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Nafion-coated bismuth film electrodes (NCBFEs) and Nafion-coated mercury film electrodes
(NCMFEs) were used to electrochemically preconcentrate metal analytes for subsequent
analysis by inductively coupled plasma-mass spectrometry (ICP-MS). Either type of electrodes
is part of a thin-layer electrochemical flow cell that is positioned upstream of a microconcentric
nebulizer for the ICP-MS. Performances of these electrodes were compared in terms of the
analytical “figures of merit” (e.g., dynamic ranges, reproducibility, hydrodynamic stability,
and elimination of matrix effects detrimental to ICP-MS). The coupled technique (ASV-ICP-
MS) is found to possess a wide dynamic range (at least 4 to 5 orders of magnitude) and to be
reproducible. Both electrodes are much more stable than the thin mercury film electrode
(TMFE) traditionally used for ASV-ICP-MS, with the lifetime of the NCBFE exceeding 8 h.
Adopting these electrodes for ASV-ICP-MS overcomes the problems associated with a TMFE,
the erosion of which decreases the sample throughput, affects the analysis precision, and
contaminates conventional glass nebulizers and spray chambers of the spectrometer. The
medium exchange procedure inherent in ASV is successfully implemented with a two-valve
flow injection system for the accumulation of trace Cd2� into the electrode from a certified
seawater sample, followed by stripping Cd into a solution that is compatible to the ICP-MS
operation. (J Am Soc Mass Spectrom 2006, 17, 945–952) © 2006 American Society for Mass
Spectrometry

Anodic� stripping� voltammetry� (ASV)� combined
on-line� with� inductively� coupled� plasma-mass
spectrometry� (ASV-ICP-MS)� [1,� 2]� or� the� ICP-

atomic� emission� spectrometry� variant� (ASV-ICP-AES)
[3]�has�emerged�as�a�powerful�analytical�technique�for
enhanced� trace� metal� analysis� [4�–�6],� elimination� of
detrimental� ICP� matrix� effects� [7–9],� and� studies� of
electrode reactions involving adsorption/desorption of
metals� or� metal-containing� species� [10�–12].� Various
applications�of�this�combination�have�been�reviewed�[1,
2].� Earlier� work� in� this� field� centered� on� the� use� of� a
flow-through electrochemical cell housing a mercury-
coated reticulated vitreous carbon (RVC) working elec-
trode�[7,�13–16],�and�demonstrated�that�amalgam-form-
ing metal ions (e.g., Cd2�, Cu2�, Pb2�, etc.) could be
analyzed�with�few�matrix�effects�[7].�The�elimination�of

both ICP spectroscopic and nonspectroscopic interfer-
ences� [17-19]� resulted� from� the� use� of� a� medium-
exchange�procedure�of�ASV�[20],�in�which�the�flow�cell
can be thoroughly washed with an interference-free
solution (e.g., dilute HNO3 or high-purity ammonium
acetate buffer) before diverting the cell eluent for the
subsequent voltammetric scan and ICP-MS analysis.
The stripped metals elute in distinct sample plugs and
can be easily monitored by time-resolved ICP-MS mea-
surements. Elements whose oxidation states are indis-
tinguishable by ICP-MS (e.g., As(III) and Cr(VI)) have
also been deposited onto and stripped off the RVC
electrode�for�subsequent�ICP-MS�analysis�[14,�16].

In the past ten years or so, efforts were focused on
the use of a thin-layer flow cell incorporating a disk
electrode�[4,�5,�8�–11,�21].�Such�a�cell�was�demonstrated
to be more advantageous than the flow-through cell,
because greater preconcentration efficiency, faster cell
clean-up, and smaller sample consumption can all be
realized. The thin-layer flow cell design has been suc-
cessfully utilized by Van Berkel and coworkers and
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Zhou and coworkers for quantification of radionuclides
[8,�9],�heavy�metals�in�complex�sample�media�[12,�14,�16,
22],� ion� incorporation� and� ejection� from� organic� and
polymeric� thin� films� [11,� 23],� and� metal� release� from
biomolecular� adsorbates� [10].� However,� for� analysis
employing thin mercury film electrodes (TMFEs), a
direct�injection�nebulizer�(DIN)�[24�–26]�had�to�be�incor-
porated into the setup to alleviate the memory effect
caused by mercury eroded into the sample introduction
system�[4,�8].�The� lower�sample� flow�rates�allowed�by
the� DIN� [24,� 26]� also� help� extend� the� lifetime� of� the
TMFE, allowing a longer analyte preconcentration to be
carried out. Unfortunately, even under such a favorable
experimental condition and with a relatively thick mer-
cury�film�(e.g.,�100�nm�[4],�the�electrode�was�still�found
to last for typically about 60 min or less. Such a
drawback severely reduces the sample throughput and
affects the precision of the ASV-ICP-MS measurements.
Consequently, fresh mercury films need to be periodi-
cally deposited, generating large amounts of toxic
wastes.

