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Linear quadrupoles with added hexapole fields are described. The shifts in ion oscillation
frequency caused by the addition of a hexapole field are calculated within the effective
potential model. Methods to construct linear quadrupoles with added hexapole fields with
exact electrode geometries and with round rods are discussed. A quadrupole with added
hexapole field can be constructed with round rods by rotating two rods (say the y rods)
towards an x rod. Computer simulations are used to investigate the possibility of mass
analysis with quadrupoles with added hexapole fields. We find that a quadrupole with an
added hexapole field in the range 2–12% can provide mass analysis provided the dc is
applied with the correct polarity and value. When a rod set is constructed with round rods,
other multipoles in the potential degrade the peak shape, resolution and transmission. The
largest of these after the quadrupole and hexapole are a dipole and octopole term. With
round rod sets, the peak shape can be improved by using different diameters for the x and
y rod pairs to minimize the octopole term in the potential and by injecting ions at the field
center where the dipole term is zero. Calculations of the boundaries of the stability
diagram for this case show the boundaries move out, relative to those of a pure quadrupole
field, but remain sharp. (J Am Soc Mass Spectrom 2006, 17, 1063–1073) © 2006 American
Society for Mass Spectrometry

Three dimensional Paul traps may benefit from
distortions of their electrode geometry so that the
electric potential is not described purely by a

quadrupole� field� [1].� The� distortions� are� described
mathematically by the addition of higher multipoles (or
spatial harmonics) to the potential. One effect of the
higher multipoles is to cause the frequency of ion
oscillation to shift with the amplitude of oscillation. It
has been argued that this improves fragmentation effi-
ciency in MS/MS because it becomes more difficult to
eject ions from the trap, thus favoring ion activation and
fragmentation�over� ion�ejection�[1].�An�added�positive
even multipole can also lead to faster ion ejection at a
stability�boundary�[1,�2]�or�with�resonant�excitation�[3].
These benefits might also be expected to apply to a
linear quadrupole trap.

Several studies have shown that the MS/MS effi-
ciency (i.e., the fragmentation efficiency) of a linear

quadrupole trap is improved by adding higher multi-
poles�to�the�potential.�Collings�et�al.�[4]�found�surpris-
ingly high MS/MS efficiency in a linear quadrupole
operated at a pressure of 3.5 � 10�5 torr. This was
attributed to the multipoles added to the potential by
constructing the quadrupole with round rods. In a later
study, Collings showed that the addition of a dc octo-
pole to the potential with auxiliary electrodes could also
increase�the�MS/MS�efficiency�[5].�An�octopole�field�can
be added to a linear quadrupole by constructing the
quadrupole with one rod pair different in diameter
from the other rod pair, or by using different spacings
from�the�axis�of�equal�diameter�rod�pairs�[6].�Michaud
et al. showed that a linear quadrupole with an added
4% octopole field can have substantially higher MS/MS
efficiency than a conventional quadrupole rod set con-
structed from round rods, particularly at trap pressures
of 10�4 torr or less of N2� [7].

Frequency shifts can also be induced by the addition
of a hexapole to a quadrupole potential, and addition of
a hexapole should also increase MS/MS efficiency. The
potential of a linear quadrupole with an added hexa-
pole and no other multipoles is given by
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V�x, y, t� ��A2�x2 � y2

r0
2 �� A3�x3 � 3xy2

r0
3 ����t� (1)

where A2 and A3 are the dimensionless amplitudes of
the quadrupole and hexapole fields, A2 � 1, r0 ⁄ �A2 is
the distance from the center of the quadrupole to a y
electrode when x � 0 and ��(t) is the voltage applied
the electrodes. In this paper we describe the frequency
shifts expected from the addition of a hexapole field
within the effective potential model. Wells has shown
that a hexapole term can be added to a linear quadru-
pole ion trap by applying dipole excitation at the
frequency� of� the� trapping� rf� [8].� The� amplitude� of� the
hexapole is determined by the dipole excitation voltage.
We describe methods to construct a linear quadrupole
with added hexapole field with exact electrode geome-
try. We also describe round rod geometries that add a
hexapole field. We show that a quadrupole with added
hexapole can be constructed with round rods by rotat-
ing two rods (say the y rods) towards an x rod. In some
instruments it is desirable to have a linear quadrupole
which can be operated as a trap with high MS/MS
efficiency at pressures of ca. 10�5 torr but the same
quadrupole must be capable of mass analysis with rf
and� dc� voltages� applied� between� the� rods� [9].� It� has
been found that linear quadrupoles with added octo-
pole fields can perform mass analysis provided the dc
potential is applied to the rods with the correct polarity
[10].�Thus,�we�also�use�computer�simulations�to�inves-
tigate the possibility of mass analysis with quadrupoles
with added hexapole fields. We find that a quadrupole
that has the potential given by eq 1 gives good peak
shape and transmission in mass analysis provided the
dc is applied with the correct polarity and value, but
that when a rod set is constructed with round rods,
other multipoles in the potential degrade the peak
shape, resolution, and transmission. The largest of these
after the quadrupole and hexapole are a dipole and
octopole term. With round rod sets, the peak shape can
be improved by using different diameters for the x and
y rod pairs to minimize the octopole term in the
potential and by injecting ions at the field center where
the dipole term is zero. Calculations of the boundaries
of the stability diagram for this case show the bound-
aries move out, relative to those of a pure quadrupole
field, but remain sharp.

