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We recently reported a new method for quantification of protein–ligand interaction by mass
spectrometry, titration and H/D exchange (PLIMSTEX) for determining the binding stoichi-
ometry and affinity of a wide range of protein–ligand interactions. Here we describe the
method for analyzing the PLIMSTEX titration curves and evaluate the effect of various models
on the precision and accuracy for determining binding constants using H/D exchange and a
titration. The titration data were fitted using a 1:n protein:ligand sequential binding model,
where n is the number of binding sites for the same ligand. An ordinary differential equation
was used for the first time in calculating the free ligand concentration from the total ligand
concentration. A nonlinear least squares regression method was applied to minimize the error
between the calculated and the experimentally measured deuterium shift by varying the
unknown parameters. A resampling method and second-order statistics were used to evaluate
the uncertainties of the fitting parameters. The interaction of intestinal fatty-acid-binding
protein (IFABP) with a fatty-acid carboxylate and that of calmodulin with Ca2� are used as two
tests. The modeling process described here not only is a new tool for analyzing H/D exchange
data acquired by ESI-MS, but also possesses novel aspects in modeling experimental titration
data to determine the affinity of ligand binding. (J Am Soc Mass Spectrom 2004, 15, 388–397)
© 2004 American Society for Mass Spectrometry

Hydrogen/deuterium exchange and mass spec-
trometry are a promising combination to probe
protein–ligand interactions [1]. In most of the

research on H/D exchange of protein–ligand com-
plexes, the goal is to measure the differences in H/D
exchange kinetics for the apo protein and protein–
ligand complexes. The information level may be in-
creased to the peptide or even amino-acid level by
digesting the protein before analysis and using MS/MS
[2, 3]. Nonlinear least squares regression [2, 4, 5],
maximum entropy [6], and graphical methods [7] are
often used for extracting average rate constants and
estimating the number of hydrogens in each rate group.
There are only a few examples for quantitative

analysis of thermodynamic properties of protein–ligand
binding in solution using H/D exchange and MS.
Fitzgerald and coworkers [8] demonstrated a MALDI/
MS-based stability determination method (SUPREX)
that yields the Kd of a protein–ligand complex. We
described a complementary means [9] to quantify pro-
tein–ligand interactions in solution by mass spectro-
metry, titration and H/D exchange (PLIMSTEX). We
demonstrated in that article that PLIMSTEX can be

applied to determine the conformational change, bind-
ing stoichiometry, and affinity of a wide range of
protein–ligand interactions including those that involve
small molecules, metal ions, and peptides.
Here we describe the method of modeling PLIMS-

TEX titration curves and examine the effect of model
modifications on the precision and accuracy that can be
achieved when determining binding constants. A pre-
liminary description of the modeling accompanied the
first description of PLIMSTEX [9] as supplemental
material, but since that time, we extended the model
with more parameters, improved it by adding resam-
pling, and tested it in a more complete manner. The
interaction of intestinal fatty-acid-binding protein (IF-
ABP) with a fatty-acid carboxylate and that of calmod-
ulin with Ca2� are used as two test systems to demon-
strate the H/D exchange titration method and the
protein–ligand fractional species model. The modeling
process described here not only is a new tool for
analyzing H/D exchange data acquired by ESI-MS, but
also possesses some novel aspects in modeling experi-
mental titration data to determine the affinity of ligand
binding.
The basis for the modeling is nonlinear least squares

(NLLS). Among all the curve fitting methods used in
the biochemical literature, NLLS regression is probably
the most common [10, 11]. The “least squares” method
was introduced by Legendre in 1805, but the first
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general-purpose program for using nonlinear least
squares was written in 1958 by Booth and Peterson, as
described on page 7 of [10]. NLLS has been widely used
for the analysis of titration experiments that probe
ligand-binding, and one of the first chemical applica-
tions was to a potentiometric titration in 1968 [12].
Leggett and coworkers [13] demonstrated a computa-
tional approach to the spectrophotometric determina-
tion of stability constants using the Gauss-Newton
nonlinear least squares method. The reader who is
interested in the various issues on the proper use of
NLLS in biochemical research are referred to a review
by Johnson and coworkers [14–18].

