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Automated interpretation of high-resolution mass spectra in a reliable and efficient manner
represents a highly challenging computational problem. This work aims at developing
methods for reducing a high-resolution mass spectrum into its monoisotopic peak list, and
automatically assigning observed masses to known fragment ion masses if the protein
sequence is available. The methods are compiled into a suite of data reduction algorithms
which is called MasSPIKE (Mass Spectrum Interpretation and Kernel Extraction). MasSPIKE
includes modules for modeling noise across the spectrum, isotopic cluster identification,
charge state determination, separation of overlapping isotopic distributions, picking isotopic
peaks, aligning experimental and theoretical isotopic distributions for estimating a monoiso-
topic peak’s location, generating the monoisotopic mass list, and assigning the observed
monoisotopic masses to possible protein fragments. The method is tested against a complex
top-down spectrum of bovine carbonic anhydrase. Results of each of the individual modules
are compared with previously published work. (J Am Soc Mass Spectrom 2006, 17, 459–468)
© 2006 American Society for Mass Spectrometry
The wide employment of Fourier Transform Mass
Spectrometry (FTMS) [1, 2] instruments for Ma-
trix Assisted Laser Desorption/Ionization

(MALDI) [3] and Electrospray Ionization (ESI) [4] ex-
periments results in thousands of high-resolution mass
spectra every day, creating an information overload.
Due to the high mass accuracy and resolving power of
an FTMS, MALDI-FTMS [5–7] and ESI-FTMS [8, 9] are
becoming the instruments of choice for proteomics [10],
and experiments on proteins and large fragments of
proteins, so called “top-down” [11–14] mass spectrom-
etry. These experiments tend to slow down due to the
lack of sophisticated methods for automatic spectrum
analysis. Currently, spectrum interpretation is one of
the biggest bottlenecks in a proteomics experiment.
Manual interpretation of such complex data is very
tedious and time consuming. While some instrument
manufacturers have developed reasonably effective
programs for this problem, they rarely publish these
algorithms, and thus the strengths and limitations of
these methods are difficult or impossible to assess.
Hence, there is need for the development of advanced
data analysis algorithms [15–21]. In this work, several
new algorithms are discussed that allow for the im-
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proved automated reduction of high-resolution mass
spectra into a monoisotopic peak list. The proposed
name for the unified suite of methods is Mass Spectrum
Interpretation and Kernel Extraction (MasSPIKE).

The m/z ratio of most ESI product ions lies in the
range of 500–5000 Daltons. Since the same mass can
have multiple charge states and there can be multiple
isotopic peaks at each nominal m/z value, a very dense,
complicated spectrum can be generated. The first at-
tempt for automated spectrum interpretation was
(somewhat erroneously) called “deconvolution” [15–17,
20]. “Deconvolution” was based upon the principle that
charge states can take only integer values. It combined
peaks of the same mass but different charge states to
determine the mass of the ion. Currently, most of the
published “deconvolution” algorithms result in spuri-
ous peaks due to mis-assignment of charge states.
Furthermore, these methods generally perform poorly
with low S/N and complex spectra resulting in missed
peaks (false negatives). Also, most “deconvolution”
methods bias against peaks represented by only one
charge state which will be poorly represented in these
deconvolution approaches, though the Z score [20]
algorithm does not suffer from this drawback.

To overcome these limitations, Horn et al. developed a
computer algorithm called THRASH [21] (Thorough High
Resolution Analysis of Spectra by Horn). THRASH was
the first comprehensive “non-deconvolution” algorithm
that addressed the problem of reducing a complex mass
spectrum into a mass list with minimal human interven-
tion. It combines various modules of signal to noise (S/N)

calculation, charge state determination using the Fourier/
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Patterson [19] method, and least-squares fitting for deter-
mination of monoisotopic mass. It was a remarkable step
towards automated spectrum interpretation and repre-
sents the current benchmark in the field. However,
THRASH is based upon certain modules that can be
approached differently to achieve significantly better re-
sults. The work presented here aims to develop better
individual modules, and then combine them for improved
data reduction. The comparative results are presented in
each section.

