPh3)2]� were studied by electrospray ionization
Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The results of
sustained off-resonance irradiation collision-activated dissociation (SORI-CAD) experiments
provide detailed insights into mechanisms for the gas-phase fragmentation reactions of these
complex ions. The POC bond cleavage mediated by palladium is investigated in the gas phase.
There are two competitive fragmentation pathways for the complex ions [ArPd(PPh3)2]� (Ar
� p-OCH3-C6H4, p-CH3-C6H4, p-tBu-C6H4, p-NH2-C6H4, p-COCH3-C6H4, and p-F-C6H4) of
electron-donating and electron-withdrawing aromatic iodides. Path A proceeds through
reductive elimination of [ArPd(PPh3)2]� to produce the product ion [PPh3Ar]�. Path B mostly
proceeds via phenyl migration from the triphenylphosphine ligand to the palladium center by
cleavage of the phosphorusOphenyl bond to give a palladiumOphenyl intermediate, and
subsequent reductive elimination of the intermediate to yield a product ion [PPh4]�. The result
of deuterium-labeling experiments provides evidence for the phenyl shift between the
palladium center and the coordinated ligand through cleavage of the POC bond. The complex
ions [(o-CH3-C6H4)Pd(PPh3)2]�, [(o-2,6-Me2-C6H3)Pd(PPh3)2]�, and [(C10H7)Pd(PPh3)2]� dis-
play more fragmentation pathways, two of which are similar to those of the ions [ArPd-
(PPh3)2]� (Ar � p-OCH3-C6H4, p-CH3-C6H4, p-tBu-C6H4, p-NH2-C6H4, p-COCH3-C6H4, p-F-
C6H4), and the third pathway involves loss of one molecule of benzene and one PPh3 ligand.
The electronic effect and steric effect of the aryl groups also exhibit different influences on the
fragmentation pathways. (J Am Soc Mass Spectrom 2006, 17, 1582–1589) © 2006 American
Society for Mass Spectrometry

Organopalladium complexes [ArPd(R3P)2X] (X �
halogen) play important roles as key interme-
diates in numerous Pd-catalyzed reactions of

aryl halides, such as the Heck arylation of olefins, the
Kharasch-Fields, Stille, Suzuki, and Sonogashira cou-
pling reactions, and many nucleophilic displacement
and� carbonylation� reactions� [1–�6].� These� complexes
provide an attractive point into various Pd-catalyzed
cross-couplings, due to both enhanced catalytic activity
relative to zerovalent PdLn complexes and ease of
handling. However, the aryl–aryl interchange reaction
of [ArPd(R3P)2X] usually resulted in the formation of
phosphine-derived by-products in catalytic and stoichi-

ometric cross-coupling reactions, which has been inves-
tigated� by� Cheng,� Novak,� and� Grushin� etc.� [7–12].� In
addition, many methods have been developed to pre-
vent the aryl–aryl interchange reaction and reduce the
limitations of the catalytic chemistry of aromatic halides
[13,�14].

It was also recognized that tertiary phosphine–metal
complexes are chemically reactive and susceptible to
carbonOphosphorus bond scission depending on the
specific�reaction�conditions�[15].�Many�results�concern-
ing carbonOphosphorus bond activation by transition-
metal complexes have been reported, most of which
included aryl carbonOphosphorus bond cleavage in
triarylphosphines� [15–19].� There� are� two� mechanisms
that have been proposed for migration of aryl from
phosphine toward the metal: a shift of aryl from the
metal-bonded phosphine or an oxidative addition of
arylphosphine� [17].� Although� examples� of� transition-
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metal complexes activating the carbonOphosphorus
bond remain to be exploited, reaction of the
phosphorusOcarbon bond with the transition-metal to
which the tertiary phosphine is bound has profound
implications�for�homogeneous�catalysis�[15,�18,�19].