Experimental

H/D Exchange Experiment

The experiment was begun by allowing the protein to
equilibrate with different concentrations of ligand in
aqueous buffer solutions. D2O containing the same
concentrations of buffer and salts as in the starting
solution was added to initiate H/D exchange. The
protocol utilized a high D/H ratio in the forward and a
high H/D ratio in the back-exchange, and carried the
added advantage of in-situ desalting. When the system
reached a near steady state (1 to 3 h of exchange) where
the fast exchangeable hydrogens had reached equilib-
rium while the slow exchangers had not, as had been
determined by a kinetic study conducted previously,
the exchange was quenched by adding cold 1-M HCl to
decrease the pH to 2.5. The solution was then loaded on
a small C18 column, which is described below, cooled
to 0 °C, and the labile, non-amide sites of the immobi-
lized protein were back-exchanged to the H form. The
solution was desalted by washing with ice-cold, aque-
ous formic acid (pH 2.5). The protein, which now bears
an isotopic exchange “signature” in its amide linkages
reflecting its state in the initial solution, was then
introduced into a mass spectrometer, and its molecular
weight was determined. Rapid elution (by an isocratic
flow of solvent at 30–35 uL/min with high organic
composition or with a fast, pH 2.5 gradient) delivered
the protein to an electrospray ionization (ESI) source.

LC/ESI-MS with an Ion-Trap Mass Spectrometer

ESI mass spectra of IFABP were obtained with a Finni-
gan Classic LCQ ion-trap mass spectrometer (San Jose,
CA) equipped with an ESI source. The sample was
loaded on an Opti-Guard C18 column (10 mm � 1 mm
i.d.; Cobert Associates) using a six-port Rheodyne 7725
manual sample injector (P.J. Cobert Associates, St.
Louis, MO). After desalting by syringe injection of the
wash solution in the “load” mode, the injector was
switched to the “inject” mode, and the protein was
rapidly eluted to the mass spectrometer by using a fast
gradient: Mobile phase B increased from 30 to 100% in
1 min, and then held at 100% for 5 min. Solvent A

consisted of 3.0:96.7:0.3 (vol:vol:vol) CH3CN:H2O:
HCOOH; Solvent B consisted of 80:19:1 (vol:vol:vol)
CH3CN:H2O:HCOOH. Separation by HPLC was car-
ried out using a Waters 600MS pump (Milford, MA).
The flow, divided with a splitter (LC-Packings, San
Francisco, CA) at 10:1, was introduced to the column
and then the mass spectrometer at a flow rate of 33
�L/min. The spray voltage was 5.0 kV, and the capil-
lary temperature was 200 °C. All data were acquired in
the positive-ion mode at unit mass resolving power for
ions of m/z between 600 and 2000. Normally ten scans
were averaged and processed using Finnigan Xcalibur
1.1 software. The raw data were transformed by using
Bioworks software supplied by Finnigan to give mass
centroids of the “deconvoluted” peaks, which were
used for calculating the deuterium shift.

LC-ESI/MS with a Q-TOF Mass Spectrometer

To obtain better mass resolving power and more accu-
rate mass assignment, a Micromass Q-Tof Ultima
GLOBAL mass spectrometer (Manchester, UK) with a
Z-spray ESI source was used for the Ca-titrations of
calmodulin. A solution of 80:19:1 (vol:vol:vol) of
CH3CN:H2O:HCOOH was introduced into an Opti-
Guard C18 column (10 mm � 1 mm i.d.; Cobert
Associates), and then into the mass spectrometer at a
flow rate of 32 �L/min using a Waters Cap-LC system
(Milford, MA). The capillary voltage was 3.4 kV, and
the source and desolvation temperatures were 80 °C
and 150 °C, respectively. The cone-gas flow was 40 L/h,
and the nitrogen desolvation gas flow was 400 L/h. All
data were acquired in the positive-ion mode, using the
TOF at 10,000 mass resolving power between m/z 800
and 2000. Normally ten scans were summed and pro-
cessed by using MassLynx 3.5 software that was sup-
plied with the mass spectrometer system by Micromass.
The molecular mass was determined using the maxi-
mum entropy algorithm (MaxEnt1 in MassLynx 3.5).