Methods

Multipole Calculations

In general a two-dimensional time-dependent electric
potential can be expanded in multipoles as

V�x, y, t� � ��t�	
N�0

�

AN�N�x, y� (2)

where AN is the dimensionless amplitude of the multi-
pole �N�x,y�, and ��t� is a time-dependent voltage

applied� to� the� electrodes� [11].� For� a� quadrupole� mass
filter, ��t� � U � Vrfcos�t. Without loss of generality,
for N � 1, �N�x,y� can be calculated from

�N�x, y� � Re�x � iy

r0
�N�

(3)

where Re
�f�	�� means the real part of the complex
function f�	�, 	 � x � iy, and i2 � � 1. For rod sets with
round rods, amplitudes of multipoles given by eq 3 were
calculated�with�the�method�of�effective�charges�[12].

Ion Source Model
Collisional cooling of ions in an RF quadrupole (or
other multipole) has become a common method of
coupling atmospheric pressure ion sources such as ESI
to�mass�analyzers�[13].�Collisions�with�background�gas
thermalize ions and concentrate ions near the quadru-
pole axis. We use an approximate model of a thermal-
ized distribution of ions as the source for calculations of
peak shapes and stability diagrams. At the input of the
quadrupole, the ion spatial distribution is approxi-
mated as a Gaussian distribution with the probability
density function f(x,y)

f�x, y� �
1

2
�x
2e��x2�y2

2�x
2 � (4)

where �x determines the spatial spread in both the x
and y directions.

Modeling initial ion coordinates x and y with a
random distribution given by eq 4 is based on the
central� limit� theorem� [14]� for� dimensionless� variables
x̃ � x⁄r0 and ỹ � y⁄r0 on the interval [-1, 1]. The
distribution of eq 4 can be generated from

x̃ �� 3

m
�x	

i�1

m

xi; ỹ �� 3

m
�x	

i�1

m

yi (5)

where m is the number of random numbers xi and yi

generated by a computer. In our calculations m � 100.
The ion velocities are taken from a thermal distribu-

tion given by

g��x, �y� �
1

2
��
2e��m��x

2��y
2�

2kT
� (6)

where �� � �2kT

m
is the ion velocity dispersion, k is

Boltzmann’s constant, T is the ion temperature, and m is
the ion mass. Transverse velocities in the interval
[�3�v, 3�v] were used for every initial position. The

dimensionless variables 
 �
�t

2
and u �

x

r0

are used in

the ion motion equations. Then
du

d

�

dx

dt

1


r0f
�

�


r0f
and

f �
�

2

. The dimensionless velocity dispersion �u is
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�u �
��


r0f
�

�2kT

m


r0f
(7)

For typical conditions: an ion mass of 390 Da, r0 � 5 �
10�3m, f � 1.0 � 106 Hz, and T � 300K, eq 7 gives �u �
�v/
r0f � 0.0072. The ion velocity dispersion �v de-
creases with m as m�1/2. This helps to improve the
transmission of a quadrupole mass filter at higher mass.

The ion source model is characterized by the two
parameters �x and �v. The influence of the radial size of
the ion beam on transmission for different values �v is
shown� in� Figure� 1.� These� data� were� calculated� for� a
resolution q/�q of the scan line of R � 390, � � 0.1676
(� is defined below), ion temperature T � 300 K, a
separation time of n � 150 rf cycles, a pure quadrupole
field and no fringing fields. With ions concentrated near
the axis with �x � 0.006r0 the transmission does not
depend strongly on �x for given values of �v. For the
same conditions the transmission for different values of
�x�are�shown�in�Figure�2.�High�transmission,�near�100%
at m/z � 390, is possible because of the small ion beam
emittance with �x � 0.005r0 and �v � 0.003
 r0f.

Peak Shape and Stability Region Calculations

Ion motion in quadrupole mass filters is described by
the two Mathieu parameters a and q given by

a �
8eU

mr0
2�2 and q �

4eVrf

mr0
2�2 (8)

where e is the charge on an ion, U is the DC applied
from an electrode to ground and Vrf is the zero to peak
rf voltage applied from an electrode to ground. For
given applied voltages U and Vrf, ions of different mass
to charge ratios lie on a scan line of slope

a ⁄ q � 2� �
2U

Vrf

(9)

The presence of higher order spatial harmonics in
addition to the quadrupole field leads to changes in
the�stability�diagram�[10].�The�detailed�mathematical
theory of the calculation of the stability boundaries
for�Mathieu�and�Hill�equations�is�given�in�[15]�and�for
mass� spectrometry� applications� is� reviewed� in� [16].
However these methods cannot be used when the x
and y motions are coupled by higher spatial harmon-
ics. Instead, the stability boundaries can be found by
direct simulations of the ion motion. Details of these
calculations of stability boundaries and peak shapes
(i.e., the transmission versus q as the a and q param-
eters are varied along a scan line) are given in the
Appendix part A.