Previous reports have shown that polymeric mem-
branes� or� thin� film� coatings,� such� as� Nafion� [27–30],
enhance the mechanical stability of TMFEs and improve
voltammetric� signal-to-noise� ratios� [31].�We,� therefore,
envisioned that Nafion-coated mercury film electrodes
(NCMFEs) should be a viable remedy for conventional
mercury films used for ASV-ICP-MS. Recently, bismuth
film electrodes (BFEs) have emerged as an environmen-
tally� friendly� alternative� to� TMFEs� for� ASV� [32–36].
BFEs and Nafion-coated BFEs (NCBFEs) retain many
desirable features of mercury (e.g., high voltammetric
signal intensity, well-resolved stripping peaks, and
high� hydrogen� overpotentials� [20],� are� efficient� in� en-
riching metal ions, and possess high hydrodynamic
stability. These electrodes (BFEs, NCBFEs, and TMFEs)
are more advantageous than other commonly used
solid electrodes (e.g., Pt and Au) for ASV in terms of
preconcentration efficiency and reproducibility. More-
over, the high hydrogen overpotentials allow them to
be used in acidic media that generally used for trace
metal analysis. In this work, they are shown to allow
samples to be continuously analyzed with good preci-
sion and accuracy for an extended period of time (�5
h). Moreover, samples present in matrices that are not
compatible to the ICP-MS operational condition can be
pretreated and preconcentrated before sensitive
ICP-MS quantification.

Experimental

Reagents and Chemicals

All solution preparations were conducted in a clean
room with deionized water from a water purification
system (Simplicity Plus, Millipore S.A. 67120 Molsheim,
France). All metal standard solutions were acquired
from Aldrich Chemicals (Milwaukee, WI). Ammonia
and acetic acid (HAc) used for preparing the NH4Ac-

HAc buffer solution were doubly distilled from Vycor
(GFS Chemicals, Powell, OH). The NH4Ac-HAc buffer
solution was used to dilute all the metal standards.
Nafion solutions (5% wt/vol solution in a mixture of
alcohol and water, Aldrich Chemicals) were used to
prepare the electrodes. The NH4Ac-HAC buffer allows
the metal preconcentration step to be conducted in a
slightly acidic solution (pH � 4.5), a condition com-
monly�used�for�ASV�at�NCBFEs�[31].�At�the�same�time
it does not produce interfering peaks in the ICP-mass
spectra.

Cadmium present in a certified CASS-4 open ocean
seawater reference (National Research Council, Ottawa,
Canada) was used to assess the accuracy of and matrix
effect elimination by the ASV-ICP-MS.

Electrodes and Cells

The flow cell has been slightly modified from the design
used� by� Van� Berkel� [5,� 9]� and� coworkers� and� that� for
our� previous� work� [4,� 10]� (Figure� 1a).� The� Pt� foil
auxiliary electrode is replaced by a 3-mm-diameter gold
disk electrode positioned next to the working electrode.
Since the Pt foil could cause cell leakage, this change
simplifies the operational procedure. It also facilitates a

