
Reassessment of the Structural Composition
of the Alkenone Distributions in Natural
Environments Using an Improved Method
for Double Bond Location Based
on GC-MS Analysis of Cyclopropylimines

Jordi F. López and Joan O. Grimalt
Department of Environmental Chemistry, Institute of Chemical and Environmental Research (IIQAB-CSIC),
Barcelona, Catalonia, Spain

The usefulness of n-propyl-, iso-propyl-, and cyclopropylamines for the location of double
bonds positions in C37–C40 alkenones after formation of imino derivatives has been evaluated.
Cyclopropylamine is the best reagent for its high reaction yields, GC retention time difference
between derivatives and precursor compounds, and absence of generation of byproducts. The
use of this C3 amine involves higher sensitivity and ease of application than previously
reported C5 amines. Examination of a large group of alkenones from cultures of Emiliania
huxleyi, water particles, and recent and ancient sediments with cyclopropylamine derivatiza-
tion shows that, in all cases, the double bonds were located at the same carbon atom distance
from the carbonyl group, and spaced in intervals of five methylene groups either from the
carbonyl or between them, e.g., at sites 7, 14, 21, and 28. This result represents a correction from
previous assumptions in which double-bond positions were situated by reference to the
methyl end. 4,4-Dimethyloxazoline derivatization of hexatriacontenoates showed that these
compounds have also their unsaturations with seven carbon atom spacing and counting by
reference to the carboxyl group. The concurrence of both series of isomers in compounds of
different oxygen functionalities indicates that the precursor haptophycean algal species have
a major biosynthetic pathway leading to the formation of these lipids. The data presented in
this work unify the structures of the known alkenones in the present and the recent past under
a common metabolic pathway. (J Am Soc Mass Spectrom 2006, 17, 710–720) © 2006 American
Society for Mass Spectrometry

In�a�previous�manuscript,�a�method�for�double-bond
location in C35–C41 alkenones� was� proposed� [1].
These compounds currently encompass mixtures of

straight chain methyl and ethyl ketones with one to four
unsaturations and all trans-configuration. They consti-
tute one of the groups of marine lipids most intensively
studied because of the clear relationship between com-
position of the C37 di- and triunsaturated homologues
and� sea� surface� temperature� (SST)� [2,� 3]� being� widely
used for the estimation of past ocean temperatures
[4�–7].

Structural characterization of these low volatile com-
pounds is needed for a full understanding of their
biosynthetic origin and geochemical meaning. How-
ever, attempts to locate the positions of the double
bonds based on GC-MS studies of vicinal bistrimethyl-
silyl� ethers� [8]�or�dimethanethiols� [9]�had� limited�suc-

cess because they generated derivatives with much
longer retention times than the original compounds
[10].� Recently,� the� application� of� a� novel� technique
based on the mass spectra of phenyl and cyclopenty-
limines has been used to characterize distributions of
alkenones found in hypersaline sediments and coastal
tidal�ponds�[1].

However, the study of alkenone structures in sam-
ples from old sediments, e.g., those covering the last
250�k�years�of�the�history�of�the�Mediterranean�SST�[6],
showed that in some cases the sensitivity of the meth-
ods�available�[1]�was�not�sufficient�for�the�unambiguous
determination of the position of the unsaturations be-
cause of the low concentrations of these compounds.
Keeping in mind the previous experience with the use
of C5 amines, smaller molecular weight homologues
with a lower boiling point were tested. n-Propyl-,
isopropyl-, and cyclopropylamine were chosen for their
availability and relative low cost. The usefulness of
these three C3 isomeric amines has been assayed, both
on synthetic standards and on environmental samples.
Their study has provided a new method involving
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significant improvements in both preparation ease and
sensitivity compared with the amino derivatives previ-
ously�described�[1].�The�application�of�the�technique�to
algal cultures, marine sediments, and particulate matter
has allowed characterizing the double-bond positions
in all the alkenones known to occur in environmental
samples.