Recently, electrospray ionization mass spectrometry
(ESI-MS) has been used extensively for structural char-
acterization of metal containing compounds and mech-
anism determination of some gas-phase reactions, com-
bined with tandem mass spectrometric (MS/MS)
methods involving collision-activated dissociation
(CAD)� [20�–26].�Previously,�we�have�used�electrospray
ionization Fourier transform ion cyclotron resonance
mass spectrometry (ESI-FTICR-MS) to provide insight
into the mechanism of Pd(0)-catalyzed three-
component tandem double addition-cyclization, and
successfully characterized some key intermediates,
which confirmed the proposed mechanism for the reac-
tion� [27].�During� this�preliminary�work,�an� interesting
gas-phase fragmentation reaction of [PhPd(PPh3)2]�

was observed. In a sustained off-resonance irradiation
collision-activated dissociation (SORI-CAD) experi-
ment, the precursor ion [PhPd(PPh3)2]� fragmented to
yield a product ion [PPh4]��[27–29].�The�specific�interest
here is to demonstrate the gas-phase behavior of these
analogous complexes by mass spectrometry, and to find
the origins of phenyl in [PPh4]� dissociated from the
precursor ion [PhPd(PPh3)2]�. Because the complex ion
[ArPd(PPh3)2]� and the aryl-aryl interchange product
ion [PhPd(PPh3)(PPh2Ar)]� are isomers and cannot be
distinguished by ESI-FTICR-MS, the aryl–aryl inter-
change reaction should be inhibited in the process of
preparing ArPd(PPh3)2I or in the mass spectrometric
analysis process.

In this paper, gas-phase fragmentation reactions of a
series of organopalladium complexes ArPd(PPh3)2I are

studied. The general formula for the coordinated or-
ganopalladium ions and a description of the aromatic
iodides are given in Scheme 1 Their elemental compo-
sitions are confirmed through accurate mass measure-
ment data, and their fragmentation pathways are stud-
ied by SORI-CAD experiments and deuterium labeling
experiments. In addition to the fragmentation pathways
for these organopalladium ions, the influence of the
electronic effect and steric effect of the functional
groups in aromatic halides on the fragmentation reac-
tions will also be presented.

Experimental

Materials and Sample Preparation

The starting materials, tetrakis(triphenylphosphine)pal-
ladium (Pd(PPh3)4), tri(phenyl-d15)phosphine (PPh3-d15),
and all the aromatic iodides, were purchased from Sigma-
Aldrich Co. (St. Louis, MO). The tetrahydrofuran (THF)
and CH3CN were HPLC-grade solvents from Merck Co.
(Darmstadt, Germany). The complexes ArPd(PPh3)2I were
prepared by stirring a solution of ArI (0.005 mmol) and
Pd(PPh3)4 (0.005 mmol) in THF (6 mL) at room tempera-
ture�under�an�atmosphere�of�nitrogen�[30].�The�deuterated
complex (p-OCH3-C6H4)Pd(PPh3-d15)2I was prepared by
stirring a solution of p-OCH3-C6H4I (0.005 mmol) and
Pd(PPh3-d15)4 (0.005 mmol) in THF (6 mL) at room
temperature under an atmosphere of nitrogen. The
Pd(PPh3-d15)4 was prepared as described in the liter-
ature�[31].

Instrumentation

The experiments were performed in positive ion mode
on a Bruker Daltonics APEX III ESI-FTICR mass spec-

