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The Clostridial neurotoxins, botulinum and tetanus, gain entry into motor neurons by binding
to the sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides and specific protein
receptors attached to the cell’s surface. While the C-fragment of tetanus toxin (TetC) has been
identified to be the ganglioside binding domain, remarkably little is known about how this
domain discriminates between the structural features of different gangliosides. We have used
electrospray ionization mass spectrometry (ESI-MS) to examine the formation of complexes
between TetC and carbohydrates containing NeuAc groups to determine how NeuAc residues
contribute to ganglioside binding. ESI-MS was used to obtain an estimate of the dissociation
constants (KD values) for TetC binding to a number of related NeuAc-containing carbohy-
drates (sialyllactose and disialyllactose), as well as six (NeuAc)n oligomers (n � 1–6). KD
values were found to range between �10–35 �M. The strength of the interactions between the
C fragment and (NeuAc)n are consistent with the topography of the targeting domain of
tetanus toxin and the nature of its carbohydrate binding sites. These results suggest that the
targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or
a dimer) and that NeuAc may play an important role in ganglioside binding and molecular
recognition, a process critical for normal cell function and one frequently exploited by toxins,
bacteria, and viruses to facilitate their entrance into cells. (J Am Soc Mass Spectrom 2006, 17,
967–976) © 2006 American Society for Mass Spectrometry

Both botulinum and tetanus neurotoxins interact
with motor neurons, blocking acetylcholine re-
lease and causing muscle paralysis and death (for

an� excellent� review,� see� Niemann,� 1991,� [1]).� The� first
step required for toxin entrance into neurons is the
recognition of gangliosides at the cell surface by the
receptor-binding� domain� of� the� heavy� chain� [2,� 3].
Following the binding of the toxin to the cell surface, an
endosome forms around the toxin, and the translocation
domain of the toxin transfers the catalytic domain, a
zinc protease, into the cell. Once inside the cell, the
protease cleaves one of three specific proteins involved

in neurotransmitter release, depending on the toxin
type.

The targeting domain of the tetanus toxin (TeNT) has
been identified as the 51 kDa carboxy-terminal peptide
of� the� heavy� chain� [4],� called� the� C� fragment.� While
there is considerable evidence indicating that ganglio-
sides are one type of cell surface receptor targeted by
this domain, multiple receptors may be required for cell
recognition and binding. It has been suggested that
protein receptors may contribute to more efficient toxin
binding� [5]� and� provide� neurospecificity.� In� certain
cases, such as the botulinum neurotoxin, different sero-
types appear to exhibit a preference for different types
of gangliosides or protein receptors. The strongest and
hence most specific ganglioside association with teta-
nus toxin occurs with GT1b, a trisialo sphingolipid with
a branched carbohydrate structure containing a single
NeuAc on one arm and a NeuAc dimer on the other
(Table�1).
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Electrospray ionization (ES) has been established as a
soft-ionization technique for introducing noncovalent
complexes� into� the� gas� phase� [6�–11],� and� previous
studies have demonstrated the utility of ESI MS for
determining�affinity�constants�[12,�13]�of�protein-ligand
complexes. These experiments have evoked consider-
able discussion in the literature about whether or not
the gas phase is a valid representation of solution
conditions that govern the rates of association (or
dissociation) between proteins and ligands. The conclu-
sions that have been drawn from these discussions are
that the bound state is thermodynamically favored in
the gas phase for noncovalent complexes dominated by

ionic or polar interactions. Conversely, nonpolar or
hydrophobic interactions between molecules are fa-
vored� as� dissociated� entities� in� the� gas� phase� [13–15].
For this reason, ESI MS is not recommended as the
method of choice studying protein/ligand interactions
[12,� 15].� The� specific� interactions� taking� place� in� this
study occur between the negatively charged carboxylic
groups of the sialic acids and positive (or partially
positive) regions on the toxin’s surface. Based on the
conclusions that have been drawn from previous work,
it appears reasonable to assume such a complex could
maintain its conformation throughout the ionization
process and this MS study might be expected to provide

Table 1. Ganglioside structures. Carbohydrate sections tested for binding to TetC appear in bold
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dissociation constants similar to those measured in
solution. The use of ESI MS for measuring affinity
constants in complexes stabilized by hydrophobic inter-
actions is possible, but a different approach may be
required�to�analyze�the�data�[12,�13].