Experimental

Materials and Reagents

Analysis grade solvents, dichloromethane (DCM),
methanol (MeOH), hexane, isooctane, ethyl acetate,
and toluene, N,O-bis-trimethylsilyl-trifluoroacetamide
(BSTFA), molecular sieves (4 Å), potassium hydroxide
(KOH), silica gel 40 (70–230 mesh), aluminum oxide 90
(neutral, 70–230 mesh), and sodium sulfate were pur-
chased from Merck (Darmstadt, Germany). Tetrahydro-
furane (THF), aniline (99.5%), cyclopentylamine (99%),
cyclopropylamine (99%), propylamine (99%), iso-
propylamine (99%), sodium p-toluenesulfinate hy-
drate, 2-amino-2-methylpropanol (AMP), N-methyl-N-
nitroso-p-toluenesulfonamide (Diazald), and 1,4-diox-
ane (99�%, ACS reagent) were from Aldrich (Milwau-
kee, MI). The synthetic standards (E,E,E)-8,15,22-hepta-
triacontatrien-2-one and (E,E)-15,22-heptatriacontadien-
2-one were generously provided by Professor J. R.
Maxwell,�University�of�Bristol,�UK�[11].

The 4 Å molecular sieves were heated overnight at
500 °C, and re-activated by heating at 150 °C for 1 h
before use. Anhydrous sodium sulfate was heated over-
night at 350 °C before use. Aliquots of toluene and THF
were stored overnight in activated molecular sieve
before use. Either flat bottom or conical 2 mL vials were
used for reaction and GC-MS analysis. These vials were
screw-capped with Teflon-lined white silicone-rubber
septa. The septa had been routinely washed by soaking
in DCM and repeatedly changing the solvent until
foaming was reduced to a minimum to eliminate sili-
cone peaks that irreversibly interfere with both alk-
enones and imines.

Sampling

Several samples were obtained from hypersaline coastal
areas�of�the�Iberian�Peninsula�[12],�southeastern�France
[13],�and�Orkney�Islands�[14].�They�were�also�obtained
from several Emiliania huxleyi strains and water column
particles� from� Skagerrak� and� Midatlantic� sites� [15].
Deep sea sediments from the Alboran Sea were also
included�in�the�study�[6].

Extraction and Fractionation

Detailed descriptions of the analytical procedures for
extraction and isolation of the alkenone mixtures are given
in the publications cited above. Samples were extracted
with a mixture of DCM/MeOH (2:1), either by sonication

or Soxhlet reflux. The extracts were hydrolyzed overnight
at room temperature in solutions of 6–10% wt/vol KOH
in MeOH. Extraction with hexane yielded a fraction en-
riched in neutral compounds which, in samples with low
alkenone content, e.g., ancient Alboran Sea sediments,
was not fractionated further. In the other cases, fraction-
ation was carried out on chromatographic columns filled
with 5% water deactivated aluminum oxide (top) and
silica gel (bottom) by elution with solvent mixtures defin-
ing a polarity gradient [hexane (20 mL), hexane:DCM
(90:10, 20 mL; 80:20, 40 mL; 25:75, 20 mL), DCM:MeOH
(90:10, 40 mL)]. The ketone-enriched fraction was eluted
with hexane/DCM (25:75, 20 mL). This fraction was dried
under nitrogen, dissolved in isooctane, and stored at
�20 °C. The neutral fractions were derivatized with
BSTFA.

Preparation of Alkenone Derivatives

The basic description of the derivatization procedure
for�imino�derivatives�of�the�ketones�can�be�found�in�[1].
Now, an improved method based on the use of smaller
molecular weight and lower boiling point amines is
described. The reactions were held in 2 mL vials screw-
capped with a Teflon lined silicone septum. The deriv-
atives were prepared from previously evaporated stan-
dards or samples by addition of 50 �L of the
corresponding amine and 250 �L of THF. The solution
was dried by the addition of either 10–15 beads of
molecular sieves or a layer of 2–3 mm anhydrous
sodium sulfate. Air was purged with argon before vial
capping, and the vials were kept in an oven at 80 °C for
2 h. The vials were then cooled to room temperature
and stored at �20 °C. Before GC-MS analysis, aliquots
of the reaction crude were evaporated to dryness under
a gentle nitrogen stream and dissolved in toluene.