R1 Pd

PPh3

PPh3

1) R1 = H,              C42H35P2Pd+ m/z 707.1

R1 Pd

PPh3-d15

PPh3-d15

9)   R1 = OCH3, C43H7D30OP2Pd+ m/z 767.1

Pd

PPh3

PPh3

R2

10) R2 = CH3, R3 = H,     C43H37P2Pd+ m/z 721.1

11) R2 = CH3, R3 = CH3, C44H39P2Pd+ m/z 735.2

Pd

PPh3

PPh3

12) C46H37P2Pd+ m/z 757.1

R3

2) R1 = OCH3,       C43H37OP2Pd+ m/z 737.1

3) R1 = CH3,          C43H37P2Pd+ m/z 721.1

4) R1 = t-Bu,          C46H43P2Pd+ m/z 763.2

5) R1 = NH2,         C42H36NP2Pd+ m/z 722.1

6) R1 = COCH3,    C44H37OP2Pd+ m/z 749.1

7) R1 = F,              C42FH34P2Pd+ m/z 725.1

8) R1 = NO2,         C42H34NO2P2Pd+ m/z 752.1

+ +

+
+

Scheme 1. Structures of organopalladium complex ions studied by ESI-FTICR-MS.
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trometer (Billerica, MA) equipped with a 7.0 tesla
shielded superconducting magnet. The analyses em-
ployed an infusion flow rate of 10 �L/min, which was
maintained by a syringe pump. The basic ESI conditions
were: vacuum, 3.7 � 10�7 to 2.6 � 10�9 torr; CapExit
voltage, 52.0 V; offset voltage, 0.9–1.8 V. The ions are
accumulated in the RF-only hexapole ion storage region
for 1.0 s, focused and steered through the ion transfer
region. The other parameters from the ion generation to
trapping were optimized on the tuning parameters
based on the maximum intensity of parent ion achieved.

In SORI-CAD experiments, the precursor ions of
interest were isolated with an isolation sweep attenua-
tion/isolation pulse length of 20 dB/0.8 ms and then
collided with argon gas. The argon collision gas was
introduced into the cell through a pulsed valve to
maintain a stable pressure. A delay of about 1.0 s was
applied after the parent ion was isolated. During this
delay period, no activation pulse was needed and the
fragment process was spontaneously generated, which
was dependent on the initial kinetic energy of the ions.
After the delay period, mass spectra were acquired in
the positive ion mode with broadband detection (eight
scans per experiment each) from 100 to 1500 Da using
256 K data points. Therefore, the mass spectra do reflect
the dissociation process of the isolated ions. All the
experimental sequences, including scan accumulation
and data processing, were performed with Bruker
Xmass 6.1.2 software. The instrument was calibrated
externally with methanol solutions of PEG400 and
PEG800.

Results and Discussion

The structures of the precursor ions and product ions
are fully supported by the accurate mass measure-
ments. The relative errors are all less than 5 ppm, so the
results indicate that the proposed structures have the
only reasonable elemental compositions. The compari-
son of the masses determined, and the actual masses of
the proposed structures and the corresponding element
compositions of the main fragment ions will be pre-
sented.

In general, the gas-phase fragmentation reactions of
complex ions 2–7 proceed via two major pathways,
while complex ions 10, 11, and 12 react through three
major fragmentation pathways. It should be noted that
no aryl–aryl interchange reaction occurs during the
mass spectrometric analysis process when the organo-
palladium ions are isolated in the cell for SORI-CAD
experiments by prolonging the pumping delay time for
MS/MS from 1.0 s to 180.0 s. In addition, the electronic
and steric effects of the aryl groups exhibit different
influences on the observed fragmentation pathways.
The details will be discussed below.

Fragmentation of Compounds 1–8:
Electronic Effects

Eight complex ions, 1–8, are prepared from aromatic
iodides substituted by electron-donating or electron-
withdrawing groups in the para position, and studied
by ESI-FTICR-MS. The SORI-CAD experiments of the

Table 1. Relative intensities of main product ions of complex ions 1 to 8, and the ratio of intensities of product ions [PPh4]�

and [PPh3Ar]�

Ions Ions elemental composition
Relative intensity

of the product ions (%) I ([PPh4]�)/I ([PPh3Ar]�)

1 C42H35P2Pd� a

C24H20P� 85.7
2 C43H37OP2Pd�

C24H20P� 5.1 0.053
C25H22OP� 96.2

3 C43H37P2Pd�

C24H20P� 7.8 0.16
C25H22P� 48.8

4 C46H43P2Pd�

C24H20P� 8.5 0.087
C28H28P� 97.7

5 C42H36NP2Pd�

C24H20P� 13.2 0.19
C24H21NP� 69.5

6 C44H37OP2Pd�

C24H20P� 90.2 13.67
C26H22OP� 6.6

7 C42FH34P2Pd�C
24H20P� 92.4 6.46
C24FH19P� 14.3

8 C42H34NO2P2Pd� a

C24H20P� 98.0

aThe ratio could not be calculated for the single product ion.
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precursor ion clusters with the typical palladium isoto-
pic distributions are performed with argon as collision
gas. Structures and compositions of precursor ions and
fragment ions produced from these complex ions are
confirmed� by� SORI-CAD� experiments� as� shown� in
Table�1.