It is also important when using ESI-MS for dissocia-
tion constant measurements to make certain that the
signal intensities reflect the concentrations of the com-
ponents and complexes in solution. By studying the
response of proteins that do not interact to form com-
plexes, ion intensities in the gas phase have been found
to be approximately proportional to the protein’s con-
centration�in�solution�[16].�The�proportionality�between
solution concentrations and ion abundances in the gas
phase is determined by transfer coefficients for both
protein and complex during ionization. Transfer coeffi-
cients of protein ligand complexes formed with small
ligands would be expected to have values similar to
those of the unbound protein, and the two would cancel
out when the intensity ratios (complex/protein) are
considered�[16].�The�glycolipids�that�bind�to�the�tetanus
C fragment have masses in the 1 k to 3 kDa range. The
ligands used in this study were slightly smaller, in the
range of 300 Da to 2 kDa, and small compared to the 51
kDa C fragment. Therefore, TetC-carbohydrate/gangli-
oside complexes should be “protein-like”, with ioniza-
tion efficiencies similar to the protein, even though
carbohydrates and proteins ionize by different mecha-
nisms. These two factors, the formation of complexes
with strong to medium binding affinities and similar
ionization efficiencies, favor the use of intensity ratios
for the measurements of dissociation constants by ESI-
MS.

Nondenatured proteins in electrospray ionize by a
process that is referred to as a charged residue model
(CRM) during droplet evaporation, as opposed to small
inorganic ions, which ionize by the ion evaporation
model�(IEM)�[17].�Concerns�have�been�raised�about�the
possibility that complex formation may be artificially
induced�during�the�ES�process�[16].�One�concern�in�the
CRM is that the increase in reactant concentrations
during droplet evaporation might shift the equilibrium
toward complex formation. This concern may be valid
when larger droplets are used due to longer evapora-
tion times. However, droplets with diameters of 1 to 10
�m have been shown to evaporate in less than 1 ms,
faster� than� the� rate� of� equilibrium� dissociation� [18].
Another concern is that ligands may bind randomly
and nonspecifically to the protein. These interactions
would likely be weaker and nonspecific therefore, they
would not be expected to survive the declustering
clean-up step before mass analysis.

Previously, we used ESI-MS to screen a group of
ligands to identify those that bound to TetC. The
molecules tested were identified as potential binders by
screening a ligand database and assessing the ability of
each ligand to form a complex with TetC using compu-
tational� docking� tools� [19].� In� the� present� work,� we
show that ESI-MS can be used to measure equilibrium

dissociation constants (KD) between TetC and NeuAc-
containing carbohydrates. Dissociation constants were
measured for a series of NeuAc oligomers, (NeuAc)n

with n � 1 to 6, to assess the validity of the technique
for discerning small changes in binding strengths. Two
NeuAc-containing carbohydrates and one non-binding
control, which are subsets of the ganglioside structures
that bind with different affinities to TetC, were also
tested. The protein concentration was kept constant in
the experiments with the ligand titrated in at various
concentrations. The ratio of the signal intensities of the
peak heights for the protein alone and the protein-
carbohydrate complex as determined by ESI MS (two-
signal approach) was used for determining dissociation
constants. These ESI-MS results are discussed in light of
published results obtained by other solution-based
techniques to identify ganglioside structural features
that may contribute to their binding to tetanus neuro-
toxin.

Experimental

Materials

A recombinant form of TetC was purchased from Roche
Diagnostics Corp. (Indianapolis, IN). The NeuAc mono-
mer (309.3 Da), and the oligomeric dimer (644.5 Da),
trimer (957.7 Da), tetramer (1271 Da), pentamer (1584.2
Da), and hexamer (1897.5 Da), were obtained from
Calbiochem-Novabiochem Corp. (La Jolla, CA) as the
sodium salts. �D-Gal(1-3)D-GalNAc (383.4 Da) and the
sodium salts of oligosaccharides occurring in the gan-
gliosides GM3 and GT1b, 3=-N-acetylneuraminyl lactose
(3=-sialyllactose, 655.5 Da), di-N-acetylneuraminyl lac-
tose (disialyllactose, 963.7 Da) were purchased from
Sigma Chemical Co. (St. Louis, MO).