Experimental

The methods are presented here, but their performance
characteristics will be discussed below. All the methods
are being integrated as part of the open source software
package BUDA, [22], and will be available at www.
bumc.bu.edu/ftms. MasSPIKE starts with modeling the
mean of the noise across the selected m/z range of the
spectrum. It then identifies isotopic distributions, marks
their location, and determines the charge state for each
of the identified isotopic distributions to map m/z
values to corresponding mass values. Overlapping iso-
topic distributions are then separated, and the charge
state is assigned to each of the resolved overlapping
distributions. Then, each experimental isotopic distri-
bution (EID) is aligned with its theoretical isotopic
distribution (TID) to arrive at the best alignment index
for the two distributions. Finally, the monoisotopic
mass for each of the resolved isotopic clusters is calcu-
lated using results from the previous steps, and the
final, minimal, monoisotopic peak list is generated. The
mathematical basis of each of these methods is dis-
cussed, and the critical equations are “boxed” for the
convenience of the reader.

Modeling Noise

Baseline noise in a Fourier transform mass spectrum
typically has white noise characteristics. Other sources
of noise include random electronic RF (Radio Fre-
quency) interference peaks and chemical noise due to
unevaporated solvent clusters, which may make the
noise look non-white. To detect peaks, it is critical to
know noise levels in a particular region of spectra in the
m/z domain. This module aims at modeling the mean of
the noise. To calculate the S/N ratio across the spec-
trum, noise mean is characterized as follows.

1. Find the mean of the signal every 1 Da, with 0.5 Da
overlap between consecutive m/z windows to assure
completeness

2. Every 10 Da (value can be changed by user), the
window with the minimum mean is assumed to be
the noise window

3. A histogram of the intensity values in the noise
window is plotted. The histogram is then truncated

to eliminate high intensity values caused by signal
or RF interference noise peaks, i.e., the histogram is
truncated once the intensity occurrence values reach
less than 5% of the maximum occurrence value.
Then the mean of the intensity values corresponding
to the truncated histogram is calculated and this
value is defined as the local noise value. This
process is done iteratively until the mean converges.
A typical example of this procedure is shown in
Figure 1a and b. Note that this procedure does not
take into account RF interference peaks, but is
designed to find the baseline noise level. RF inter-
ference peaks will be filtered out in the subsequent

Figure 1. (a) Top down spectrum of bovine carbonic anhydrase;
(b) zoomed in view of the baseline (black), modeled noise baseline
(white); (c) zoomed-in view of the spectrum, “up” and “down”
arrows denote the start and end of an ID respectively.
modules to eliminate false positives.

http://www.bumc.bu.edu/ftms
http://www.bumc.bu.edu/ftms
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Isotopic Distribution Identification

The goal here is to identify the locations of isotopic
distributions (IDs) based upon the S/N ratio in the
spectrum. Here, an ID is identified based upon the fact
that S/N ratio for an ID is higher than a particular user
defined threshold. This principle is similar to that used
in THRASH [21], but this module defines the isotopic
distribution boundaries before assigning the charge
state, instead of taking a �0.5 Da window around the
highest intensity peak. This step is very important for
good performance of charge state determination. It is
carried out by the following steps:

1. Scan the spectrum every 1 m/z unit from low m/z to
high m/z

2. Check S/N in every 1 m/z window
3. S/N � max(signal)/mean(noise), with noise value

defined as above
4. If S/N is greater than the user-defined threshold

(default value � 3), mark the window as potentially
containing an ID

5. Combine together consecutive potential ID win-
dows and output: C1 (start ID m/z value), C2 (end ID
m/z value)

6. If there is only one peak within {C1, C2} with S/N
greater than the threshold, it typically indicates an
RF interference noise peak and is discarded, because
real mass spectral peaks almost always have an
isotopic signature

Note that C1 and C2 are those values of m/z where the
S/N hits the threshold value in the window first and
last respectively. A table of {C1, C2} values is con-
structed and used as input to the charge state determi-
nation routine. A bovine carbonic anhydrase “top-
down” spectrum (Figure 1a) was used to test
MasSPIKE, and will be discussed below. {C1, C2} values
for m/z region of 1103–1133 from this spectrum are
plotted in Figure 1c as arrows below the spectrum with
the “up” arrows indicating the start, C1, and “down”
arrows indicating the end, C2, of individual IDs. If the
threshold value is kept too low, some random noise
spikes may be picked, while too high value will miss the
low S/N isotopic distributions. So a value of threshold
� 3 was found empirically to be an optimal balance
between the two cases, but it can also be adjusted
manually by the user.