Results

Frequency Shifts with an Added Hexapole Field

The frequency shifts that occur when a hexapole field is
added to a linear quadrupole field can be calculated
within�the�effective�potential�approximation�[17],�using
the solution to the resulting nonlinear differential equa-
tion�as�described�by�Landau�and�Lifshitz�[18].�Details�of
the calculation are in the Appendix Part B.

Ion motion in the x direction is determined by

ẍ��0
2x � �

9eqA2A3

4mr0
3 Vrf x2 �

36eqA3
2

16mr0
4 Vrf x3 (10)

where �0 is the secular frequency with no added
multipole.

The frequency shift of the nonlinear oscillator de-
scribed by eq 10 is
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Figure 1. Transmission versus �x/r0 for different values of trans-
verse ion velocity dispersion �v with mass 390, 300K, R � 390, � �
0.1676, and 150 rf cycles in the field.
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dispersions �x� for�the�conditions�of�Figure�1.
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��x � �
5

12

81A3
2

4A2
2

b2

r0
2 �0 �

27

16

A3
2

A2
2

b2

r0
2 �0 (11)

where b is the amplitude of oscillation. For example, if
A3 � 0.02 and b � r0, the first term on the right of eq 11
gives a shift of �3.38 � 10�3 �0 and the second term a
shift of �6.75 � 10�4 �0. The combined frequency shift
for the x motion is �2.71 � 10�3 �0.

The motion in the y direction is determined by

ÿ��0
2 � �

36eqA3
2

16mr0
4 Vrf y3 (12)

This gives a shift up in frequency

��y �
27A3

2

16A2
2

b2

r0
2 �0 (13)

When A2 � 1.0, A3 � 0.020 and b � r0 this shift is �6.75
� 10�4�0, opposite in sign and four times less than the
total shift in the x frequency.

A hexapole produces smaller shifts than an octopole
of the same amplitude. A positive octopole of ampli-
tude A4 in the x direction produces a shift in frequency
of�[7]

��x � 3
A4

A2

b2

r0
2 �0 (14)

If A4 � 0.02 and b � r0 this shift is 0.06�0 or about 22
times greater than that of a hexapole of the same
amplitude. Nevertheless the frequency shift from a
hexapole should be sufficient to improve MS/MS effi-
ciency.�Collings�et�al.�[5]�found�that�MS/MS�efficiency
for ions of a substituted triazatriphosphorine (mass to
charge ratio m/z � 2721.89) was improved significantly
under conditions where an added dc octopole field
caused a shift of 0.4 kHz from the unperturbed fre-
quency of 59.8 kHz (��/� � 6.7 � 10�3). From eq 11
this frequency shift could be caused by a ca. 3%
hexapole field when b � r0 or a ca. 6% hexapole field
when b � r0/2.

Methods to Add a Hexapole Field to a Linear
Quadrupole

The rod shapes of linear quadrupoles with small
amounts of added hexapole fields can be calculated
from

A2�x2 � y2

r0
2 �� A3�x3 � 3xy2

r0
3 �� � c (15)

where c is a constant. Taking r0 � 1 and c � 1 gives

A2�x2 � y2� � A3�x3 � 3xy2� � � 1 (16)

Eq 16 is quadratic in y and can be solved to give

y � ��A3x
3 � A2x

2 � 1

3A3x � A2

(17)

Figure�3�shows�the�calculated�shapes�of� the�electrodes
with A2 � 1.00 and A3 � 0.05. Electrodes with these
exact shapes produce a quadrupole field with an added
hexapole and no other multipoles in the potential. In
this case other multipoles will only be produced by
mechanical imperfections.

Eq�15�and�Figure�3� show�that�with�an�added�hexa-
pole the rods sets are symmetric under the transforma-
tion y ¡ �y, but not under the transformation x ¡ �x.
This contrasts to rod sets with added octopoles, which
have fields and electrodes that are symmetric under
both of these transformations. Eq. 15 shows that chang-
ing the sign of A3 is equivalent to the transformation
x ¡ �x. Rod sets constructed with a hexapole compo-
nent A3 and hexapole component �A3 differ only by a
reflection in the y axis. Physically, the same transforma-
tion can be achieved by rotating a rod set 180 degrees
about its center to interchange the entrance and exit
ends. This gives the same rod set with the same
potentials applied to the x and y rod pairs. The charac-
ter of ion trajectories and the performance of the rod set
will not change. Thus, rod sets with �A3 are equivalent.
This contrasts with rod sets with added octopoles
where changing the sign of A4 is equivalent to inter-
changing the x and y rods. Because the x and y rods are
physically different and have different applied poten-
tials, changing the sign of A4 changes the character of
the�ion�trajectories�[6,�7].