Figure 1. Schematic representations of the electrochemical flow
cell (a) and a two-valve flow-injection system comprising the
electrochemical flow cell for ASV-ICP-MS (b). A detailed side
view of a Nafion-coated electrode. In (b), the solid lines that
interconnect the ports on the valves represent the configuration
for the sample preconcentration, and the dotted curves show that
for anodic stripping and analyte elution to the ICP-MS. For clarity,
the diagrams are not drawn to scale.
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direct adoption of the commercially available stainless
steel cell (Bioanalytical Systems Inc., West Lafayette,
IN), which houses the Ag/AgCl reference electrode,
into the experimental setup. For analysis of elements
that are present in stainless steel (e.g., nickel and
chromium), the cell surface can be coated with a 100-nm
thick gold film with a 2-nm Cr underlayer. We found
that such a gold film was rather robust and can last 4 to
5� days� of� experiments.� Teflon� gaskets� (Figure� 1a)� of
thicknesses of 51, 127, and 254 �m (Bioanalytical Sys-
tems Inc.) were tested for the flow cell, with the 127
�m-thick gasket deemed to be most suitable in terms of
signal intensity and operational convenience. With this
improved design, attaching the PEEK block embedding
the glassy carbon working electrode and the Au auxil-
iary�electrode�(Figure�1a)�to�the�cell�body�is�convenient,
cleaning the electrodes is fast, and obtaining undis-
torted voltammograms is routine.

Instruments

The ICP-MS was a double-quadrupole mass spectrom-
eter� (Elan-DRCe,� Perkin-Elmer/Sciex� Corp.,� Norwalk,
CT). A microconcentric nebulizer (MCN, CETAC Tech-
nologies Inc., Omaha, NE) was used in conjunction with
a Scott-type spray chamber. The operating conditions
for�the�MCN�and�the�ICP-MS�are�listed�in�Table�1.�Two
six-port injection valves (Microneb 2000, CETAC) were
connected to the inlet of the electrochemical flow cell
(Figure� 1).� A� dual-syringe� pump� (Kd� Scientific� Model
270, Holliston, MA) was used to deliver the NH4Ac-
HAC buffer solution. A flow rate of 100 �L/min was
chosen for the optimal MCN performance. Control of
the electrode potentials was achieved using a CHI 615A
electrochemical analyzer (CH Instruments, Austin, TX).

Procedures

The glassy carbon electrode for forming the NCBFE or
NCMFE was polished with diamond and alumina

pastes (Buehler, Lake Bluff, IL) and sonicated in a water
bath for 30 s to remove adherent polishing materials
from the electrode surface. To prepare a NCBFE, the
glassy carbon electrode was positioned upside down
and 3 �L of a 1% Nafion solution was pipeted onto the
electrode surface and left in the ambient atmosphere to
dry. Bismuth was then deposited through the Nafion
matrix onto the bottoms of pores from a 0.5 M HCl
solution containing 1.0 mM Bi3� by applying �0.6 V for
30 s in the flow system (i.e., on-line preparation). The
NCMFEs were prepared off-line to avoid contamination
of the flow cell with Hg2� and to reduce toxic wastes.
We found that NCMFEs prepared off-line generally
produced higher and more reproducible ASV signals.
To prepare NCMFEs, 3 �L of 0.21% Nafion solution was
first spread over the glassy carbon electrode. Immedi-
ately upon drying, 2 �L dimethylformamide (DMF)
was cast, and the electrode surface was dried under a
heat�gun�[28,�29,�37].�Mercury�films�were�deposited�onto
the bottoms of the pores in the Nafion film by holding
the electrode at �0.4 V in a 5.0 mM Hg2�/1% HNO3

solution for 300 s.
Metals of interest were accumulated into these elec-

trodes at a preset potential with deposition times rang-
ing from 15 to 500 s. Differential pulse voltammograms
(DPVs) were recorded using a 50-ms pulse width and a
50-mV amplitude. Metal ions that were stripped into
the NH4Ac-HAC carrier solution eluted out of the
electrochemical flow cell to the ICP-MS. The elution
profiles were monitored by ICP-MS using time-
resolved acquisition in the peak-hopping mode. For
determining metal analytes in complex matrices, sam-
ple solutions were introduced to the flow cell via valve
1� (cf.� Figure� 1b)� and� the� cell� content� was� directed� to
waste. At the same time, 1% HNO3 solution flowed
through valve 2 to the ICP-MS sample introduction
system. The preconcentration step was followed by
washing the cell with the NH4Ac-HAc carrier solution
for�60-150�s,�switching�valve�2�(Figure�1b)�to�the�ICP-MS
sample introduction system, and stripping metals into
the NH4Ac-HAc carrier solution.