Charge State Determination

Each entry in the {C1, C2} table constructed above is
subjected to the process of charge state determination.
Previously this problem has been approached by taking
the Fourier Transform, Patterson, and combination [19]
charge state maps (Z-maps) of the isotopic distribution.

These methods generally work well with good signals, but
all charge state determination methods fail under condi-
tions of low S/N or overlapping IDs so that these methods
should be compared against each other under those con-
ditions. In addition, a new method using the Matched
Filter [23, 24] approach has been developed and compared
to the previous methods in the Discussion section.

The Matched Filter (MF) Method for Charge State
Determination

In charge state determination, the goal is to design a
detector for a specific known pattern (in this case, the
theoretical isotopic distribution for a particular molec-
ular weight while varying the charge state). In pattern
recognition literature, a standard method for approach-
ing this problem is the use of a matched filter [24]. Let
E � vector representing experimental isotopic distribu-
tion (EID), T � matrix with Nz (number of possible
charge states) rows, such that: Zth row of T, T(Z), is a
vector representing the theoretical isotopic distribution
(TID) for a given charge state Z. T(Z) is constructed as
follows. An approximate average molecular weight
(MWapprox) can be calculated from the location of EID
and the charge state, Z, under consideration (MWapprox

� m/z x Z, where m/z is the location of the center of the
EID under investigation). For a given MWapprox, ele-
mental composition is determined using the average
composition of a model amino acid, averagine [18].
Based on the elemental composition, the Mercury [25]
algorithm is used to generate the peak intensities of the
TID. Peak width at half height for generating the TID is
determined from EID, the value being the same as that
of the highest peak of the EID. Knowing the peak
heights and the width, each peak is generated assuming
a Lorentzian [1] peak shape. The TID is finally gener-
ated as the sum of individual Lorentzian peaks.

Given an observation E, T(Z) vectors, for all the
different possible Z values, are generated as discussed
above, for each charge state Z, the matched filter output
is then calculated as follows:

M(Z, n) � �
k��L

L

E(k)T(Z, k � n) (1)

where L is the maximum of the lengths of E and T. This
is equivalent to

M(Z, n) � E(n) � T(Z, �n) (2)

where * denotes the convolution operator. Note that
this is also equivalent to taking a cross-correlation of the
EID and TID. Define

Mmax(Z) � max M
n

(Z, n) (3)

N(Z) � arg max M
n

(Z, n) (4)

where arg maxn(M(Z,n)) indicates the value of n that

corresponds to the maximum value of M(Z,n). Since the
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signal intensities and length of E may vary highly in a
given experiment, it is important to normalize both E
and T while calculating the “score” of closeness of E and
T(Z). This “score” is given by the value of cross-
correlation coefficient r(Z), which is given by the fol-
lowing expression:

r(Z) �
�i(E(i) � ME)(T(Z, i � N(Z)) � MT(Z))

��i(E(i) � ME)2��i(T(Z, i � N(Z)) � MT(Z))
2

(5)

where ME and MT(Z) are the means of E and T(Z)
respectively. The theory of matched filters [24] tells us
that the value of r(Z) will be maximum when E and T(Z)
belong to the same class, which in this case means that
they represent the same Z. So the charge state is
estimated as follows:

Zest � arg max r
Z

(Z) (6)

This means that the charge state that corresponds to the
maximum value of r(Z) can be assigned as the estimated
true charge state. This works satisfactorily provided the
given input signal E is composed of only one charge
state. In practice, a given input signal may represent
multiple isotopic distributions of different charge states.
Thus, the Z values corresponding to r(Z) greater than a
certain user-defined threshold are assigned to be the
true charge states. Isotopic cluster(s) corresponding to
the above determined charge state(s) are then sub-
tracted from the observed distribution, and the residual
signal undergoes the same procedure to look for any
more charge states represented by the residual data
similar to the procedure used by THRASH. The process
continues till the final residual cannot be assigned any
charge state since r(Z) value is below the threshold for
all values of Z. The procedure for determining useful
threshold values is discussed below.