Constructing and mounting rod sets with the geom-
etry� shown� in� Figure� 3� with� high� precision� might� be
difficult and expensive. As with conventional quadru-
pole rod sets, it is advantageous if the field can be
produced with sufficient accuracy with round rods.
When round rods are used, an angular displacement of

x
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Figure 3. Cross sections of the electrodes that produce a linear
quadrupole field of amplitude A2 � 1.0 with an added hexapole
field of amplitude A3 � 0.05.
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one� rod� produces� an� added� hexapole� field� [12].� How-
ever the amplitudes of other multipoles are substantial.
Examination�of�Figure�3�shows�that�the�two�y�rods�are
closer to the x rod in the positive x direction. This
suggests that, with round rods, a better approximation
to the field might be achieved by rotating the two y rods
toward� one� of� the� x� rods,� as� shown� in� Figure� 4.� In
Figure� 4,� all� rods� have� the� same� diameter� r� and� are
equally spaced from the axis a distance r0. The two y
rods are rotated through an angle � toward an x rod.

Figure�5�shows�the�multipole�amplitudes�A1, A3, A4,
A5, and A6 calculated for a ratio r/r0 � 1.1487 and
different angles of rotation, �. This ratio r/r0 was chosen
because it makes the higher order multipole terms small
when� � �� 0� [19].� The� effects� of� small� changes� in� r/r0

when � � 0 have been reviewed by Douglas and
Konenkov� [20].� These� amplitudes� are� shown� because
they are the largest produced with this rod geometry. It
can be seen that a hexapole component is produced
with amplitude approximately proportional to the ro-
tation angle, given by A3 � 0.01545�. At the same time

a dipole component A1 is produced. Other higher
harmonics�remain�relatively�small.�Table�1,�for�example
shows the harmonics produced with a rotation angle of
3.0°.

The Dipole Term A1

Figure� 5� and� Table� 1� show� that� with� the� geometry� of
Figure� 4,� there� is� a� significant� dipole� term,� A1. (The

dipole term in the potential has the form A1� x

r0
���t�.)

This term arises because the field is no longer symmet-
ric about the y axis. The dipole term can be removed by
applying different voltages to the two x rods, either
with a larger voltage applied to the x rod in the positive
x direction or a smaller voltage applied to the x rod in
the negative x direction, or a combination of these
changes�[21].

The dipole term arises because the center of the field
is�no�longer�at� the�point�x���0,�y���0�of�Figure�4.�The
potential is approximately given by

V�x, y� ��A1� x

r0
�� A2�x2 � y2

r0
2 �

� A3�x3 � 3xy2

r0
3 ����t� (18)

Let x̂ � x � x0 or x � x̂ � x0. Then

V�x̂, y�
��t�

� A1��x̂ � x0�
r0

�� A2��x̂ � x0�2
� y2

r0
2 �

� A3��x̂ � x0�3
� 3�x̂ � x0�y2

r0
3 � (19)

Expanding the terms gives

V�x̂, y�
��t�

� A3� x̂3

r0
3���A2

r0
2 �

3x0A3

r0
3 �x̂2

��A1

r0

�
2x0A2

r0
2 �

3x0
2A3

r0
3 �

3y2

r0
3 �x̂

r r0 x

y

Figure 4. Electrode geometry for adding a hexapole field by
rotating two y rods through an angle � toward an x rod.
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Figure 5. Multipole amplitudes, AN versus rotation angle � for a
rod set with r/r0 � 1.1487.

Table 1. Amplitudes of multipoles produced with round rods,
r/r0 � 1.1487 and a rotation angle of 3 degrees

Multipole Amplitude

A0 3.73 � 10�5

A1 �3.68 � 10�2

A2 1.0011
A3 4.64 � 10�2

A4 2.77 � 10�3

A5 �8.18 � 10�3

A6 �1.098 � 10�3

A7 �1.43 � 10�3

A8 �1.54 � 10�4

A9 5.00 � 10�4

A10 �2.29 � 10�3
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���A1x0

r0

�
A2x0

2

r0
2 �

A3x0
2

r0
3 �

Consider the coefficient of x̂ when y � 0. This will be
zero if

A1

r0

�
2x0A2

r0
2 �

3x0
2A3

r0
3 � 0 (21)

The last term is much smaller than the first two, so to a
good approximation the coefficient of the dipole is zero
if

A1

r0

�
2x0A2

r0
2 � 0 (22)

or

x0 �
A1r0

2A2

(23)

More exactly, eq 21, which is quadratic in x0, can be
solved to give

x0 �

2A2

r0
2 ��4A2

2

r0
2 � 4

A1

r0

3A3

r0
3

2
3A3

r0
3

(24)

It is the solution with the minus sign that is realistic.
Table�2� shows� the�approximate�and�exact�values�of�x0

calculated from eq 23 and eq 24 respectively for three
rotation angles which give nominal hexapole fields of 4,
8, and 12%.