Results and Discussion

NCBFEs and NCMFEs for ASV-ICP-MS

The principle behind ASV-ICP-MS has been reviewed
and� described� previously� [1,� 2,� 8].� Therefore,� we� pro-
vide� in� Figure� 1a� only� a� schematic� illustration� of� the
NCBFE or NCMFE structure. The as-prepared elec-
trodes have an average Nafion film thickness of 0.68 �m
with�a�8-nm�thick�Bi�film�or�100-nm�thick�Hg�film�[31].
The numerous pores in the Nafion matrix are about 5
nm�in�diameter�[38].�The�permselective�cation�exchange
capability of the Nafion film should help accumulate
the metal ions from dilute sample solutions, though the
relatively high ionic strength of the carrier solution
probably diminished the permselectivity to some extent
(vide� infra)� [37,� 39].� As� a� result,� mass� transfer� of� the

Table 1. Operating Parameters for the ICP-MS

RF Power 1150 W
Nebulizer Gas Flow Rate 0.95 L/min
Auxiliary Gas Flow Rate 1.20 L/min
Plasma Gas Flow Rate 15.00 L/min
Analog Stage Voltage �1750 V
Pulse Stage Voltage 1000 V
Lens Voltage (115In) 9 V
Autolens On
Sample Introduction System MCN
Solution Uptake Rate 100 �L/min
Solution Flow Mode Flow Injection
Scan Mode Peak Hopping
MCA Channels (points/mass) 1
Resolution 0.7 amu
Sweeps/Reading 1
Readings/Replicate 4300
Replicates 1
Dwell Time/amu 350 ms
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analyte within the Nafion matrix to metal films present
at the bottom of the pores is not significantly restricted
and the elution of the stripped ions is not retarded. By
applying a suitable potential, metal ions can be reduced
and deposited as metals into the Bi film or Hg film.
After the cell has been washed with the carrier solution
(cf.� Figure� 1b),� metals� deposited� can� be� stripped� for
subsequent ICP-MS analysis. The dual-valve flow injec-
tion system was used by Pretty et al. for analysis of
uranium�at�ultratrace�levels�using�ASV-ICP-MS�[9].�We
replaced the gas displacement pump (GDP) with a
dual-syringe pump in the same configuration as de-
scribed�in�reference�[9].�Using�syringe�pumps�obviates
the�necessity�of�balancing�the�solution�flows�to�the�two
valves and the flow rate calibration.

The possibility of using the NCBFE and NCMFE for
multi-element analysis by ASV-ICP-MS is demon-
strated� in�Figure�2.�The�dotted� line�curve� in�Figure�2a
was acquired after holding a NCBFE electrode potential
at �1.200 V for 500 s to deposit various metal analytes,
washing the cell, and initiating a differential pulse
voltammetric (DPV) scan, whereas the solid line curve
was obtained at a NCMFE electrode using 360 s for the
preconcentration� step.� Figure� 2b� and� c� are� time-
resolved ICP-MS responses corresponding to elutions
of the metals stripped off the NCBFE and NCMFE
electrodes, respectively. Oxidation of the preconcen-
trated Tl and Cd produced a single DPV peak (�0.579 V
at the NCBFE and �0.545 V at the NCMFE), due to the
overlapping�stripping�potentials�of�Tl�and�Cd�[40].�As
noted� in� our� previous� work� based� on� a� TMFE� [4],
ASV-ICP-MS relies on the mass-to-charge (m/z) ratios
for elemental analysis. Thus distinctive elution peaks of
the metal ions stripped of the electrode can be obtained
(Figure�2b�and�c).�Evidently,�both�the�elution�sequence
and� the�peak�widths� in�Figure�2b�and�c�correlate�well
with the oxidation potentials and peak widths of the
DPV� peaks� (Figure� 2a).� Since� the� elution� profile� is
analogous� to� that� we� observed� at� a� TMFE� [4],� the
Nafion coating does not appear to retard the elution of
the metal ions to the ICP-MS. Thus, it is apparent that
metal stripping and metal ion diffusion out of the
Nafion film are much faster than the elution of the
sample plugs from the cell to the ICP-MS. A major
benefit offered by the MS detection is that complica-
tions inherent in voltammetry and from electrode pro-
cesses� are� circumvented� [2].� Therefore,� as� shown� by
previous� studies� [41,� 42],� MS� can� provide� insight� to
electrochemical reactions. For example, the profiles in
both� Figure� 2b� and� c� suggest� that� Tl�� eluted� before
Cd2�, even though the standard reduction potential of
Tl� at a Hg electrode (�0.530 V) is more positive than
that�of�Cd2��(�0.548�V)�[40].�To�verify�this�observation,
we conducted DPV measurements in a quiescent ace-
tate buffer solution containing only Cd2� or only Tl�

and found that Tl� was indeed easier to oxidize at these
Nafion-coated electrodes (data not shown). Possibly the
interaction between the Nafion coating and doubly
charged cations (i.e., Cd2�) is slightly stronger than that

between the Nafion film and singly charged species
(e.g., Tl�). Nevertheless, the retention is weak and the
difference is only manifested when the stripping poten-
tials between the two species are very close.
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Figure 2. (a) Differential pulse voltammograms of Zn, Cd, Tl,
and Pb at a NCBFE (dotted line curve) and Zn, Cd, Tl, Pb, and Cu
at a NCMFE (solid line curve) acquired in flowing streams of
NH4Ac-HAc buffer solutions (pH � 4.5). The arrow indicates the
scan direction. (b) Time-resolved ICP-MS responses to the eluted
analytes upon ASV at the NCBFE [dotted line curve in (a)].
Concentrations of all the metal ions are 50 ppb and the precon-
centration time was 450 s. (c) ICP-MS responses to the elution of
metals resulted from ASV [solid line curve in (a)] at the NCMFE.
Analyte concentration was 30 ppb each. The ICP-MS signal for Tl
was plotted on a different scale [right of (c)].
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Figure�2a�shows�that�Cu�can�be�stripped�at�0.140�V�at
the NCMFE, a potential more positive than the Bi
oxidation�potential�(at�0.112�V�[44,�45].�Therefore,�ASV-
ICP-MS analysis of Cu should not be performed at a
NCBFE. To confirm that metals stripped in their ionic
forms are not retained by the Nafion film, we per-
formed�another�potential�scan�and�monitored�the�resid-
ual metal ion elution by ICP-MS. The intensity of the
second set of elution peaks in the time-resolved ICP-MS
responses are only 5 to 10% of that of the first set,
suggesting that metals deposited can be quantitatively
stripped. This is consistent with the aforementioned fact
that the cation exchange (retaining) process in Nafion
matrix� is�relatively�slow�[27].�The�relatively�high� ionic
strength used in this work (0.1 M) might have negated
the� anionic� property� of� Nafion� film� [37,� 39]� and� thus
decreased its tendency to electrostatically attract cat-
ionic species. The minimal retention by the Nafion
coating results in the good linear relationship between
the�ICP-MS�signals�and�the�analyte�concentrations�(see
below).

Analytical Performance

Dynamic range and reproducibility. With Cd2� and Pb2�

standards as model analytes, we evaluated the dynamic
ranges and reproducibility of ASV-ICP-MS at NCBFEs
and�NCMFEs� (Figure�3).�All� the�plots�exhibited�excel-
lent linearity within the concentration ranges studied,
with R2 values exceeding 0.997. The concentration
ranges span 4 to 5 orders of magnitude. We did not
attempt to measure concentrations in the ppm range,
because relatively high analyte concentrations would
not require sample preconcentration. Even for species
present in media that tend to cause ICP-MS interfer-
ences, multiple dilutions can be carried out above the
ICP-MS detection level to circumvent potential interfer-
ences. The error bars shown in the plots (with %RSD
ranging from 1 to 13%) are relatively small, indicating
that ASV-ICP-MS at either a NCBFE or a NCMFE is
reproducible. The slopes of the Cd2� calibration curves
at these electrodes are smaller than those of the Pb2�

counterparts, implying that the ASV-ICP-MS sensitivity
is higher for Pb than for Cd. Such a trend can be
attributed to the following three factors: (1) the Pb
isotope monitored by ICP-MS (208Pb) is more abundant
than the Cd isotope chosen for detection (114Cd), (2) Pb
has�higher�ionization�efficiency�and�less�mass�bias�[19],
and (3) Pb2� is accumulated more effectively at these
Nafion-coated electrodes. Another observation is that
the slopes of the calibration curves for both metal ions
at the NCMFE are greater than those at the NCBFE. This
is�conceivable�given�that�metals�can�diffuse�into�Hg�[18]
more extensively than into the bismuth film.