4,4-Dimethyloxazoline Derivatives

Diazomethane was prepared from Diazald by distilla-
tion as indicated in the Aldrich Company Technical
Bulletin AL-180. The methylated acid fractions or the
ester-ketone fractions containing the alkyl alkenoates
were evaporated to dryness under nitrogen in 2 mL
screw-cap vials. An excess of 2-amino-2-propanol (250
�L) was added and the vials were flushed a few
seconds with nitrogen or argon and covered with a
temperature resistant cap and Teflon-lined silicone rub-
ber septum. The vials were heated at 210 °C for 2 h
according� to� a� recent� modification� [16]� of� a� standard
4,4-dimethyl-oxazoline� preparation� method� [17]� for
long-chain fatty acids. The reaction crude was cooled at
room temperature, dissolved in 1 mL of DCM, and
transferred to a test tube containing 2 mL of distilled
water. After vortex stirring, the top water layer was
removed, 2 mL of distilled water was added, and the
operation was repeated once more. The DCM was
evaporated to dryness, the extract was eventually dried
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with sodium sulfate, and dissolved in toluene for
GC-MS analysis.

Instrumental Analysis

GC-MS was performed with a Trace GC-MS and data
processed with Xcalibur software (Thermo Instruments,
Manchester, UK). The carrier gas was He at a flow of 1
mL/min. Injection port, transfer line and ion source
were heated at 300, 270, and 200 °C, respectively. The
mass spectrometer was operated in EI mode (70 eV),
scanning between m/z 50 and 700 Da at 1 or 1.5 cycles/s.
Samples were injected in toluene in two different col-
umns. A 50 m capillary column coated with 100%
methyl polysiloxane (CPSil5 CB, 0.25 mm i.d. with a
film thickness of 0.12 �m; Chrompak-Varian) and a
60 m capillary column coated with 5% phenyl- 95%
methylpolysiloxane (HP-5, 0.25 mm i.d., and 0.25 �m
film thickness; Hewlett Packard, CA). The temperature
program of the first column started at 90 °C (1 min),
increased at a rate of 20 °C/min to 170 °C, and then to
280 °C at a rate of 6 °C/min with a holding time of 25
min, and finally to 310 °C at 10 °C/min with a final
holding time of 12 min. The temperature program of the
second column started at 90 °C (1 min), raised at
15 °C/min to 150 °C, and then to 310 °C at 4 °C/min
with a final holding time of 30 min.

Results and Discussion

Reaction Yields

One important aspect for the derivatization of (E,E,E)-
8,15,22-heptatriacontatrien-2-one and (E,E)-15,22-hepta-
triacontadien-2-one is the elimination of water from the
sample extracts and solvents. Examination of diverse
desiccants showed that sodium sulfate is better than
molecular sieves, since the former avoids adsorption of
linear compounds. Thus, when using the latter, losses of
60% of n-tetracontane with respect to n-hexatriacontane
were observed and several artifacts were formed. Ob-
viously, these adsorption effects should be avoided
since they may hinder the possibility of study of a
significant proportion of the lipids present in the ex-
tracts and do not allow obtaining quantitative results
when using n-alkanes as internal standards.

The reaction yields of these C3 amines with the above

mentioned synthetic alkenone standards were found to
be �95%, �50%, and �15% for the cyclopropyl-, iso-
propyl-, and n-propylamino derivatives, respectively
(Table� 1).� Both� di-� and� triunsaturated� ketones� gave
similar yields for the cyclopropylamine. In contrast,
better results for the triunsaturated alkenone were
found in the reaction with the other two amines. These
yield values agree with the relative base strength of the
amines, since the formation reaction involves the
sequential� loss� of� the� two� amino� protons� [1].� n-
Propylamine has a secondary carbon atom in position �

relative to the nitrogen atom, and both cyclopropyl- and
iso-propylamine have a tertiary carbon (one single H) in
this site. Of these last two, the higher degree of hydro-
gen substitution in the latter involves slightly higher
base strength than in the former. Steric hindrance
caused by the large-volume difference between the
cyclopropyl and iso-propyl groups may also play a role
for the observed yield differences.

GC Properties of the C3 Imino Derivatives

All derivatives were tested in two chromatographic col-
umns of different polarity (see the Experimental section).
The relative retention time gap between the imine and its
parent ketone was more significant in the polar (5%
phenyl)�than�in�the�apolar�(100%�methyl;�Table�1)�phase.
In both columns, the smallest of the three groups, cyclo-
propyl, exhibited a higher retention index in relation to its
parent alkenone. Again, this different chromatographic
behavior can be due to the volume of the aliphatic radical
group bound to the nitrogen, which may hinder the
interaction with the column stationary phase. In this
respect, although the elongated shape of the n-propyl
chain may produce a higher exclusion volume around the
nitrogen by rotation, its asymmetry may still allow higher
interaction with the stationary phase than the branched
acyclic amines. The iso-propyl group, albeit being less
bulky, is more symmetrical around the nitrogen atom,
which probably decreases the interactions with the col-
umn phase relative to the n-propyl group. The retention
time difference between the iso-propylimine and the par-
ent ketone is so small that there is co-elution between the
two types of compounds.