Because A1 � 0, x0 � 0. e.g., x̂ � x � 0.0315r0. When
x̂ � 0, x � � 0.0315r0. When x � 0, x̂ � � 0.0315r0. The
center of the field is shifted in the direction of the
positive x axis. This calculation is still approximate
because it does not include the higher multipoles.
However, it is likely adequate for practical purposes.

In the coordinate system centered on x̂ � 0, the
multipoles differ somewhat from the multipoles shown
in�Figure�5�and�Table�1.�In�the�x̂� coordinate�system�the

coefficient of x̂2 is �A2

r0
2 �

3x0A3

r0
3 �2

. Using the simple form

x0 �
A1r0

2
, the term in x̂2 is


A2 �
3A1A3

2

r0
2 �x̂2 (25)

where in eq 23 we have taken A2 � 1; e.g., for an 8%
hexapole (� � 5.13°), A1 � �0.0629, A3 � 0.0789, and the
coefficient changes from A2 � 0.99738 to 1.00 �
1.5(0.0629)(0.0789) � 1.0074, a slight difference in the
quadrupole� term.� Table� 3� shows� the� multipoles� for� a
rotation angle of � � 3.85°, (nominal 6% hexapole) in a
coordinate system centered on x � 0, y � 0, and in the
coordinate system centered on x̂ � 0, y � 0. First
simulations of peak shapes and transmission with the
thermalized ion source and a coordinate system cen-
tered on x � 0, y � 0 including the dipole term, showed
very low transmission. When the dipole term was not
included, the transmission increased significantly.
Therefore all the calculations of peak shapes and trans-
mission for round rod sets shown below were done
with multipoles calculated for the co-ordinate system
that makes the dipole term zero. Experimentally this
can be done by injecting the ions at the point x̂ �
0, y � 0.

Mass Analysis

The addition of higher multipoles to a linear quadru-
pole operated as a mass filter has generally been con-
sidered� undesirable� [22].� Nevertheless� it� has� recently
been shown that linear quadrupoles with substantial
added octopole fields (A4 � 0.02 � 0.04) can in fact be
operated�as�mass�filters�[6].�This�led�us�to�investigate�the
possibility of using quadrupoles with added hexapole
fields as mass filters.

Table 2. Comparison of values of x0 from the approximate eq 23 and the exact eq 24

� (degrees) A1 A2 A3 x0 from eq 23 x0 from eq 24

2.56 �0.0314 1.001 0.0396 �0.0157r0 �0.0156r0

5.13 �0.0629 0.9975 0.0789 �0.0315r0 �0.0313r0

7.69 �0.0942 0.9906 0.1172 �0.0471r0 �0.0467r0

Table 3. Multipole amplitudes in a co-ordinate system
centered on x � 0, y � 0, and in a coordinate system that
makes A1 � 0 with r/r0 � 1.1487, and � � 3.85 degrees