Instrumentation

Samples were analyzed by ESI-MS on a Mariner orthog-
onal acceleration time-of-flight (oa-TOF) instrument
(Applied Biosystems, Framingham MA). The use of this
instrument to monitor noncovalent interactions has
been� described� previously� [20,� 21].� The� singly� and
doubly charged ions of Gramicidin S were used to
calibrate the mass scale, typically at the start of each
day. Freshly mixed protein/carbohydrate samples were
introduced by infusion from a syringe pump through
fused silica capillaries (60 and 25 �m i.d.) at 1 �L/min.
Once a stable signal was obtained, spectra were accu-
mulated over a period of 2 min. All spectra were
acquired at room temperature to minimize dissociation
of the complexes. Instrument settings, such as gas flow
rates, number of scans, spray tip potential, and declus-
tering or nozzle potentials were optimized and kept
constant for each set of experiments corresponding to a
specific complex. The nozzle or declustering potential
was adjusted in the range 50 to 300 V to obtain a
qualitative estimate of the strength and nature of the
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noncovalent interactions. Multiply charged spectra
were deconvoluted using the Biospec Data Explorer
software supplied with the mass spectrometer.

Complex Formation

The TetC protein (recombinant and purified by acid
precipitation) was dissolved in filtered deionized water
(18 Mohm cm�1, Millipore, Billerica, MA) and centri-
fuged to remove the insoluble residue that forms at pH
�9. Aliquots of the supernatant were hydrolyzed in
HCl and the protein concentration was determined by
quantitative amino acid analysis (Protein Structure Lab-
oratory, University of California, Davis, CA). UV-VIS
absorption measurements were used to accurately de-
termine the protein concentration in each experiment.

Each experiment was conducted using a fixed con-
centration of protein, and the concentration of the
ligand was varied. Twenty �l samples were prepared
for analysis. The TetC sample was diluted to a final
concentration of 5 to 10 �M in 3 mM aqueous ammo-
nium acetate (pH �7.6) and 12% methanol. Stock car-
bohydrate samples were dissolved in water and final
dilutions were made in 3 mM aqueous ammonium
acetate (pH �7.6) and 12% methanol. The Na� salts
were not removed from the ligands. The ratios of
protein:ligand were varied over a range of 1:1 to 1:10.

Data Analysis

Protein � Ligand`
kd

ka

Complex (1)

KD �
kd

ka

�
�Protein��Ligand�

�Complex�
(2)

The equations describing simple binding kinetics are
given by eqs 1 and 2, where ka and kd are rate constants
for the association and dissociation, respectively, of the
complex, KD is the equilibrium dissociation constant for

dissociation, and [Protein], [Ligand], and [Complex] are
the concentrations of the corresponding species at equi-
librium. A large KD indicates that kd is greater than ka,
which means the ligand has a weaker affinity for the
protein and the complex dissociates more readily. A
small KD indicates a stronger affinity between protein
and ligand.

If we assume a single complex is formed and the ion
peak intensities in an ESI mass spectrum are propor-
tional to solution concentrations of the components at
equilibrium, the ratio [Protein]/[Complex] can be de-
rived from the ratio of the peak heights for the protein
alone and the protein-carbohydrate complex. The dis-
sociation constant can then be obtained from a plot of
this�ratio�versus�1/[ligand]�[7].�In�such�experiments,�the
transfer coefficient, a proportionality constant that is
affected by analyte mass and instrumental conditions,
cancels out of the equation when the masses of the
protein�and�the�complex�are�similar�[6,�16].

Results and Discussion

ESI-MS of TetC

A typical ESI-MS spectrum of TetC shows two species
present,�a�monomer�and�a�dimer� (Figure�1).�The�mass
deconvolution� spectra� for� these� two� peaks� (Figure� 2)
yield masses of 51,819 and 103,606 for the protein
monomer and dimer components, respectively. The
molecular weight of this recombinant protein based on
its amino acid sequence is 51,758 Da. The observed
differences in mass between the molecular weights
derived from the TetC sequence and our measured

Figure 1. ESI MS spectrum from7 �M solution of TetC, recorded
with a declustering voltage of 300 V, showing the monomer (M)
multiply charged envelope with z equal to 17, 16, 15, and 14, and
the dimer (2M) at higher m/z with z equal to 24, 23, 22, and 21.