Modeling Procedure

Overview of the Modeling Procedure

PLIMSTEX is a new method developed in our labora-
tory for the quantitative analysis of protein–ligand
binding [9]. A plot of the mass difference between the
deuterated and non-deuterated protein (deuterium up-
take) versus the total ligand concentration (or the ratio
of total ligand concentration to the total protein concen-
tration) gives the PLIMSTEX curve (Figure 1).
To quantify affinity, PLIMSTEX requires that a

change occur in the extent of H/D exchange during a
titration. This extent is given by �D, the overall deute-
rium shift. The change may be a conformational change
and/or stability difference between the apo- and li-
gand-bound protein. The titration data are fitted using
a 1:n protein:ligand sequential binding model, where n
is the number of binding sites for the same ligand.
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There are two assumptions for the modeling: (1) The
ligand binds to the protein in a stepwise fashion; (2)
H/D exchange of each amide hydrogen is independent
(i.e., does not depend on exchange at any other site of
the protein). A nonlinear least squares (NLLS) regres-
sion is involved, and all modeling procedures were
implemented with Mathcad 2001 Professional (Math-
Soft, Inc., Cambridge, MA).
For modeling the titration data, the �D is calculated

as a function of the total ligand concentration ([LigT]),
the overall binding constants (�i, which is the product
of the stepwise macroscopic binding constants Ki, i � 1
to n) and the species deuterium shifts (D0 and �Di, i �
1 to n). D0 is the shift in the molecular weight of the apo
protein caused by H/D exchange (deuterium uptake).
To minimize experimental errors, we do not accept the
experiment value of D0 (the deuterium uptake of the
apo-protein) but rather take it as a variable or unknown
parameter. �Di is the difference between the average
deuterium level of the complex and that of the apo-form
(see Figure 1). A positive �Di indicates that binding of
i ligand(s) to the protein leads to more protection and
less D uptake as compared to the apo-form. A negative
�Di points to the formation of a more open structure
relative to its apo form. When �Di � 0, little conforma-
tional change occurs upon binding. In the latter case,
PLIMSTEX may not be appropriate for determining the
corresponding equilibrium constant (�i).
The best fit is obtained by a search, which iterates

through a sequence of trials to minimize the error
between the calculated overall deuterium shift, �D, and
the experimentally measured shift by varying the un-
known parameters (�i, D0, and �Di). Normally at least
two runs under similar conditions are performed for
each set of PLIMSTEX data. The average data are used
for the curve fitting to give mean values for the un-
known parameters (�i, �Di, and D0). The macroscopic
Ki’s are calculated from �i’s. Finally, a resampling

statistical analysis is used to evaluate the precision for
each parameter in the search.

Modeling the Titration Data

The goal for the modeling is to obtain the best-fit curve
for the experimental titration data and to extract the
values of the unknown parameters (�i, �Di, and D0)
from the best fit. To fit the data, the model must build
a relationship between the overall deuterium shift and
the total ligand concentration. It then calculates the
expected overall deuterium shift, �D, as a function of
the total ligand concentration, [LigT], from a sum of the
deuterium shifts for each species (eq 1):

�D��1,. . .,�n,D0,�D1,. . .,�Dn,�LigT	
 �

D0 � �
i�1

n

�Di

�Prot-Ligi	

�ProtT	
(1)

In eq 1, [ProtT] is the total experimental concentra-
tion of the protein, a known value for a specific titration,
and D0, �Di, and �i are the unknown parameters. We
expect that each form of the protein/ligand complex
would show a deuterium shift �Di (i � 1 to n), which is
the difference between the average deuterium level of
the complex and that of the apo-form. �Di is weighted
by its binding fraction [Prot-Ligi]/[ProtT], which is a
function of total ligand concentration [LigT] and the
overall binding constant �i (i � 1 to n), the latter of
which is sometimes referred to as an Adair constant
[19]. �i is the product of all the stepwise equilibrium
binding constants, and Ki, is the equilibrium constant
for the ith step forming a protein–ligand species (eq 2).