Signal enhancement. We found that the ICP-MS signal
intensity is proportional to the deposition (preconcen-
tration)�time.�Figure�4�displays�the�ICP-MS�peak�inten-
sities versus preconcentration times for Pb2�and Cd2�

at�a�NCBFE� (Figure�4a)�and�a�NCMFE� (Figure�4b).�R2

values of these plots range from 0.995 to 0.998. At both
types of electrodes, the Pb2� plot has a steeper slope
than the Cd2� plot. This is consistent with the three
factors mentioned in the previous section to explain the
difference in the calibration curve slopes. The extent of
signal enhancement was estimated by comparing the
ICP-MS peak intensities upon electrochemical precon-
centration to signals obtained from directly nebulizing
the sample solution. A 360-s preconcentration of a
sample containing 30 ppb Pb2� and 30 ppb Cd2� at a
NCMFE resulted in signal enhancements by factors of
8.0 and 2.8 times, respectively. The enhancement factor
for Cd2� is about 3 times lower than what we achieved
at�TMFEs�used�in�conjunction�with�a�DIN�[4].�At� least
three factors contribute to this decrease: (1) the Nafion
coating reduces the total volume of electroactive mate-
rials� for�analyte�preconcentration�(cf.�Figure�1a,�which
shows that only the pores are partially filled with Bi or
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Figure 3. Calibration curves for Pb2� and Cd2� constructed from
measuring a series of Cd2� and Pb2� standard solutions at a
NCBFE (a) and a NCMFE (b) using ASV-ICP-MS. The preconcen-
tration time was 500 s and the concentrations measured at the
NCBFE were 0.013, 0.025, 0.050, 0.15, 0.30, 0.60, 1.3, 2.5, 7.5, 15, 30,
60, 125, and 250 ppb for Cd2� and Pb2�. At the NCMFE, 0.005,
0.025, 0.050, 0.10, 0.25, 0.50, 1.0, 2.5, 5.0, 10, 25, and 50 ppb of Cd2�

and Pb2� were analyzed after a 360-s preconcentration. The error
bars were calculated from at least three replicates.
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Hg), (2) the slower flow rate used for the DIN work (45
to�55��L/min�[4]� increases� the�analyte�deposition�effi-
ciency�[5],�and�(3)�as�aforementioned,�the�preconcentra-
tion efficiency of Cd2� at the Nafion-coated electrodes is
relatively low (e.g., lower than Pb2�).

Durability of the NCBFEs and NCMFEs. To assess
whether NCBFEs and/or NCMFEs are suitable for
routine ASV-ICP-MS analysis, we examined their hy-
drodynamic stabilities by performing continuous mea-
surements of a sample solution over an extended period
of� time.�As�clearly�shown�in�Figure�5,�at�a�NCBFE,�no
appreciable ICP-MS signal degradation was observed
even after 4.5 h. In fact, a single NCBFE is sufficient for
a day’s analysis (�8 h). The ICP-MS signal intensity at
a NCMFE, on the other hand, began to decay seriously
after about 4 h. Despite a somewhat shorter lifetime, a
NCMFE is still substantially more stable than a TMFE (a
100-nm thick Hg film at the same flow rate lasted for
less than 0.5 h). Another attractive feature of NCBFEs

[31,�32,�34,�35]�is�that�degassing�of�the�analyte�samples,
as required for ASV at a TMFE, is not necessary. The
improvement of the hydrodynamic stability of the bis-
muth or mercury thin film by the Nafion coating has
been�noted�in�the�literature�[27–29].�Such�stability�is�in
contrast with the erosion of the Hg film, which rapidly
exposes the underlying glassy carbon surface. The ex-
posed carbon surface can create hydrogen bubbles at a
negative potential, affecting analyte deposition and
analytical precision. This problem exacerbates for met-
als whose reduction potentials are very negative (e.g.,
Zn). Based on these features, clearly the sample
throughput of ASV-ICP-MS at NCBFEs or NCMFEs is
greatly improved.