Figure 2. Deconvolution of separate regions of the ESI MS
spectra of TetC, corresponding to (a) M, and (b) 2M.
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values (61 Da for the monomer, 90 Da for the dimer) are
small and appear to be attributed to tightly bound
counterions (acetate, ammonium, sodium) or water
molecules.

TetC Dimerization

Following its binding to gangliosides and a protein
receptor, TeNT oligomerizes and is pulled into an
endosome where it forms a channel or pore in the cell
membrane through which it transfers its catalytic do-
main� [22–25].� Native� gel� electrophoresis� and� chemical
crosslinking experiments have shown that TeNT forms
dimers� and� trimers� in� solution� [26].� Previous� cryo-
electron�microscopy�[23]�and�ion�conductance�[24]�stud-
ies have also shown that both botulinum toxin and
TeNT can form tetrameric channels in neuronal mem-
branes. However, higher order TetC oligomers, such as
trimers or tetramers, were not observed in the ESI-MS
data presented here, probably because of the mass
range limitations of the Mariner mass spectrometer
used.

The TetC dimer association that was observed was
further characterized by ESI-MS. The first step was to
determine if the dimer reflected a valid protein state as
would be observed in solution or if it was simply an
artifact of the electrospray process. Data obtained on
TetC samples using a declustering potential of 300 V
provided the best signal to noise (S/N) and highest
resolution spectra (m/dm � 216 at 300 V). A monomer
was the predominantly form observed under these
experimental conditions, even at higher TetC concen-
trations�(Figure�3).�An�increase�in�dimer�formation�was
only observed at lower declustering voltages suggest-
ing that hydrophobic interactions are the most likely
interactions that stabilize the formation of the dimer. In
this case, addition of a hydrophobic solvent, such as
methanol would be expected to break apart the dimer.
Increasing the methanol concentration did not affect the
protein (monomer) envelope distribution. However the
protein dimer peak disappeared from the mass spec-
trum when the methanol concentration reached 40%
(Figure�4).�These�results�show�that�the�dimer�is�not�an
artifact produced by the electrospray process and that
its stability is disrupted by moderate methanol concen-
trations. The observation that the dimer is always
observed in lower abundance than the monomer in the
ESI-MS spectra suggests that the stability of the hydro-
phobic interactions is more easily disrupted in the gas
phase�[13–15].

Characterization of the TetC/Ligand Complexes

One goal of this work was to identify the number of
sialic groups that bind to TetC and obtain an estimate
for the distance between their binding sites. This fol-
lowed from previously published work in which the
number and branching (spacing) of sialic groups in
gangliosides were used to explain variability in mea-

sured affinity constants. Since the first step in the
recognition process is that between one C fragment and
its cell receptor, we assumed that the TetC monomer
represented a good model for the simplest interaction
that would still be physiologically significant.

Carbohydrates in gangliosides that preferentially
bind to the Clostridial neurotoxins typically contain a
single (NeuAc)2 separated from another NeuAc (GT1b,
GD1b) or (NeuAc)2 (GQ1b) residue by other sugar resi-
dues� (Table� 1).� The� ligands� tested� for� noncovalent
complex�formation�with�TetC�are�listed�in�Table�2,�along
with the experimentally determined dissociation con-
stants measured at declustering voltages in the range of
200 to 250 V.

Only ion abundances from the same spectrum were
compared in each experiment. The standard deviations
were obtained from the regression analysis, and only
one binding experiment was repeated ([NeuAc]4 li-
gand) to obtain KD values. In this case, the replicate KDs
were 10 and 14 �M. However, each titration experiment
was repeated at three declustering voltages: 200, 250,
and 300 Volts. Three linear regressions (one at each
voltage) were calculated for each ligand. The measured
dissociation constants obtained from each experiment
increased linearly with increasing declustering voltage
(data not shown). This trend has been previously ob-

Figure 3. TetC concentration versus ion abundance of mono-
mer/dimer at declustering voltages of 200 and 300 V.