�i � K1K2 · · · Ki (2)

To predict the overall deuterium shift (�D), the

Figure 1. A typical PLIMSTEX curve for 1 to 1 protein:ligand binding.
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binding fractions must be calculated. The binding frac-
tion (eq 3) for each protein–ligand species ([Prot-Ligi]/
[ProtT]) is calculated for each sequential reaction as
governed by the binding constants:

�Prot-Ligi	

�ProtT	
�

�i�Lig	i

P
(3)

Each fractional solution concentration ([Prot-Ligi]) is a
function of free [Lig], [ProtT], and �i (i � 1 to n). The
binding polynomial is given by eq 4:

P � 1 � �
i�1

n

�i�Lig	i (4)

The eqs 3 and 4 have been commonly used in modeling
ligand-binding reactions (see Chapter 3 of reference
[19]).
The calculation of the binding fractions requires that

the free ligand concentration, [Lig], in solution be
calculated first. Solving for the free ligand concentration
[Lig] as a function of the total ligand concentration
[LigT] is the most challenging part of the modeling
procedure because the solution is difficult to achieve by
direct algebraic methods. The problem is made more
complex because the relation between the equilibrium
concentration of the ligand, [Lig], in solution and the
mass spectrometric signal corresponding to a gas-phase
ion is not understood, and the relation between MS
signals and solution concentrations are likely to be
different for ligand, protein, and complex. Neverthe-
less, [Lig] can be inferred from the total ligand concen-
tration by numerically solving the ordinary differential
equation [20, 21] formed by the analytical derivative of
[Lig] with respect to [LigT] (eq 5):

d�Lig	

d�LigT	
��1,. . .,�n,�ProtT	,�LigT	


� f��Lig	,�1,. . .,�n,�ProtT	,�LigT	
 (5)

The right hand side of eq 5 is not possible to write
directly; as a result, it is evaluated as the reciprocal of
d[LigT]/d[Lig] (i.e., 1/f). The expression d[LigT]/d[Lig]
was obtained from the closed form expression of [LigT],
which is a function of [Lig], [ProtT], and �i. Evaluation
of the reciprocal of d[LigT]/d[Lig] leads to eq 6.

f��Lig	,�1,· · ·,�n,�ProtT	,�LigT	


�

�
i�0

n

�i�Lig	i

�
i�0

n

�i � 1
�i�lig	i � ProtT� �
i�1

n

i2�i�Lig	i�1�
� LigT� �

i�1

n

i�i�Lig	i�1�
(6)

For 1:1 protein–ligand binding, �1 is the same as K. The
two equations (eqs 5 and 6) can be simplified to give eq
7 and 8:

d�Lig	

d�LigT	
�K,�ProtT	,�LigT	
 � f��Lig	,K,�ProtT	,�LigT	


(7)

f��Lig	,K,�ProtT	,�LigT	


�
1 � K�Lig	

1 � 2K�Lig	 � K�ProtT	 � K�LigT	
(8)

The differential eq 5 was solved by integration using
the “Rkadapt” function in Mathcad. For the initial
condition, [Lig] was taken to be zero when [LigT] is
zero. The integration produces a lookup table for [Lig]
as a function of [LigT]; we used a table with a constant
step size of 1000 intervals over the ligand range in the
titration. Each [LigT] has a matching value in the lookup
table. One integration was performed for each trial. This
approach appears to be the first reported use of an
ordinary differential equation to calculate [Lig] from
[LigT], and may be of use to those who model titrations
by using other methods.
After a relationship between the overall deuterium