Accuracy and matrix effect elimination. To gauge the
accuracy of ASV-ICP-MS and the effectiveness of the
medium-exchange procedure for on-line sample clean-
up, we measured Cd2� in a certified seawater sample.
The high salinity in the seawater sample could clog the
fine capillary tubing in the MCN and/or the ICP-MS
skimmer/sampler cones, and create polyatomic inter-
ferences� (e.g.,� 23Na40Ar�� versus� 63Cu�� [13].� Further-
more, ICP-MS signal suppression or even enhancement
could also occur when a large number of ions are
introduced�to�the�MS�system�[18,�45].�As�a�consequence,
continuous and accurate measurements of such sam-
ples cannot be achieved without significant sample
dilution. Unfortunately, for species present at ultratrace
levels, a significant dilution may decrease the analyte
concentration below the ICP-MS detection limit. This
point� is� reflected� by� the� fact� that� curve� I� in� Figure� 6,
which was obtained by injecting the certified seawater
sample (diluted 30 times with the NH4Ac-HAc buffer
solution), is indistinguishable from the carrier signal.
With ASV-ICP-MS, Cd can be accumulated into the
NCBFE or NCMFE directly from the undiluted sample
and stripped back into a solution that is benign to the
ICP-MS operation (curve II). Furthermore, the method
of standard addition can be readily implemented (curve
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Figure 5. Hydrodynamic stabilities of a NCBFE, a NCMFE, and
a TMFE demonstrated by plotting the ASV-ICP-MS signal inten-
sities of Pb2� (30 ppb) versus the total number of analyses. Each
analysis was conducted at a 15-min increment.
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Figure 4. ICP-MS signal intensities for Pb2� and Cd2� versus
deposition times at a NCBFE (a) and a NCMFE (b). Data were
acquired using 56 ppb Cd2� and 126 ppb Pb2� for the NCBFE (a)
and 30 ppb Cd2� and 30 ppb Pb2� for the NCMFE (b).
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III). With ASV-ICP-MS, we determined Cd2� in this
sample to be 36.2 � 2.2 ppt at a NCBFE and 32.4 � 1.9
ppt at a NCMFE, both of which are in reasonable
agreement with the certified value (26 � 3 ppt). The
efficacy of the present work for matrix effect elimina-
tion compares well to that of our previous work based
on�a�TMFE�[4].�However,�the�environmentally�friendly
Bi and the prevention of rapid erosion of thin mercury
film by the Nafion coating facilitate the adoption of the
easy-to-use MCN and the durability of these electrodes
makes the present methodology attractive for high-
throughput environmental analysis.

Conclusion

NCBFEs and NCMFEs are both more desirable than
TMFEs for heavy metal analysis based on ASV-ICP-MS.
We demonstrate that ASV-ICP-MS utilizing these elec-
trodes preserves the excellent “figures of merit” of
ICP-MS (e.g., reproducibility, dynamic range, sensitiv-
ity, and accuracy), and at the same time, provides an
appealing route for enhancing small signals associated
with extremely low analyte concentrations and for
eliminating detrimental ICP-MS matrix effects. While
both electrodes are suitable for ASV-ICP-MS using
conventional nebulizers/spray chambers, they comple-
ment each other in certain aspects. For example, NCM-
FEs enable Cu2� to be analyzed at a trace level, whereas
NCBFEs are nontoxic and do not require sample solu-
tions to be deaerated. The hydrodynamic stabilities of
these electrodes are much greater than those of TMFEs
in flowing solution streams, and consequently replicate
ASV-ICP-MS measurements can be performed without
repeatedly making new mercury films. This drastically
reduces the generation of toxic wastes and enhances
sample throughputs. Finally, stabilized mercury films

are more compatible with easy-to-implement nebuliz-
ers/spray chambers. The present work is thus comple-
mentary to ultrasensitive ASV-ICP-MS analyses per-
formed with highly efficient nebulizers (e.g., DIN).
Though not explored, we should add that the Nafion
coating should be able to effectively exclude dissolved
organic� matters� in� environmental� samples� [27]� (e.g.,
estuarine�waters�[37].�Another�important�aspect�is�that
ICP-MS� responses� can� be� correlated� with� the� voltam-
metric data to shed light on electrode processes. Since
MS techniques are generally more sensitive and selec-
tive, we anticipate that ICP-MS and other MS tech-
niques� [22,�41–�43]�will�be�viable� for�on-line� identifica-
tion and quantification of various electrogenerated
products.
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