Multipole
Amplitude

(x � 0, y � 0)
Amplitude

x̂ � 0, y � 0

A0 6.15 � 10�5 �4.89 � 10�4

A1 �4.72 � 10�2 0.000
A2 0.9999 1.004
A3 5.94 � 10�2 5.98 � 10�2

A4 4.56 � 10�3 3.32 � 10�3

A5 �1.04 � 10�2 �1.06 � 10�2

A6 �1.64 � 10�3 �1.96 � 10�3

A7 �1.89 � 10�3 �1.9310�3

A8 �2.60 � 10�4 �1.83 � 10�4

A9 6.28 � 10�4 9.1 � 10�4

A10 �2.18 � 10�3 �2.37 � 10�3

1068 KONENKOV ET AL. J Am Soc Mass Spectrom 2006, 17, 1063–1073



Figure� 6� shows� calculated� peak� shapes� for� positive
ions. Curve “a” shows a peak shape calculated for a
pure quadrupole field and � � �0.1667. For the simu-
lations�of�Figure�6,�10,000�ions�were�uniformly�distrib-
uted over a circular aperture of radius 0.1 mm (0.024r0)
with thermal (300 K) radial speeds. Ions of m/z � 609
were injected into a 200 mm long quadrupole with an
additional 1.0 eV of energy (speed 561 m s�1, 356 cycles
in the 1.0 MHz field). The ions were distributed ran-
domly and uniformly along a scan line of nominal
resolution 1000, corresponding to masses of 608.2 to
610.2. The peak from the pure quadrupole field shows a
peak width at half height of �m/z � 0.53 (R1/2 � 1150).
Figure�6�curve�b�shows�the�peak�shape�obtained�when
a 2% hexapole (A3 � 0.02) is added to the quadrupole
potential, and the positive dc is applied to the x rods
and the negative dc to the y rods. Higher multipoles are
not included in the calculation; the potential is given by
eq 1. Preliminary results had shown that with an added
hexapole a broader peak with lower resolution is ob-
tained in comparison to a pure quadrupole operated at
the same value of �. For curve b, � was increased to
0.1680 to give a peak shape with resolution comparable
to that of the pure quadrupole field. This scan line does
not intersect the tip of the stability region of a pure
quadrupole� field.� Figure� 6� shows� when� there� is� a� 2%
hexapole field and � � 0.1680 the resolution (R1/2 �
1130) and peak shape are comparable to those of a pure
quadrupole field. Curve c shows the peak shape and
transmission when the polarity of the dc is reversed
(positive dc on the y rods and negative dc on the x
rods). For this calculation the magnitude of � was
lowered to 0.1665 in an attempt to increase the trans-
mission. The peak is broad and the transmission is very
low. Thus mass analysis is possible with a quadrupole
field with added hexapole field but the dc must be
applied with the correct polarity. This is analogous to
mass�analysis�with�an�added�octopole�field�[10].

Figure�7a�shows�peak�shapes�for�quadrupoles�with�2,
8, and 12% added hexapole fields, with � � 0.1676. With

increasing amounts of hexapole the peak broadens but
remains smooth with sharp sides. The broadening re-
sults from changes to the stability diagram described
below. As the amplitude of the hexapole increases, the
transmission� increases.� Figure� 7b� shows� peak� shapes
with 2, 8, and 12% added hexapole field and with �
increased to increase the resolution. The resolution with
a 2% hexapole field is ca. 1800, with 8% hexapole 300,
and with 12% hexapole 180.

Peak Shapes with Round-Rod Sets

The� simulations� of� Figures� 6� and� 7� include� no� multi-
poles higher than the hexapole. When round rods are
used�as� in�Figure�4,�other�multipoles�are�added�to� the
field.�Figure�8�shows�peak�shapes�calculated�for�quad-
rupoles constructed with round rods. For this calcula-
tion all the multipoles up to N � 10 in the coordinate
system that makes A1 � 0 were included. As the
hexapole component increases, the transmission de-
creases, and the resolution drops from R1/2 � 370 when
A3 � 0.02 to R1/2 � 300 when A3 � 0.12. The transmis-
sion with A3���0.12�drops�from�nearly�100%�(Figure�7a)
to less than 10%. In addition, there is undesirable
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Figure 6. Peak shapes obtained (a) with a pure quadrupole field,
� � 1.667 (b) with a quadrupole field with 2% added hexapole,
and � � �0.1680 (c) with a quadrupole field with 2% added
hexapole and � � �0.1665.
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structure on the peak. Clearly, the higher multipoles
affect the transmission and resolution.

Peak Shapes with A4 � 0.

After A1 and A3, the next highest term in the multipole
expansion�is�the�octopole�term�(Figure�5).�This�term�can�be
minimized by constructing the rod sets with different
diameters for the x and y rods. For a given rotation angle,
the diameter of the x rods, rx, can be increased to make A4

��0.�These�diameters�are�shown� in�Table�4.�When�A4 is
minimized,� the� peak� shape� improves.� Figure� 9a� shows
peak shapes calculated with � � 0.1676 and the geome-
tries that minimize A4. In comparison to round rod sets
with A4 �� 0� (Figure� 8)� the� transmission� is� greatly� im-
proved. At these low resolutions the peak shapes are
similar to those of a quadrupole with a pure added
hexapole� only� (Figure� 7a).� When� �� is� increased,� the
resolution� increases.� Figure� 9b� shows� peak� shapes� with
nominal hexapole components of 6, 8, 10, and 12%, and
with scan lines chosen to give increased resolution. At
both�low�(Figure�9a)�and�high-resolution�(Figure�9b)�there
is�improved�peak�shape�and�transmission.�In�Figure�9b�the
peak for the 6% added hexapole shows the highest reso-
lution with R1/2 � 1400. The other peaks have R1/2 �
700–800. The peaks with 8 and 12% hexapole show higher
resolution and peak shapes free of structure in compari-
son to rod sets with the same hexapole amplitudes con-
structed� with� equal� diameter� rods� (Figure� 8).� The� peaks

with 8 and 12% hexapole also have higher transmission
and resolution than a quadrupole with only an added
hexapole�of�the�same�amplitude�(Figure�7b).�Thus�making
A4 � 0 improves the peak shape. However at intermediate
resolution there can still be structure of the peaks. This is
illustrated� in� Figure� 10,� which� shows� peak� shapes� for� a
quadrupole with nominally 10% hexapole and A4 � 0.
The two peaks with � � 0.17000 and � � 0.17015 with
intermediate resolution have dips on the low mass side.

Stability Diagrams

Adding a hexapole field to a linear quadrupole causes
the stability boundaries to shift. Calculated stability
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0.002r0, �v � 0.007, � � 0.1676, 150 rf cycles in the field and � �
0.1676.