Table 1. Chromatographic properties of the imino derivatives of (E,E,E)- 8,15,22-heptatriacontatrien-2-one and (E,E)-15,22-
heptatriacontadien-2-one (synthetic standards)

Cyclopropyl iso-Propyl n-Propyl

Imino
derivatives Yield

RRTa

Me
RRTa

Phe McL/�b Yield
RRTa

Me
RRTa

Phe McL/�b Yield
RRTa

Me
RRTa

Phe McL/�b

Me37:3 96 1.08 1.28 0.6 53 1.03 1.10 7.9 16 1.06 1.19 3.0
Me37:2 95 1.08 1.28 0.8 49 1.03 1.10 8.5 15 1.06 1.19 3.1

aRRT, relative retention time with respect to the parent alkenones calulated with a 100% methylpolysiloxane (Me) or a 5% phenyl 95%
methylpolysiloxane (Phe) column.
bRatio between the ions of McLafferty rearrangement and cleavage at � position from the imino group.

712 LÓPEZ AND GRIMALT J Am Soc Mass Spectrom 2006, 17, 710–720



Mass Spectra
The mass spectra of the three C3�imino�derivatives�(Figure
1)� exhibit� high� intensities� for� the� McLafferty� rearrange-
ment� (Table�2).� In� the� two�acyclic� imines,� this� ion� is� the

base peak in both methyl- and ethylketones (m/z 99 and
113, respectively). In the cyclopropylimines, the base peak
corresponds to �-cleavage from the imino group (m/z 82
and 96 for the methyl and ethyl ketones, respectively) but
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Figure 1. Mass spectra of N-cyclopropyl- (a), N-n-propyl- (b), and N-iso-propylimines (c), of
(E,E)-15,22-heptatriacontadien-2-one (synthetic standard), (d) general structure of the imino deriva-
tives showing the correspondences between double bond locations and mass fragments.
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Table 2. Diagnostic ions of the alkenones and their cyclopropyl-, iso-propyl- and n-propylimino derivatives from the samples analyzed in the present study

Ketonea Structure

Ketones Cyclopropylimines iso-Propyl/n-propyl imines

Samplef
RRTb

37:3
M

m/z
M-R1

c

m/z
RRT
37:3

M
m/z

�d

m/
z

M-R1
c

m/z
McLe

m/z
x

m/z
x=

m/z
x==
m/z

x===
m/z

M
m/z

�d

m/z
M-R1

c

m/z
McLe

m/z
x

m/z
x=

m/z
x==
m/z

x===
m/z

Me37:4 8E,15E,22E,
29E

0.99 526 511 0.98 565 82 550 97 164 260 356 452 567 84 552 99 164 260 356 452 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Me37:3 8E,15E,22E 1.00 528 513 1.00 567 82 552 97 164 260 356 569 84 554 99 164 260 356 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Me37:2 15E,22E 1.01 530 515 1.05 569 82 554 97 262 358 571 84 556 99 262 358 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Et38:4 9E,16E,23E,
30E

1.07 540 511 1.05 579 96 550 111 178 274 370 466 581 98 552 113 178 274 370 466 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Me38:4 8E,15E,22E,
29E

1.08 540 525 1.09 579 82 564 97 164 260 356 452 581 84 566 99 164 260 356 452 Eh

Et38:3 9E,16E,23E 1.09 542 513 1.07 581 96 552 111 178 274 370 583 98 554 113 178 274 370 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Me38:3 8E,15E,22E 1.10 542 527 1.11 581 82 566 97 164 260 356 583 84 568 99 164 260 356 SB, WM, AS,
MAO, SK, Eh

Et38:2 16E,23E 1.10 544 515 1.08 583 96 554 111 276 372 585 98 556 113 276 372 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Me38:2 15E,22E 1.11 544 529 1.13 583 82 568 97 262 358 585 84 570 99 262 358 SB, WM, AS,
MAO, SK, Eh