Alignment Between Theoretical and Experimental
Isotopic Distribution

A mass spectrum does not generate a unique mass
value for large molecules due to the presence of multi-
ple isotopes of the constituent elements. So the question
arises as to what mass value should be reported. One
way is to report the chemical average mass using
average of isotopic peaks, but this suffers from the
problem that carbon isotope variability across different
organisms limits the mass accuracy [26, 27] to about 10
ppm. The most significant and accurate mass that can
be reported is the monoisotopic mass because its value
is unaltered by isotopic variability. The monoisotopic
mass (M) of a molecule is the sum of the masses of the
lowest mass isotope for each of the elements present in
the molecule. The relative abundance of the monoiso-
topic peak decreases with increase in the molecular

weight because of the increased probability for the
presence of heavier isotopes with increasing molecular
mass. The monoisotopic peak is typically not visible
experimentally when molecular weight is higher than 5
kDa because the tiny peak is buried in the noise. Thus,
there is need for the development of a method that can
estimate the monoisotopic mass based upon the exper-
imentally observed isotopic profile. Previously, this
problem was approached by Senko et al. [18] and Horn
et al. [21] using a least-squares fit between the theoret-
ical and experimental isotopic distribution. This
method generally works well, but breaks down in the
limit of low number of ions or low S/N ratio. This
module targets at solving this problem rigorously by
analyzing the isotopic distributions.

As discussed previously, [28] the EID can be inter-
preted as a result of a multinomial experiment (with the
number of trials equal to the number of ions) having
multiple outcomes, each with probability ti, where ti

represents the area of each individual peak in the TID
(i.e., t0 fraction of the total ions in the cell contains no
higher isotopes, t1 fraction of the total ions contain
exactly one �1 Dalton higher isotope (e.g., 13C), etc.).
Let vector E represent EID peaks areas, where ei corre-
sponds to ti in the TID. E is a Gaussian random vector
with mean T and covariance matrix �N (eq 8), where T
is composed of tis, and is obtained using the poly-
averagine [18] model and the Mercury [25] algorithm.
The probability of observing E, given that the number
of ions in the cell is N, is the given by [29]:

P(E�N) �
e�0.5(E�T)’�N

�1(E�T)

�(2�)ndet(�N)
(7)

where �N is given by the following expression:

�N�
1

N�
t1(1 � t1) �t1t2 � �t1tn

�t2t1 t2(1 � t2) � �t2tn

. . � .

. . � .

�tnt1 �tnt2 � tn(1 � tn)
� (8)

where tis are the components of T, defined by the
theoretical isotopic abundances.

For big molecules, only a part of E is observed. The
goal, therefore, is to align it with the appropriate indices
of T to determine the monoisotopic mass. Thus:

P(E�N, i) �
e�0.5(E�Ti)’�Ni

�1(E�Ti)

�(2�)ndet��Ni�
(9)

which means that E is a normal (Gaussian) random
vector with mean Ti and covariance matrix �i (both
mean and covariance matrix vary with the index). The
index of T corresponding to first “visible” value of E is
estimated using a Maximum Likelihood estimator as

follows:
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index � arg max P
i

(E�Ti, �Ni
) (10)

where

Ti � T(i, � , i � LE � 1) (11)

LE � length of E.
This means that the first LE values of T are aligned

with E, calculate the probability of its occurrence from
expression 9, and then T is shifted by 1, until all the
possibilities have been considered. The shift of T that
corresponds to the highest value of the probability is
assigned to be the true index of the first observed value
of E. This procedure is illustrated in detail in the Results
and Discussion section.