Table 4. Values of rx/r0 that give A4 � 0

Nominal A3

Angle
(degrees) A3 A4

New rx/r0 to make
A4 � 0 A4 with new rx

2% 1.28 0.0198299 0.0005060 1.1540 5.62 � 10�5

4% 2.56 0.0396057 0.0020210 1.1730 1.38 � 10�5

6% 3.85 0.0594268 0.0045593 1.2050 5.05 � 10�6

8% 5.13 0.0789318 0.0080662 1.2500 2.51 � 10�5

10% 6.50 0.0099569 0.0128860 1.3185 3.54 � 10�6

12% 7.69 0.1172451 0.0179422 1.4000 1.75 � 10�4
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Figure 9. (a) Peak shapes with round rods, and rx/r0 chosen to
minimize A4, calculated with A1 � 0 and with �x � 0.002r0, �v �
0.007, � � 0.1676 and 150 rf cycles in the field. (b) peak shapes with
A1 � 0 and A4 � 0 at higher resolution with rod sets with added
hexapole fields of 6, 8, 10, and 12% operated at � � 0.16857, � �
0.1692, � � 0.1705, and � � 0.1715, respectively.
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boundaries for a 	 0 (positive dc applied to the x rods
and� positive� ions)� are� shown� in� Figure� 11.� The� lines
labeled 1 are the boundaries for an ideal quadrupole
field. Line 2 shows the x boundary for a field with a
quadrupole (A2 � 1.00) and hexapole (A3 � 0.02) but no
other multipoles. The hexapole harmonic leads to a shift
of the x boundary along the q axis, parallel to the
original boundary. The addition of higher order spatial
harmonics created by round rods gives additional shifts
to the x boundary. Curve 3 shows the x boundary
calculated for a rod set with nominal 2% hexapole field
including the harmonics up to N � 10. Curves 4, 5, 6, 7,
and 8 correspond to boundaries of rod sets constructed
from round rods and with added hexapoles of 4, 6, 8, 10,
and 12% created by round rods including the harmonics
up to N � 10. For the calculations of boundaries 3–8 the
multipole amplitudes of round rod sets that minimize
A4 were used, and the coordinate system that makes A1

� 0 was used. Increasing the amplitude A3 leads to
strong shifts of the x boundary and an increased area of
the stability regions. These shifts explain the increases
in peak widths for a constant � as the hexapole compo-
nent�increases.�(Figures�7a,�8,�9a).�They�also�explain�the
need for using higher values of � as the hexapole
amplitude�increases�(Figure�9b)�and�the�shift�of�peaks�to
higher q values as the hexapole component increases
(Figure�9b).�With�an�added�hexapole�field,�the�tip�of�the
stability region develops a “flat” boundary. This flat
boundary is apparently sufficiently sharp to permit
mass analysis. Attempts were made to calculate the
stability diagram when a � 0 (negative dc applied to the
x rods, positive ions). Only a diffuse region of stability
with very low transmission was found. This is consis-
tent with the low transmission and poor resolution of
curve�c�in�Figure�6.

The x boundary shows the greatest shift because it is
the electric field in the x direction that changes the most
with an added hexapole. Using eq 1, the electric fields
are given by

Ex � �
�V�x, y�

�x
���

2A2

r0
2 x �

3A3

r0
3 x2 �

3A3

r0
3 y2���t�

(26)

Ey � �
�V�x, y�

�y
��2A2

r0
2 y �

6A3

r0
3 xy���t� (27)

Considering the x direction when y � 0 and the y
direction when x � 0 eq 26 and 27 can be written as

Ex ���
2A2

r0
2 x[1 �

3A3

2A2r0

x]���t� (28)

Ey ��2A2

r0
2 y���t� (29)

Eqs 28 and 29 show that the x electric field depends on
the amplitude A3 and that the y electric field is un-
changed. This is approximate because the coupling of
the x and y motion is not included in eqs 28 and 29.

Conclusions

A hexapole field about 1–10% of the quadrupole field
can be added to a linear ion trap by constructing the
electrodes with exact geometries or by using round rods
with the two y rods rotated towards an x rod. Calcula-
tions of the frequency shifts caused by these fields
suggest they should be sufficient to improve the frag-
mentation efficiency in MS/MS. If the same rod set is to
be used for mass analysis, the best performance would
seem to come from rod sets constructed with round
rods where the x rods are increased in diameter to make
the octopole term in the potential small, and with
injection of the ions on the field center where the dipole
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term is zero. Simulations of the stability diagram for
these rod sets show that the stability boundaries move
out but remain sharp provided the positive dc potential
is applied to the x rods (for positive ions). Further
optimization will be required to find the ratio for the y
rod radius, ry/r0, for these rod sets that produces the
best performance in mass analysis. All these results
from computer simulations will require experimental
confirmation, but they suggest that a linear trap with
improved MS/MS efficiency and the capability of per-
forming mass analysis will be possible when a hexapole
field is added to a linear quadrupole field. Other
combinations of quadrupole and multipole fields that
can provide mass analysis remain to be explored.
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Appendix