Et39:4 9E,16E,23E,
30E

1.14 562 533 1.17 601 96 572 111 178 274 370 466 603 98 574 113 178 274 370 466 Eh

Me39:4 8E,15E,22E,
29E

1.17 554 539 1.23 593 82 578 97 164 260 356 452 595 84 580 99 164 260 356 452 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Et39:3 9E,16E,23E 1.18 556 527 1.19 595 96 566 111 178 274 370 597 98 568 113 178 274 370 SB, WM, AS,
MAO, SK, Eh

Me39:3 8E,15E,22E 1.19 556 541 1.25 595 82 580 97 164 260 356 597 84 582 99 164 260 356 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Et39:2 16E,23E 1.20 558 529 1.22 597 96 568 111 276 372 599 98 570 113 276 372 SB, WM, AS,
MAO, SK, Eh

Me39:2 15E,22E 1.20 558 543 1.27 597 82 582 97 262 358 599 84 584 99 262 358 LT, LC, SB, WM,
AS, MAO, SK,
Eh

Et40:3 9E,16E,23E 1.22 570 541 1.36 609 96 580 111 178 274 370 611 98 582 113 178 274 370 LT, LC
Et40:2 16E,23E 1.24 572 543 1.38 611 96 582 111 276 372 613 98 584 113 276 372 LT, LC

aMe: Methylketone, Et: Ethylketone.
bRRT: relative retention index to Mc37:3 (row 2) as free ketone or iminoderivative.
cM-R1: fragment due to the �-cleavage to the carbonyl or the imino groups, R1 � Me or Et.
d�: fragment containing the imino group after cleavage at � position.
eMc: McLafferty type rearrangement. x,x=,x==,x=== indicate the relative position of the unsaturations according to the double bond positions of the second column.
fSamples: LT (La Trinitat, Ebro Delta), SB and WM (Swansbister and Walkmill, respectively, Orkney Islands), LC (Camarge, SE France), Eh (cultures of E. huxleyi), AS (Alboran Sea sediments, 0–250 kyr BP),
MAO (Mid Atlantic Ocean Surface Waters), SK (waters from Skagerrak Strait, DK)
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the ion of the McLafferty rearrangement is still high (m/z
97 and 111, respectively). The relative intensities of these
two ions (McL/�) exhibit a reverse trend with the previ-
ously reported retention time differences between imino
derivatives� and� precursor� alkenones� (Table� 1).� Lower
steric hindrance involves higher intensities of the frag-
ments generated by �-cleavage than those generated by
McLafferty rearrangement, and higher retention time dif-
ferences between the derivatives and the precursor alk-
enones.

Formation of artifacts was observed among the prod-
ucts obtained after derivatization with iso-propylamine.
The most abundant have been tentatively identified as
4-alkyl-2,6-dimethyl-pyridines, where the alkyl group
corresponds to the long-chain side of the alkenone
skeleton spanning from C5 in the methyl ketones and C6

in the ethyl ketones. The mass spectra of both iso-

propylimine and 4-alkyl-2,6-dimethylpyridine deriva-
tives of (E,E,E)-8,15,22-heptatriacontatrien-2-one are
compared�in�Figure�2.�The�double-bond�positions�in�the
original alkenones can be identified in both cases.
However, the complexity of the chromatograms result-
ing from the formation of these two types of derivatives
in the same extract argues against the use of iso-
propylamine for alkenone derivatization.

The mass spectra of the cyclopropylimino
derivatives of (E,E,E)-8,15,22-heptatriacontatrien-2-one
and (E,E,E,E)-9,16,23,30-octatriacontatetraen-3-one are
shown�in�Figure�3.�As�in�the�previously�reported�imino
derivatives�[1],�they�exhibit�homologous�series�of�even-
electron fragments separated by 14 Da. The series start
at m/z 82 and 96 for the methyl and ethyl imines,
respectively. These fragments can be used as diagnostic
ions for elucidation of double-bond positions. They
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Figure 2. Mass spectra of the N-iso-propylimine of 8E,15E,22E-heptatriacontatrien-2-one (a) and one
artifact formed during the reaction, a 4-alkyl-2,6-dimethylpyridine derivative (b), at much lower
concentration.
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exhibit higher relative intensity in the mass spectra of
the cyclopropyl imino derivatives than in those of the
derivatives with the acyclic amines. The molecular ion
(M�·) is less intense than the even electron fragment
involving hydrogen loss ([M � H]�).