971J Am Soc Mass Spectrom 2006, 17, 967–976 PROTEIN.CARBOHYDRATE KDs from ESI-MS



served in a triple quadrupole MS experiment and was
attributed to increased collision-induced dissociation of
the� complex� ions� at� higher� tube� lens� voltages� [27].
Repeating the MS measurement at a different declus-
tering voltage for each ligand concentration provided
confidence as to the reproducibility of the measure-
ments.

The amount of ligand-bound TetC (normalized to
unbound protein) increased linearly, in proportion to
ligand concentration, up to a saturation point. Increas-
ing the ligand concentration beyond this point did not
produce additional complex and an asymptote was
reached (data not shown). In each experiment, the
ligand concentration was kept within the linear region
of�the�saturation�binding�curve�[28].

A typical ESI-MS spectrum after mass deconvolution
in which both the unbound and ligand-bound TetC
peaks�can�be�distinguished�is�shown�in�Figure�5.�A�plot
and linear regression of eq 2 for the TetC-(NeuAc)3

complex� is� shown� in� Figure� 6,� and� the� dissociation
constants obtained from the slope of the line (eq 2) are
listed�in�Table�2.

All the NeuAc-containing ligands bound to TetC in
the gas phase without dissociating at high declustering
voltages (200–300 V), indicating that the complexes
were primarily stabilized by electrostatic interactions
[29].� The� experimental� control,� �D-Gal(1-3)D-GalNAc,

the terminal carbohydrate in the ganglioside GM1 that
lacks a NeuAc group, did not form a complex as
determined by ESI-MS. However, Gal-GalNAc was
shown�to�be�required�for�binding�to�TeNT�[34].

Complexes (normalized to unbound protein) were
observed to be most abundant at a skimmer voltage
of �200 V (data not shown). Inspection of the low
mass region gave an indication of the amount of
unbound ligand remaining. The lowest abundance of
free ligand in the mass spectrum was observed at
skimmer voltages of 150 to 200 V, and the concentra-
tion of unbound ligand increased with increasing
skimmer voltage, suggesting that the majority of the
ligand remained bound to TetC at �200 V. This is
consistent with the idea that an increase in the
number of collisions between ions and background
neutral gases might favor products other than the
TetC-ligand�complex�[27].

The higher oligomer states of (NeuAc)n (with n � 2
to 5) all formed complexes with the TetC dimer. Fewer
data points were generated for the linear regression
from these experiments due to the lower ion abundance
and poor resolution in that m/z region. Ligand binding
to the TetC dimer was only observed at the highest
concentrations of ligand. The affinity between the TetC
dimer and ligands was observed to be lower than with
the protein monomer (i.e., weaker binding), as mea-
sured by a larger KD. However, since a sufficient
number of reliable measurements could not be ob-
tained, the results are not reported.

Figure 4. ESI MS spectra of TetC in, (a) 10% methanol, showing
both M and 2M peaks, and (b) 40% methanol, showing the
disappearance of the 2M peak. The protein concentration was 8.6
mM in 3 mM ammonium acetate, pH 7.5. The declustering voltage
was 200 V in both cases.

Table 2. Ligands tested for noncovalent complex formation
with TetC. Spectra were deconvoluted, unless noted otherwise.
For each carbohydrate, repeat measurements were made at a
constant voltage for different concentrations of ligands, and the
regression analysis of the line was used to obtain the standard
deviation of the Kdissociation. (see results section for more details)

Carbohydrate
Declustering

voltage
Kdissociation

(�M)

*NeuAc 200V 13 � 2a

250V 15 � 2
(NeuAc)2 200V 21 � 4
(NeuAc)3 200V 33 � 4
(NeuAc)4 200V 12 � 2b

(NeuAc)5 200V 23 � 3
(NeuAc)6 200V 11 � 4a

Sialyllactose (GM3 section;
one NeuAc acid)

200V 11 � 2

Disialyllactose (GT1b

section; two NeuAc
acids)

200V 23 � 5a

Ganglioside control: �-D-
Gal(�1–3)GalNAc

50–250V
(declustering
voltages
tested)

No
binding

*NeuAc � sialic acid.
aspectra not deconvoluted. Note that when available, data from both
raw data and deconvoluted spectra were in good agreement.
baverage of two separate binding experiments gave similar results.
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Role of Acetylneuraminic Acid in Carbohydrate
Binding to Tetanus Toxin

The KD values obtained for the NeuAc-containing car-
bohydrate-TetC complexes ranged between 11 to 33 �M
(Table�2).�The�dissociation�constants�obtained�from�the
deconvoluted data were similar to those obtained from
the unprocessed data. However, deconvolution of the
(NeuAc)6 and disialyllactose datasets was not possible
due to poor signal to noise ratios, so only the results
obtained from the unprocessed data is reported for
these two cases.