A. Calculations of Peak Shapes and Stability
Diagrams

With higher multipoles in the potential, ion motion is
determined�by�[20]

d2x

d
2 � 
a � 2qcos2�
 � 
0��x � �
1

2

� 
a � 2qcos2�
 � 
0��	
N�3

10
AN

��N

�x

A2
N⁄2r0

N�2 (A1)

d2y

d
2 � 
a � 2qcos2�
 � 
0��y � �
1

2

� 
a � 2qcos2�
 � 
0�� 	
N�3

10
AN

��N

�y

A2
N⁄2r0

N�2 (A2)

Eqs A1 and A2 were solved by the Runge-Kutta—
Nystrom—Dormand-Prince� (RK-N-DP)� method� [23]
and multipoles up to N � 10 were included. With the
ion source model described above, N ion trajectories
were calculated for fixed rf phases 
0 � 0, 
/20, 2*
/20,
3*
/20, . . . , 19*
/20. If a given ion trajectory is not
stable (x or y � r0) in the time interval 0 � 
 � n
, where
n is the number of rf cycles which the ions spend in the
quadrupole field, the program starts calculating a new
trajectory. From the number of transmitted ions, Nt, at a
given point (a,q) the transmission is T � Nt/N. For both
peak shape and stability boundary calculations, the
number of ion trajectories, N, was 6000 or more at each
point of a transmission curve. For the calculation of
peak shapes, the values of a and q were systematically
changed on a scan line with a fixed ratio �. For the

calculation of stability boundaries, a was fixed and q
was systematically varied to produce a curve of trans-
mission versus q. The true boundaries correspond to
n ¡ 
. For a practical calculation we choose n � 150 and
the 1% level of transmission.

B. Calculation of the Frequency Shift
with an Added Hexapole Field

For an ion of mass, m and charge, e, in an inhomo-
geneous electric field, E� , oscillating at angular fre-
quency��,�the�effective�electric�potential�[17]�is�given�by

Veff �
e�E��2

4m�2 (A3)

where

�E��2
� �Ex

2 � Ey
2 � Ez

2� (A4)

For the potential of eq 1 when ��t� � Vrf cos�t eq A3
and A4 lead to

Veff�x, y� �
qA2

2x2

4r0
2 Vrf �

3qA2A3x
3

4r0
3 Vrf

�
9qA3

2x4

16r0
4 Vrf

�
qA2

2y2

4r0
2 Vrf �

9qA3
2y4

16r0
4 Vrf � � (A5)

Higher order terms in xm yn have not been included
because we are interested in the x motion when y � 0,
and the y motion when x � 0. To first-order in A3, the
hexapole does not cause a shift in the frequency of
oscillation because, while the potential increases more
rapidly than that of a harmonic oscillator in the positive
x direction, it increases less rapidly in the negative x
direction. However, in second-order it does cause a
frequency shift. Motion in the x direction in the effective
potential of eq A5 is determined by

mẍ � Fx � �e
�Veff�x, y�

�x
(A6)

which leads to

ẍ��0
2x � �

9eqA2A3

4mr0
3 Vrfx

2 �
36eqA3

2

16mr0
4 Vrfx

3 (A7)

with

�0
2 �

eqA2
2Vrf 2

4mr0
2 (A8)

or
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�0 �
qA2

�8
� (A9)

The left side of eq A7 describes the secular motion of an
ion trapped in a quadrupole field at low q values and
the right side describes the modifications caused by the
hexapole fields. Eq A7 is of the form

ẍ � �0
2x � ��x2 � �x3 (A10)

with

� �
9

2 �A3

A2
� �0

2

r0

and � �
9A3

2

2A2
2

�0
2

r0
2 (A11)

The solution of eq A10 has been described by Landau
and�Lifshitz�[18].�The�terms�on�the�right�of�eq�A10�cause
a shift in the frequency of ion oscillation given by

�� �� 3�

8�0

�
5�2

12�0
3��b2� (A12)

where b is the amplitude of oscillation. Thus the term in
� in eq A10 causes a shift down in frequency of

��� � �
5

12

81A3
2

4A2
2

b2

r0
2�0 (A13)

This�shift�was�calculated�by�Sevugarajan�and�Menon�[24]
for the z motion in a 3D trap with an added hexapole field.
The term in � in eq A10 causes a shift up of

��� � �
3�

8�0

b2 � �
27A3

2

16A2
2

b2

r0
2�0 (A14)

For example, if A3 � 0.02 and b � r0, ��a � �3.38 �
10�3 �0 and ��� � �6.75 � 10�4 �0. The combined
frequency shift for the x motion (��x � ��a � ���) is
�2.71 � 10�3 �0.
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