The fragments corresponding to the positions of the
unsaturations are indicated in the mass spectra by the
letter x with comma superscripts depicting the different
double�bonds�(x,�x=, x�, x�)�in�ascending�order�along�the
aliphatic� chain� (Figures� 1–3).� One� distinct� feature� of
these derivatives is that around the double-bond posi-
tions, the fragments having two more or less carbon
atoms (x � 2 and x � 2, respectively) are more abun-

dant than the fragment of cleavage at the unsaturation
site. This intensity pattern of fragments brackets the
position of the double-bond facilitating its identifica-
tion. In addition, the differences between the x � 2 and
x fragments (or x= � 2 and x=, etc) correspond to m/z 26,
which afford an additional feature for the location of the
double-bond sites that are indicated by x (or x=, etc). To
achieve these fragmentations, there must be a previous
migration of the double-bond as in x � 2. Since this
process involves two stages, migration and cleavage,
the intensity of the mass fragments is attributed to the
high stability provided by the conjugated double bonds
formed in the fragment bearing the radical.
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In the case of cyclopropylimines, fragmentation lead-
ing� to� x� �� 1� type� ions� (Figure� 3)� shows� a� high� abun-
dance in the vicinity of the imino group. This fragment
is�not�intense�with�cyclopentyl�and�phenylimines�[1].�A
similar limited double-bond migration is also observed
in the formation 2-alkenylbenzoxazole derivatives from
fatty�acids�[18].

Double-Bond Location Using the Mass Spectral
Data of Cyclopropylimines

Location of double-bond positions is straightforward
after examination of the the above indicated fragmen-
tation patterns. The intensity of the mass fragments at x
� 2 and x � 2 is higher than those of the homologous
series separated by 14 Da and are easy to recognize.
Each pair of x � 2 and x � 2 fragments is, therefore,
bracketing the fragment x that indicates the position of
the double-bond. For example, in the cyclopropylimino
derivative of (E,E,E,E)-9,16,23,30-octatriacontatetraen-3-
one� (Figure� 3b)� the� pairs� of� m/z� 152� and� 206� (x� �� 2,
x � 2, respectively), m/z 248 and 302 (x= � 2, x= � 2), m/z
344 and 398 (x� � 2, x � � 2), and m/z 440 and 494 (x� � 2,
x� � 2) correspond to the double-bond at positions, 9,
16, 23, and 30, respectively. In addition, x and x � 2
exhibit a difference of 26 Da, e.g., the pairs m/z 152 and
178 (x � 2, x, respectively), m/z 248 and 274 (x= � 2, x=),
m/z 344 and 370 (x� � 2, x�) and m/z 440 and 466
(x� � 2, x�) for the positions of the double bonds at 9,
16, 23, and 30, respectively, in the tetraunsaturated
alkenone�shown�in�Figure�3b.�These�two�groups�of�mass
fragment pairs provide very distinct features for the
identification of the positions of the unsaturations.

In addition, the double bonds located nearby the
imino group exhibit one additional intense mass frag-
ment at x � 1 showing 14 Da of difference from x, e.g.,
m/z 164 and 178 for x � 1 and x in (E,E,E,E)-9,16,23,30-
octatriacontatetraen-3-one� (Figure� 3b),� which� corre-
sponds to the unsaturation at position 9. This fragment
provides an additional feature for the identification of
the double-bond closest to the imino group. This addi-
tional� x� �� 1� fragment� is� formed� by� migration� [19]� or
cyclization due to the closer distance between this
double-bond and the nitrogen atom than the other
unsaturations.

Reassessment of the Structures of the Alkenones
Present in Natural Environments

The alkenone distributions identified so far can be
grouped in two types. Type A is composed by C37

methylketones, C40 ethylketones, C38 methyl and ethyl-
ketones, and C39 methyl and ethylketones. This group is
the one most commonly found in marine waters, sedi-
ments, and in a few nonmarine environments. This
distribution is synthesized by the Haptophycean spe-
cies E. huxleyi, Gephyrocapsa oceanica, and several strains
of�the�genus�Isochrysis�[3].�Type�B,�the�less�common,�is

characterized by a well defined relationship between
carbonyl position and chain parity; that is, methyl and
ethyl ketones for the odd and even carbon number
homologues, respectively. To date, the only known
algal precursor of this distribution is Chrysotila lamellosa
[3,� 20]�Type�B�alkenones�are� found� in� sediments� from
freshwater lakes, hypersaline ponds, and ancient sedi-
ments such as those from the Cretaceous (Aptian–
Albian� 100�–120� M� y)� [4,� 21].� In� this� last� case,� the
distribution is only represented by diunsaturated ho-
mologues.