The dissociation constants of TetC complexes with
molecules containing a single NeuAc (NeuAc run at 200

V, NeuAc run at 250 V, and sialyllactose) were found to
be very close in value (11 �M, 15 �M, and 13 �M,
respectively). A very similar dissociation constant, 10
�M, was reported previously for the binding of the
GM3 ganglioside (one NeuAc) to TetC in an assay that
monitored the inhibition of this protein binding to brain
membranes� [30].� The� dissociation� constants� of� TetC
bound to molecules containing two NeuAc components
(disialyllactose and (NeuAc)2) were also found to be
similar to each other (23 �M and 21 �M, respectively).
While the consistency in measured dissociation con-
stants for carbohydrates containing one versus two
NeuAc components obtained in this study suggests that
binding to TetC is reduced upon addition of the second
NeuAc, additional experiments need to be conducted
using other techniques to confirm that the dissociation
constants are different and that the presence of a second
NeuAc residue destabilizes the interaction of the first
residue within a particular binding site.

The largest dissociation constant was obtained for
the TetC complex involving the NeuAc trimer (see
below for binding of tetramer and hexamer), indicating
that a longer oligomer does not interact as tightly with
TetC. These differences in dissociation constants are
subtle and could be misleading (it is generally accepted
that two Kd values must differ by more than 2-fold to
be considered different). However, the general trend
observed for the set of NeuAc oligomers appears con-
sistent with both the molecular structure of the ganglio-
sides and the location of sites on BoNT/B (Clostridium

Figure 5. Deconvoluted spectra recorded with a declustering voltage of 200 V, showing complex
formation between the TetC and NeuAc dimers and trimers. (a) 1:4 TetC:(NeuAc)2; (b) 1:8 TetC:
(NeuAc)2; (c) 1:3 TetC:(NeuAc)3; (d) 1:7 TetC:(NeuAc)3.

Figure 6. Binding of (NeuAc)3 to TetC. The dissociation constant
KD is derived from the slope of the plot of the ratio of unbound
TetC/bound TetC versus 1/[(NeuAc)3] (see eq 2).
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botulinum neurotoxin type B) and the C fragment of
tetanus toxin where NeuAc residues appear to bind.
Carbohydrates in gangliosides that preferentially bind
to the Clostridial neurotoxins (GT1b, GD1b) contain a
single di NeuAc separated from another NeuAc (or two
di� NeuAc� separated� from� each� other� as� in� GQ1b) by
Gal(�1-3)-GalNAc(�1-4)-Gal�(Table�1).�Crystallographic
data obtained by Swaminathan and Eswaramoorthy
[31]�have�shown�that�the�NeuAc�residue�in�sialyllactose
binds in a cleft on the surface of the targeting domain of
BoNT/B between Trp 1261 and His 1240, one of the
potential ganglioside binding sites. A different X-ray
crystallography� study� [32]� showed� that� four� separate
carbohydrates, NeuAc, galactose, lactose, and N-acetyl-
galactosamine, bind to different sites of the C fragment.
Interestingly, a single NeuAc was found to bind in the
region of residues 1226 to 1229, adjacent to the position
occupied by N-acetylgalactosamine in a different crys-
tal structure. Their results support the hypothesis that
TetC contains multiple carbohydrate binding sites.