Finally, the monoisotopic mass (M) is calculated as
following:

M �
m1

z
� Zest � (index � 1) � 1.00235 � Zest � M� (12)

where m1/z is the location of the first “visible” isotopic
peak in the EID (i.e., peak location corresponding to E
((1), Zest is the estimated charge state (eq 6), 1.00235 is
the average mass difference between the centroid of
each adjacent isotopic peak for poly-averagine [21], and
M� is the mass of the charge carrier (e.g., 1.0073 for a
proton). Assuming the experiment was run in a positive
ion mode, a charge state of Z usually means the ion
carries Z protons, so the corresponding mass of Z
protons (default) is subtracted to get M.

Results and Discussion

Figure 1a shows a top down spectrum of carbonic
anhydrase against which MasSPIKE has been tested.
Figure 1b shows zoomed-in view of the baseline of
Figure 1a and noise mean variation as a function of m/z
(white line passing through the baseline). The plot is
consistent with the variation of baseline noise in the
spectrum. Noise modeling serves to provide a noise
mean value to be used in S/N calculation for the
identification of ID locations. Note that noise is not truly
white (flat across m/z range), which is due to the
“chemical noise” effect caused by unevaporated solvent
clusters formed by the electrospray source.

Figure 1c shows the result of the ID identification
module applied to one low S/N region of the spectrum.
Figure 1c shows the ID boundaries for the m/z range of
1103–1132 with up and down arrows indicating the
start and end of an ID respectively. Very closely spaced
IDs (e.g., between m/z 1114 and 1117) are not separated
as seen in the figure. Such cases and overlapping
distributions are separated later in the charge state
determination routine. ID determination allows
MasSPIKE to identify the IDs representing both low
and high charge states without bias. This method was

found to correct a limitation of THRASH, which uses
�0.5 m/z window around the maximum intensity peak
for the charge state determination, restricting the anal-
ysis to charge states greater than 2. MasSPIKE, there-
fore, can be used for both MALDI (typically represent-
ing 1� or perhaps 2� charge states) and electrospray
(typically representing high charge states) spectra. Also,
THRASH assumes that the isotopic distribution has a
symmetrical Gaussian shape around the highest peak,
which holds true for molecular weights greater than �5
kDa, while MasSPIKE makes no such assumption, so is
suited for any kind of ID shape.

One of the major challenges encountered in the
interpretation of dense, complex spectra is that there is
a high chance that the peak of interest is affected by
interfering noise peaks or peaks from other signal

Figure 2. (a) Experimental data from Figure 1 showing an
isotopic distribution of a fragment of bovine carbonic anhydrase
(b) TID with Z�3 (top) and EID (bottom). TID shift corresponds to
maximum value of cross-correlation coefficient (0.954) between
the two, (c) snapshot of output listing corresponding to above
fragment (y27). (d) Experimental distribution from Figure 1 show-
ing two overlapping distributions (e) Z�3, r�0.74 (f) Z�4, r�0.64;
(g) residual after subtracting TID’s of (e) and (f) (h) final output
listing.
components (e.g., other isotopic distributions). Figure 2
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shows a simple case when input signal EID (Figure 2a)
represents only Z � 3. Figure 2b shows the plot of T(3)
(shifted up) and EID, with shift in T(3) corresponding to
maximum value of cross-correlation coefficient (0.954)
between the two. Note that r(Z) varies from 0 to 1, so
r(3) � 0.954 indicates a very good match between EID
and T(3). The output list from MasSPIKE, Figure 2c,
shows the starting and ending values of the distribution
(smz, emz), the charge state (Z), the assigned amino
acid residue region (Res, given the sequence) and ion
type (Ion), as well as the observed monoisotopic ion
mass (MIO), theoretical ion mass (MIT), and the mass
error in Daltons. However, this is an easy case with
good S/N ratio, and no overlapping distributions. The
real test of automated analysis methods comes at low
S/N with distorted peak shapes. Figures 2 and 3 show
a couple of such cases extracted from Figure 1a. It is
important to note that Figures 2 and 3 are drawn on the
same vertical scale as Figure 1a (which is normalized to
100). Thus, Figures 2 and 3, with the highest intensity
values in the 3-15 range, represent parts of the spectrum
where the S/N ratio is the lowest, and in particular,
Figure 3 depicts a case where input signal came from
one of the noisiest portions of the spectrum.