Representative samples of these two distributions
have�been�analyzed�in�the�present�study�(Table�2).�The
strain of E. huxleyi contains all C37–C39 homologues
belonging to Type A, with the exception of the C40

compounds that have not been found. The hypersaline
ponds from La Trinitat and La Camargue contain the
Type B distribution.

All the alkenones analyzed in this work share the
common structural feature of having the double bonds
at the same carbon atom distance from the carbonyl
group�(Table�2).�This�common�feature�is�also�observed
in alkenones synthesized by ancient haptophyte species
different� from� those� living� in� the� present� times� [22],
since the marine sediments from the Alboran Sea in-
cluded in the present study cover an age span of the last
250 ky, the last two glacial-interglacial periods, and do
not show any structural differences between the alk-
enones in the warmest or coldest episodes or in relation
to�salinity�changes�[6].

This result represents a correction of previously
assumed criteria on double-bond locations for these
alkenones. Early studies on double-bond location of
these compounds were based on synthesis of (E,E,)-
15,22-heptatriacontadien-2-one, (E,E,E,)-8,15,22-hepta-
triacontatrien-2-one, and (E,E,E,E,)-8,15,22,29-heptatria-
contatetraen-2-one�[23],�and�double-bond�oxidation�and
diol derivatization of (E,E,)-15,22-heptatriacontadien-2-
one, (E,E,E,)-8,15,22-heptatriacontatrien-2-one, (E,E)-
16,23-octatriacontadien-3-one, and (E,E,E)-9,16,23-octa-
triacontatrien-3-one� [8].� With� those� results� in� hand,� it
was established that double-bond position of the non-
studied homologues was determined from the position
of the methyl end, e.g., �-8, �-15, �-22, and �-29.
However, the location of the unsaturations in all five
alkenones analyzed can be described by either counting
from the methyl end or the carbonyl group. In the
present study, direct examination of the double-bond
position in many more alkenones (17 homologues,
Table� 2)� with� cyclopropylimino� derivatization� shows
that the unsaturations are effectively separated in inter-
vals of five methylene groups, but counting from the
carbonyl functionality, e.g., 7, 14, 21, or 28 carbon
atoms.

Alkyl Alkenoates

Since the earlier reports on alkenone occurrence in
sediments and cultured microalgae, the presence of
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structurally related methyl and ethyl esters of mainly 36
carbon�atoms�was�described�[24,�25].�Among�the�sam-
ples herein studied, the presence of methyl and ethyl
hexatriacontenoates was examined after derivatization
into� 4,4-dimethyloxazolines� [17]� for� location� of� the
double-bond� positions.� Table� 3� shows� the� structural
information obtained from the mass spectra of the fatty
acid derivatives. It must be pointed out that in the
derivatization reaction, both methyl and ethyl ester
groups are replaced by the same type of heterocycle and
cannot be differentiated upon GC analysis. Thus, in the
absence of previous separation, e.g., by column chro-
matography, the information on number of unsatura-
tions and their location has been attributed to the
dominant ethyl esters.

Previous information on methyl and ethyl hexatria-
conta-14,21-dienoates from marine sediments and cul-
tures was obtained by examination of the mass spectra
of trimethylsilyloxy derivatives of the 1,2-diols formed
by OsO4� derivatization� [24].�The�present� results�based
on dimethyloxazoline derivatives agree with the assign-
ment of double-bond locations in this previous study,
and allow the identification, for the first time, of the
locations of the unsaturations in the hexatriacontatrie-
noic�and�hexatriacontatetraenoic�acids�listed�in�Table�3.
Three of the alkenoic acids reported in this table have
the double bonds in positions equivalent to alkenones
with the same degree of unsaturation when counting
the carbon atoms from the carboxylic group. Accord-
ingly, locations 7, 14, 21, and 28 in the alkenoate
correspond to 8, 15, 22, and 29 in the tetraunsaturated
methylketone and to 9, 16, 23, and 30 on the ethylk-
etone. This suggests that the enzymes involved in the
synthesis of alkenones and alkenoates may take the
carbonyl group as a reference for double-bond forma-
tion in exactly those relative positions.