Recent competition experiments performed using
NMR�[34]�have�also�revealed�that�sialic�acid�effectively
competes with doxorubicin for binding to the cleft
between�Trp�1289�and�His�1271.�It�has�been�shown�[32]
that even though the sequence homology between the C
fragment of the Clostridial neurotoxins BoNT/A,
BoNT/B, and tetanus (TeNT) is low, these domains
seem to adopt the same type of folds. The observation
that the C-fragment appears to have various sites capa-
ble� of� accommodating� oligomeric� carbohydrates� [32]
may explain the dissociation constants at the nanomolar
level obtained when either tetanus or botulinum binds
to� neuronal� cell� membranes� [30].� While� it� is� not� yet
know whether or not the presence of multiple carbohy-
drate binding sites may lead to the binding of a single
ganglioside to two neurotoxin proteins or the multiva-
lent binding of the ganglioside to each protein, cross-
linking� appears� to� exist� in� the� TeNT� case� [34].� No
binding was observed with Gal-GalNAc in our MS
experiments. However, Gal-GalNAc was shown to be
required�for�binding�to�TeNT�[34].

These results, combined with the information that
the single NeuAc and the di NeuAc residues are sepa-
rated by three galactose residues in GT1b (and GD1b,
Table�1),�suggest�that�ganglioside�binding�may�involve
at least two adjacent sites on the surface of the targeting
domain of the Clostridial neurotoxins. If this is true, then
one might expect the dissociations constants of a series
of NeuAc oligomers to reflect the distance between
these two binding sites. Our ESI-MS results appear to be
consistent with this hypothesis. If we consider, for
example, the binding of the first NeuAc of GT1b or
GD1b into one of the two binding folds, the distance
between this residue and the next NeuAc (or di NeuAc)
binding in the second pocket would correspond to �25
Å (based on the distance between the NeuAc residues
in a ganglioside). This is very close to the distance that
separates the two sites on the Clostridial neurotoxin
targeting domains that have been identified to bind

NeuAc�[34]�and�either�sialyllactose�[32]�or�an�analog�of
the�GT1b�carbohydrate� [35].�By�analogy,� if� the�NeuAc
oligomers bound to these two sites, we would expect
the strongest binding to be observed with the monomer
and the hexamer. This is consistent with the binding
data obtained in these experiments. While the monomer
has a dissociation constant of 13 �M, the dimer, trimer,
and pentamer appear to bind less tightly (larger disso-
ciation constants). Once the length reached six residues,
the KD appeared to decrease, suggesting that the hex-
amer may bind more tightly. Tetramer binding, which
appears to be more complex (two slopes were observed
with non-deconvolved spectra, on two separate titra-
tion experiments), does not follow the linear premise of
this model. This may indicate that tetramer binding to
the C fragment may occur via an entirely different
mode, one that reflects the ability of the tetramer to
adopt a unique conformation not attainable by the other
oligomers.

As the ratio of ligand to protein increased (1:5 for the
monomer, dimer, and trimer, and 1:3 for the tetramer),
a second ligand was observed to bind to TetC. These
results provide additional support for the idea that the
sialic acids may bind to two different sites on the
surface of TetC. A complex containing two (NeuAc)6 or
(NeuAc)5 would be difficult to detect because the cor-
responding mass would not be adequately separated
from the next charged state. Because of the complexities
involved in having multiple TetC binding sites and the
possibility of having more than one ligand bind to TetC,
eqs 1 and 2, which are based on a simple one-ligand/
one-binding site model, would not apply at high ligand
concentrations. This could explain why the linearity in
Figure�6�has�only�a�regression�R2� of�0.95,841.

Previous studies have clearly shown that TetC pref-
erentially binds gangliosides of the series GT1b, GQ1b,
GD1b. The (NeuAc)2 group on the internal Gal of this
ganglioside� series� (Table� 1)� has� been� reported� to� be
required for binding, as well as the NeuAc on the
terminal�Gal(�1-3)-GalNAc�moiety� [36,� 37].�The� single
NeuAc in the internal Gal, as in GM1, did not appear to
be� sufficient� for� binding� using� a� microtiter� assay� [36],
but was observed to bind in competition experiments
[37].�The�NeuAc�on�the�terminal�Gal�in�GM3 appeared to
enhance binding only slightly and was not considered
essential�for�binding�[36].�Our�ESI-MS�experiments,�on
the other hand, show that both sialyllactose (NeuAc
(�2-3)Gal (�1-4)Glc or GM3 carbohydrate) and disia-
lyllactose (NeuAc (�2-8)NeuAc (�2-3)Gal (�1-4)Glc or
GT1b fragment) bind to the TetC. The most likely expla-
nation for the observed differences in binding is that the
mass spectrometry technique (and competition assays)
can be used to detect weakly bound ligands with
micromolar dissociation constants. Such weak binding
would not be detected using a microtiter assay because
weaker binding ligands would dissociate and be re-
moved in the washing steps.