The SORI-CAD spectra of these organopalladium
ions show that: ion 1 [(Ph)Pd(PPh3)2]� at m/z 707.1
yields the product ion 1A [PPh4]��at�m/z�339.1�(Figure
1);� the� other� ions� 2–7� all� give� two� product� ions,
[PPh3Ar]� and 1A. The product ion [PPh3Ar]� is pre-
sumably produced mainly from the reductive elimina-
tion between the PPh3 ligand and the aryl group
bonded to the Pd-atom; the product ion 1A [PPh4]�

resulted from another reductive elimination of a pro-
posed intermediate ion [ArPd(PPh3)(Ph)(PPh2)]�,
which may be formed via palladium-mediated POC
activation and subsequent phenyl migration from the

triphenylphosphine�ligand�to�the�palladium�center�[32–
36].�Ion�1�[PhPd(PPh3)2]� fragments via these two major
pathways to yield only one product ion 1A. However,
the ion 8 [(p-NO2C6H4)Pd(PPh3)2]� yields only one
product ion, 1A. Subsequently, the product ion 1A is
isolated�for�MS/MS/MS.�Figure�2�shows�that�1A�could
yield 1B at m/z 261.1 and 1C at m/z 183.0 by loss of one
molecule of benzene or two molecules of benzene,
which further characterizes the structure of the product
ion 1A.

It is interesting that the ratio of intensities of product
ions [PPh4]� and [PPh3Ar]� dramatically changes when
the functional groups of aromatic halides are changed
from electron-donating groups to electron-withdrawing
groups (Table). It seems that the phenyl migration trend
is enhanced by the presence of electron-withdrawing
substituents such as the nitro group of ion 8, and
inhibited by the presence of electron-donating substitu-

Figure 1. ESI(�)-SORI-CAD spectra for (a) [(Ph)Pd(PPh3)2]�, (b) [(p-OCH3-C6H4)Pd(PPh3)2]�, and (c)
[(p-COCH3-C6H4)Pd(PPh3)2]�.
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ents of aromatic halides. Garrou has investigated sub-
stituent effects on the rate of POC bond cleavage; these
studies reveal that bond scission is enhanced by elec-
tron-withdrawing substituents such as CF3 and inhib-
ited by electron-donating substituents such as OMe of
the�triarylphosphine�ligand�in�the�para�position�[15,�37,
38].�Our�studies�suggest�that�the�influence�of�substitu-
ents of aromatic halides on the POC bond cleavage has
some similarity to that from the tertiaryl-phosphine
ligand in the para position. Therefore, the fragmenta-
tion reaction of ion 8 [(p-NO2-C6H4)Pd(PPh3)2]� may be
affected by the presence of the strong electron-with-
drawing group of p-NO2-C6H4I, which strongly en-
hances the phenyl migration of ion 8.

According to the SORI-CAD data, two major
mechanisms for the fragmentation reactions of these
organopalladium ions are proposed and summarized
in Scheme 2. Path A proceeds via reductive elimina-
tion of [ArPd(PPh3)2]� to produce the product ion
[PPh3Ar]�. Path B mostly proceeds via two steps:
first, phenyl migration from triphenylphosphine li-
gand to the palladium center through cleavage of the
POC bond affording a palladium-phenyl intermedi-
ate [ArPd(PPh3)(Ph)(PPh2)]�; second, reductive elim-
ination of this intermediate to yield the product ion
[PPh4]� and [PPh3Ar]�.

Fragmentation of Compound 9: Deuterium
Labeling Tracing the Phenyl Shift between the
Palladium Center and the Coordinated Ligand

To investigate the origin of the phenyl group in [PPh4]�

eliminated from the complex ions 1 to 8, a labeling

experiment is performed with [(C6H4-p-OCH3)Pd(PPh3-
d15)2]�. This ion is prepared and detected under the
previous procedure. Ion 9 at m/z 767.3 fragments to
yield the product ions 9A at m/z 384.2 and 1A-d20 at m/z
359.3�(Figure�3),�which�indicates�that�the�phenyl�of�the
product ion [PPh4]� comes from the triphenylphos-
phine ligand. As a result, the finding from the SORI-
CAD study of 9 provides a valuable clue about the
phenyl shift between the palladium center and coordi-
nated ligand via cleavage of the phosphorusOphenyl
bond to give a palladiumOphenyl intermediate.