Having in mind this parallelism in double-bond
spacing, the finding of a new isomer, hexatriaconta-
14,21,28-trienoic�acid�(Figure�4),�in�relatively�high�con-
centrations suggest that triunsaturated alkenones with
double bonds in equivalent positions, e.g., 15, 22, and 29
or 16, 23, and 30 in methyl or ethylketones, respectively,
should be present. However, they have not been iden-
tified�so�far.�As�shown�in�Table�2,�all�known�alkenones
have their double bonds in series separated in intervals
of five methylene groups that start to count at six

carbon atoms from the keto- group in the tri- and
tetraunsaturated homologues, and at thirteen carbon
atoms in the diunsaturated homologues. Thus, a higher
variety of double-bond locations is observed in alkeno-
ates than alkenones within this pattern of seven carbon
atom spacing. However, possible identifications of alk-
enones with unsaturations located in other sites cannot
be excluded in future studies.

Conclusions

n-Propylamine, iso-propylamine, and cyclopropylamine
can be successfully used to prepare imines for the identi-
fication of double-bond locations in di-, tri-, and tetraun-
saturated alkenones. These C3 amines provide significant
reductions in retention time and higher sensitivities than
the C5�amines�described�in�previous�studies�[1].�However,
iso-propylamine leads to the formation of other com-
pounds besides the expected iso-propylimines, e.g., 4-al-
kyl-2,6-dimethylpyridines, which gives rise to complex
GC traces and hinder the use of these derivatives.

No byproducts have been observed in the use of
cyclopropylamine. This compound is the one providing
better recoveries and higher GC retention time differ-
ences between the imino derivatives and the precursor
alkenones. It is, therefore, recommended as the reagent
of choice for double-bond location in alkenones. Its
imino derivatives can be prepared using anhydrous
sodium sulfate instead of molecular sieves for water
elimination, which prevents adsorption of linear com-
pounds and formation of artifacts.

Examination of a large group of alkenones from
cultures of E. huxleyi, water particles, and recent and
ancient sediments show that two types of alkenone
distributions are found; one is constituted of C37 meth-
ylketones, C40 ethylketones, and C38 and C39 methyl
and ethylketones (Type A), and the other by methyl odd
carbon number (C37 and C39) and ethyl even carbon
number alkenones (C38 and C40) (Type B). The use of
cyclopropylamine for the identification of double-bond
position shows that in both series, unsaturations are
separated in intervals of five methylene groups and can
be located by counting 7, 14, 21, or 28 positions from the
carbonyl functionality, e.g., 8, 15, 22, and 29 and 9, 16,
23, and 30 in methyl- and ethylketones, respectively.
This result represents a correction from previous as-

Table 3. Alkenoates identified in the Camargue sediments

Alkenoate Oxazoline

M-OR

Acid Structure M m/z M m/z m/z
x

m/z
x=

m/z
x==
m/z

x===
m/z

FAEE36:4 7,14,21,28 556 511 581 113 126 180 276 372 468
FAEE36:3 7,14,21 558 513 583 113 126 180 276 372
FAEE36:3 14,21,28 558 513 583 113 126 278 374 470
FAEE36:2 14,21 560 515 585 113 126 278 374

718 LÓPEZ AND GRIMALT J Am Soc Mass Spectrom 2006, 17, 710–720



sumptions in which double-bond spacing was consid-
ered to be situated by reference to the methyl end.

Elucidation of double-bond positions in hexatria-
contenoates by 4,4-dimethyloxazoline derivatization
showed that these compounds also have they unsat-
urations separated in intervals of five methylene
groups and counting by reference to the carbonyl
group. The concurrence of both series of isomers in
compounds of different oxygen functionalities indi-
cates that the precursor haptophyceae species have a
major biosynthetic pathway leading to the formation
of these lipids. The finding, for the first time, of
hexatriaconta-14,21,28-trienoic acid and the absence
of a triunsaturated alkenone with double bonds in
equivalent positions illustrates a higher variety of
double-bond locations in alkenoates than alkenones
within this pattern of seven carbon atom spacing.
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