The strength of the interaction between the tetanus
toxin and gangliosides reported varies widely. Early

974 CONWAY ET AL. J Am Soc Mass Spectrom 2006, 17, 967–976



studies reported the affinities between tetanus toxin
and�gangliosides�to�be�in�the�low��M�range�[38].�Later
studies reported that gangliosides compete for tetanus
toxin binding to bovine cerebral cortex membranes with
nanomolar�potency�[30].�A�study�using�a�quartz�crystal
microbalance measured binding constants of � �M
between TetC and the gangliosides GD1a, GD1b, and GT1b

attached� to� solid� supported� membranes� [38].� Another
study using surface plasmon resonance and a liposome
capture method obtained dissociation constants for
GD1b and GT1b and the C fragment of 0.15 and 0.17 �M,
respectively�[39].

The dissociation constant measured for disialyllac-
tose in the present study is about 100 times weaker than
that obtained for GT1b by surface plasmon resonance
[39].�This�discrepancy�may�be�due� to�difference� in� the
concentrations� used� in� each� experiment� [15],� or� more
likely, structural differences in the carbohydrate com-
ponents of the gangliosides or gangliosides tested. The
additional NeuAc (�2-3)Gal(�1-3)-GalNAc residue
present in GT1b, for example, may contribute to its
stronger,� more� specific� binding� [30].� In� addition,� the
membrane bilayer may play an important role in spe-
cific protein-carbohydrate interactions. The fluidity of
the bilayer allows congregation of gangliosides and
correct geometric positioning of their polar headgroups
[40,�41].�The�monovalent� interactions� in� toxin-ganglio-
side binding, which can be characterized by unusually
weaker affinities, usually become strong interactions as
a result of the multivalent interactions that occur
through the simultaneous association of a single protein
with� multiple� ganglioside� molecules� [42].� Additional
stability and selectivity can be achieved when protein
receptors specific to the cell participate in toxin binding.

The validity of using ESI-MS to measure dissociation
constants between Clostridial neurotoxins and their re-
ceptors has recently been confirmed in another study
[19].� Doxorubicin,� a� ligand� that� was� found� to� bind� to
TetC, produced a dissociation constant of 11 �M by the
same electrospray technique used in this work. The
complex could be dissociated in the gas phase by
increasing the skimmer voltage, indicating that the
association was possibly more hydrophobic in character
than the interaction with the NeuAc ligands. A compet-
itive assay using ganglioside-bearing liposomes pro-
duced a dissociation constant with a very similar value
of�9.4��M�for�this�complex�[19].

Conclusion

ESI- MS methods have been successfully used to study
the oligomeric state of TetC and the complex formation
between TetC and a set of NeuAc containing ligands.
Dissociation constants for the TetC/ligand complexes
measured by ESI-MS are consistent with values ob-
tained using other methods, demonstrating that ESI-MS
can be used to study specific, noncovalent interactions
between proteins and ligands. The dissociation constant
obtained for disialyllactose was determined to be sub-

stantially weaker than the binding constant measured
previously for GT1b, which suggests that the terminal
NeuAc(�2-3)Gal(�1-3)-GalNAc in GT1b (and possibly
interactions with other protein toxin sites and/or
among the carbohydrates) impart both greater specific-
ity and higher affinity.

One of the disadvantages that was observed using
ESI-MS is that the technique’s ability to measure nM
affinities might be compromised when ligand concen-
trations tested do not span the range well below and
above the expected KD, which in turn might be limited
by instrument sensitivity. The strength of the interac-
tions between TetC and (NeuAc)n is consistent with the
topography of the targeting domain of tetanus toxin
and the distances between its carbohydrate binding
sites. The results suggest that the targeting domain of
tetanus toxin contains two binding sites that can accom-
modate NeuAc residues separated by a distance of �25
Å. This is consistent with the structure of GT1b and
related gangliosides that bind to the tetanus toxin
targeting domain where the NeuAc residues are sepa-
rated by a similar distance.
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