Figure 2d shows the case when input signal repre-
sents two charge states (Z � 3 and Z � 4), which share
a central peak at m/z � 912.3. The two charge states are
successfully identified and subtracted from the input
signal as shown, with TID shifted and plotted on the
top of the EID. Note that here MasSPIKE is simulta-
neously detecting Z � 3 and 4 (Figure 2e and f) and the
residual after subtraction is free of peaks (Figure 2g). By
comparison, THRASH proceeds by identifying the
charge state represented by the combo [19] routine, and
then subtracts the TID from the experimental data. With
such an approach, if any of the Z � 3 or Z � 4 is
detected by the combo routine (which is likely), the
peak at m/z � 912.3 (common peak to both Z � 3 and Z
� 4) will be removed and the next charge state will not
be assigned because the isotopic pattern is perturbed
due to subtraction. MasSPIKE attempts to find all the
charge states that give cross-correlation coefficient, r(Z),
value greater than a certain threshold (default � 0.45)
before carrying out the subtraction. This allows for
assignment of a greater number of charge states. Note
that assignment of this threshold represents a balance
between missing peaks and generation of false posi-
tives. The default threshold value of 0.45 was empiri-
cally determined to be a moderate value, but this value
can also be altered by the user.

Figure 3a shows an input signal from region m/z �
1380.7–1385.5 of the bovine carbonic anhydrase spec-
trum. MasSPIKE was used for determination of various
charge states present in the signal. In this case, four
isotopic distributions are identified with multiple dis-
tributions sharing isotopic peaks and the Z � 20 distri-
bution at m/z is identified (Figure 3b) and removed
(Figure 3c). For higher charge states, especially when

the sampling rate of the spectrum is low (which is the
case at higher m/z since sampling rate in m/z domain
drops as m/z increases in FTMS instruments), it is
sometimes difficult to distinguish between the consec-

Figure 3. Experimental data from Figure 1 showing an extremely
low S/N region of the spectrum that contains 4 overlapping
distributions. (a) Raw data (b) Z�20, r�0.68; (c) residual after
subtraction of (b); (d) Z�10 (r�0.576), (e) Z�11 (r�0.566) and (f)
Z�20 (r�0.65) detected simultaneously; (g) residual after subtrac-
tion of (d), (e) and (f); (h) Z�20 (r�0.496); (i) residual of experi-

mental signal after subtraction of (h).
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utive charge state values. For example, for the m/z
region between 1381.6 and 1383.2 (Figure 3d and e), the
method identifies the charge state values to be either 10
or 11 (though 10 is slightly more likely to be true, r �
0.576, than the case of Z � 11 where r � 0.566). In
ambiguous cases like this, a flag is marked and it is left
for the user to decide about the true charge state based
on the knowledge from the protein sequence, or sup-
plementary information from other portions of the
spectrum. Furthermore, MasSPIKE identified two more
EIDs with Z � 20 in this region of mass spectrum. These
masses could not be assigned to a particular fragment
ion from the given sequence. However, the approxi-
mate difference between the two higher Z � 20 ion
masses corresponds to the loss of a water molecule,
which commonly appears at high molecular weight. For
example, the approximate molecular weight for the EID
represented by the m/z region 1383.9–1384.9 is 1384.4 �
20 � 27,688, while that for the m/z region 1383–1384 is
1383.5 � 20 � 27,670. The difference of the two species
(27,688–27,670 � 18) corresponds to the loss of a water
molecule, which suggests the assignment of Z � 20 is
correct. Also, the final residual from this region, Figure
3i seems to contain one or two remaining isotopic
distributions. This is an artifact that arises due to the
imperfect subtraction of TID from EID, and often hap-
pens because of the non-ideal peak shapes of the EID in
low S/N conditions as seen in Figure 3d and e. Since the
residual in Figure 3i contains an artifact and not real
signal, no further charge state assignments are gener-
ated because MasSPIKE does not yield high enough
quality assignment (cross-correlation coefficient, r
�0.45) for any further charge states. Note that EID and
TID take on negative values in some cases (Figure 3b–i)
because both the EID and TID are normalized, which
involves subtraction of the mean, while computing their
cross-correlation coefficient as shown in eq 5. The
Supplementary Material data (which can be found in
the electronic version of this article) shows the case
when the input signal represents 3 isotopic distribu-
tions (Z � 1, 3, and 4), sharing multiple peaks in the
region of m/z 1221–1227.