Fragmentation of Compounds 10, 11, and 12:
Steric Effects

When the position of substituents on the aromatic
halides is changed from para to ortho, more fragmen-
tation pathways are found in the SORI-CAD experi-
ments. Ions 10 [(o-CH3-C6H4)Pd(PPh3)2]�, 11 [(o-2,6-
Me2C6H3)Pd(PPh3)2]�, and 12 [(C10H7)Pd(PPh3)2]� are
studied by SORI-CAD experiments to investigate their
fragmentation reactions. In comparison to the organo-
palladium ions 1–8, ions 10, 11, and 12 individually
decompose to yield more fragment ions; the composi-
tions and accurate masses of the fragment ions pro-
duced from these complexes are obtained using SORI-
CAD in ESI-FTICR-MS. In addition to product ions
[PPh3Ar]��and�[PPh4]�,�Figure�4a�shows�that�ion�10�also
yields product ions 10A at m/z 643.1 and 10B at m/z
381.0 by loss of one molecule of benzene and one PPh3

ligand. Complex ions 11 and 12 display fragmentation
chemistry�similar�to�that�of�10�(�Figure�4b�and�c)�[39].

Evidence from the SORI-CAD spectra of 10, 11, and

Figure 2. ESI(�)-MS/MS/MS for the product ion 1A.
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Scheme 2. Two proposed major fragmentation pathways for ions 1–7. Ion 8 fragments to produce
only [PPh4]�.
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Figure 3. ESI(�)-SORI-CAD spectra for [(p-OCH3-C6H4)Pd(PPh3-d15)2]�.

Figure 4. ESI(�)-SORI-CAD spectra for (a) [(o-CH3-C6H4)Pd(PPh3)2]�, 10; (b) [(o-2,6-Me2-
C6H3)Pd(PPh3)2]�, 11; and (c) [(C10H7)Pd(PPh3)2]�, 12.
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12 suggests that there are three major fragmentation
pathways for these three ions (Scheme 3). The first two
pathways are similar to that of complex ions [ArPd-
(PPh3)2]� (Ar � p-OCH3-C6H4, p-CH3-C6H4, p-tBu-
C6H4, p-NH2-C6H4, p-COCH3-C6H4, and p-F-C6H4).
The third pathway begins with loss of one mole-
cule of benzene to produce one product ion
[ArPd(PPh3)(PPhC6H4)]� (Ar � o-CH3-C6H4, o-2,6-Me2-
C6H3, and C10H7), and then eliminates one PPh3 ligand
to afford another product ion [ArPPhC6H4]� (Ar �
o-CH3-C6H4, o-2,6-Me2-C6H3, and C10H7). These results
indicate that the steric effect of the aryl group influences
the fragmentation pathways.

Conclusions

Mechanisms for fragmentation reactions of organo-
palladium ions [ArPd(PPh3)2]� are elucidated in our
work. The fragmentation reactions of complex ions
1–8 of electron-donating and electron-withdrawing
aromatic iodides, except for 1 and 8, take place via
two major pathways. Path A proceeds through reduc-
tive elimination of [ArPd(PPh3)2]� to produce the
product ion [PPh3Ar]�. Path B involves phenyl mi-
gration from the triphenylphosphine ligand to the
palladium center to give a palladium-phenyl interme-
diate [ArPd(PPh3)(PPh2)(Ph)]�, and subsequent re-
ductive elimination of the intermediate to yield the
product ion 1A. Deuterium labeling experiments pro-
vide evidence for the phenyl shift between the palla-
dium center and the coordinated ligand via cleavage
of the phosphorus-phenyl bond; this process is also
found to be enhanced by the electron-withdrawing
substituents of aromatic halides and inhibited by
electron-donating substituents of aromatic halides in
the para position. The complex ions 10–12 display
three competitive fragmentation pathways. Further
studies in this area are underway in our laboratory.
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