It is important to test the matched filter method of
charge state determination against established methods
in an unbiased manner. To this end, 26 electrospray
spectra of myoglobin, representing 775 isotopic distri-
butions (resulting from charge states for the whole
molecule, water losses and phosphate adducts for the
whole protein, and one contaminant species with Z � 1)
with S/N of 1–100, were acquired and each m/z region
corresponding to Z � 1–22 in each spectrum (regardless
of the presence/absence of signal) was analyzed by four
different methods. The percentage correct answers for
each method are plotted in Figure 4. BUDA (Boston
University Data Analysis) [22] was used to determine
the charge states using the Fourier, Patterson, and
combo charge state determination methods [19]. In this
analysis, the MF method gave correct answers 91% of

the time. Of the missed 77 assignments, manual post
analysis showed no apparent signal in 50 of them, and
the remaining 27 misassigned the charge state by �1.

There are certain points that need to be addressed
while generating the TID. Generating good model dis-
tributions is the key to good results. Although the
sampling rate is constant in the frequency domain, due
to the inverse proportionality relation between fre-
quency and m/z, the sampling rate of an FT mass
spectrum is not the same over the whole m/z range, it
decreases with an increase in m/z. Thus, parameters for
generating good model distributions (peak width, sam-
pling rate, maximum and minimum possible Z (MAXZ
and MINZ)), must vary with the mass spectral region of
interest, and in MasSPIKE they are based upon the
observed data and shift through the m/z range. Further-
more, it is important to use unapodized spectra, zero
filled once for the experimental data and true line
shapes for the TIDs to generate the best matches. For the
TID model, the peak width for generating the Lorent-
zian peaks in the TID is defined by the width of the
highest peak in the EID. MINZ is defined by the
observed isotopic distribution width. e.g., If the EID
spans 1.1 Da, MINZ � 1 but if the EID is only 0.9 Da
wide, MINZ � 2, so that it contains at least two peaks.
This helps eliminate most of the RF interference noise
peaks which usually consist of a single high spike. Also,
special consideration is given to the number of TID
peaks involved in the resulting cross-correlation coeffi-
cient. For example, if there is only one peak of the TID
matching with the EID that results in the maximum
cross-correlation value, it is discarded as a false posi-
tive, since it is highly unlikely for biomolecules to have
an isotopic distribution with only one peak. MAXZ is
defined by the peak width of highest peak, e.g., Peak

Figure 4. Comparison of different charge state determination
methods on 775 isotopic distributions from 26 electrospray spectra
of myoglobin.
Width at Half Height � (1/Maximum Z). Sometimes,
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when there are many noise peaks around the main
peak, a false identification for a high charge state is
generated. Filters have been added to remove these
false positives by comparing the peaks of Fourier
charge state maps of the theoretical and experimental
data. Also, it is required that for a particular molecular
weight, the observed isotopic distribution should be
wide enough to represent the peaks that are of intensity
at least 60% or greater than the maximum intensity. For
example, for an observed distribution of molecular
weight 10,000, the distribution should be wide enough
to encompass at least 5 peaks (�60% of maximum
intensity). Otherwise, it most likely arises as a false
positive. These considerations lead to reduced number
of false positives and overall better performance.

Figure 5 demonstrates the alignment of a typical
experimental isotopic distribution (Figure 5a) with the

Figure 5. (a) EID of myoglobin when Z�16; (b) TID of myoglo-
bin, alignment of the EID with (c) TID shifted by 5; (d) TID shifted
by 6 (e) TID shifted by 7; (f) normalized probability of alignment
as a function of varying TID indices; (g) alignment of myoglobin
IDs using 3150 simulations (100 ions in each simulation); (h) a
typical Monte-Carlo generated myoglobin isotopic distribution
with only 100 ions.
theoretical isotopic distribution (Figure 5b). The EID
and TID are represented by grey and black stick plots
respectively in Figure 5c– e. Figure 5c– e shows the
alignment of the EID with the TID, with the TID being
shifted by 5, 6, and 7 in Figure 5c, d, and e, respectively.
Figure 5f shows the probability of alignment of the EID
against the TID with varying shift of TID. A shift of 6 in
the TID gives the best alignment as depicted in Figure
5d and 5h. The normalized probability plot (Figure 5h)
shows that the probability the EID and the TID are
aligned properly when the shift is 6 is much higher than
its nearest-neighbor (index � 5). These results are
typical with such high S/N (�20) clean isotopic distri-
butions. However, all alignment methods will work
well under these conditions. It is important to test these
methods under low S/N and low ion count conditions
where large statistical variance occurs in isotopic abun-
dance [28].

When only 100 ions are present in the isotopic
distribution, large statistical variation in the isotopic
abundance occurs; a typical 100 ion isotopic distribution
for myoglobin (16.7 kDa, 16�) is shown in Figure 5g. To
test the ML method versus the least-squares method,
3150 Monte Carlo simulated distributions were gener-
ated with only 100 ions per simulation, and the two
alignment methods were tested against these distribu-
tions. The tests revealed that ML method works cor-
rectly 85% of the time, compared to the least-squares
error method which gave 76% correct results (Figure
5h). Note that it is more difficult to estimate the true
index when the distribution is generated by a fewer
number of ions since the EID deviates from the TID due
to high variance among the isotopic peaks as discussed
in our previous work [28].

After the determination of monoisotopic masses (as
discussed above), it is desirable to automatically assign
the protein fragments that generated those masses. This
requires the knowledge of how a protein or peptide
fragments in an experiment [30]. MasSPIKE was used to
generate theoretical masses of the b and y ions. Internal
fragment masses and masses with common losses (e.g.,
water loss from a molecule) were calculated knowing
the sequence of the protein. The observed masses that
match with the theoretical masses of the whole protein
and its fragments are then evaluated. A complete anal-
ysis of the bovine carbonic anhydrase spectrum re-
vealed the presence of 165 isotopic clusters after elimi-
nating all false positives, which were matched to the
closest masses of b or y ions, the corresponding internal
fragment ions, and some common losses like water loss,
or ammonia loss from a y-ion. The complete de-
convolved spectrum representing monoisotopic masses
is shown in Figure 6. Only abundant peaks are labeled,
but the complete monoisotopic mass list is included in
the supplemental data (which can be found in the
electronic version of this article). Due to the high-energy
used for fragmentation, the precursor ion is not ob-
served.

One important limitation of MasSPIKE at this time is

the assumption implicit in the poly-averagine model,
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specifically that the molecule of interest is an “average”
protein. Clearly, this assumption fails routinely. A fu-
ture modification to MasSPIKE will include a DNA and
Glycan model as well as the ability to adjust the model
manually.

Conclusions

MasSPIKE (Mass Spectrum Interpretation and Kernel
Extraction), a suite of data analysis algorithms, has been
developed. The goal is to reduce a high-resolution mass
spectrum into a monoisotopic peak list. MasSPIKE
identifies isotopic peak cluster locations, determines the
charge state for each of the isotopic clusters, resolves
overlapping isotopic distributions, aligns the experi-
mental and theoretical distributions, and generates a
monoisotopic mass list. If the protein sequence is avail-
able, the calculated masses are matched for possible
assignments. The method has been applied and tested
against complex top-down spectra of bovine carbonic
anhydrase. The isotopic distribution identification
method is able to identify and mark locations corre-
sponding to both low and high charge states. The
Matched Filter charge state determination routine
worked correctly 91% of the time for unbiased test data
as compared to the standard routines [19], which vary
from 48–64% accuracy. MasSPIKE is capable of identi-
fying multiple charge states in the input signal sharing
multiple peaks. Alignment of the theoretical and exper-
imental isotopic distributions with only 100 ions (and
hence, high statistical variance) in the distribution gave
85% correct results as compared to 76% given by the

Figure 6. Final monoisotopic mass plot of bovine carbonic anhy-
drase (The full table of peaks is included in the Supplementary
Material section).
least-squares fitting method.
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