shift and the total ligand concentration is built by means
of the procedures above, the selected unknown species
deuterium shifts (D0 and �Di) and �i are solved in a
sequence of trials. In each trial, the search algorithm
postulates a set of binding constants (�1,. . .,�n), deute-
rium mass shifts (�D1,. . .,�Dn) for each protein/ligand
complex, and a deuterium uptake for the apo protein
(D0), and then computes the expected overall deuterium
shift (�D) as a function of [LigT]. The residuals of the
trial are the differences between the experimentally
measured overall mass shifts (Aj,i) and the expected
overall mass shifts (�D) at each [LigT]. If more than one
set of titration data is available, then the measured mass
shifts are averaged at each experimental [LigT] (Aj,0),
and the averaged mass shifts are used for the measured
mass shifts in the calculation of the residuals. The error,
�, of the trial was measured as the square root of the
mean of the squares (RMS) of the residuals (eq 9), where
M is the number of data points in each titration:

� � �� �
j�0

M�1

� Aj,1 � �D��1,. . .,�n,

D0,�D1,. . .,�Dn,Aj,0
2)��M

(9)

The search, which minimizes the trial error, is a
standard nonlinear, least squares regression procedure,
to which the normal assumptions required for a NLLS
regression [14] apply. For example, the experimental
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uncertainty for determining the difference between the
mass centroids of the peaks corresponding to the deu-
terated and non-deuterated protein is assumed to fol-
low a Gaussian distribution with a mean of zero. The
regression is conducted with the “Minimize” function
of Mathcad. The starting values for the search are
guesses often informed by inspection of the titration
curve, prior experience, or values derived from the
literature. The lower the RMS, the better is the fit.

Evaluating the Precision for the Unknown
Parameters

Once a best-fit PLIMSTEX curve is obtained from the
modeling, the values of the unknown parameters (D0,�Di,
and �i) and the deviation between the experimental data
and the fitted curve (RMS) are reported. In most circum-
stances, multiple independent runs under similar experi-
mental conditions are performed for each protein–ligand
titration. A resampling statistical method is used to eval-
uate the precision of the unknown parameters. The titra-
tion data are resampled by randomly selecting data points
from the multiple trials at each [LigT]. For example, if a
duplicate titration is performed with 15 different [LigT]
values in each trial, 215 possible combinations of titration
can be re-sampled. Second-order statistics [10] of the
unknown parameters are computed as described in the
following.
Each replicate of the titration experiment, if sepa-

rately fitted as described in the titration modeling,
would produce slightly different answers for the un-
known parameters because there are measurement un-
certainties. Rather than producing a large number of
experiment replicates, the residuals from a few repli-
cates are resampled, and their effect on the fitted
unknown parameters are estimated to first order.
The evaluation procedure has three parts. In the first

part, the changes in free ligand, [Lig], as a function of
changes in �i are computed. Because the free ligand
concentration as a function of [LigT] was computed as a
solution to an ordinary differential equation, one
should expect that the first and second derivatives of
[Lig] with respect to �i be also obtained as solutions to
ordinary differential equations. These are the “sensitiv-
ity equations” and were described in Section 8-4b of
reference [10]. In the present development, the sensitiv-
ity equations make use of the closed-form expressions
of the first and second derivatives of d[Lig]/d[LigT],
which is f in eqs 5 and 6, with respect to [Lig] and �i .
The sensitivity equations are combined with the differ-
ential equation described in the modeling to form a
system of ordinary differential equations that are solved
simultaneously by integration to give a lookup table as
before. The values for the unknown parameters ob-
tained from the error minimization step in the modeling
are used during the integration.
In the second part of the evaluation, we obtain a

matrix that gives the derivative of the fitted parameters

with respect to the measured mass shifts at the various
titration points. The calculation is facilitated by differ-
entiating the “normal equations” (see Section 24.1 of
reference [22] with respect to the unknown parameters
and the experimentally measured mass shifts at the
various titration points. The normal equations make use
of first derivatives of the trial error function (eq 9) from
the modeling. Differentiation of the normal equations,
then, uses the second derivatives of the trial error
function. This is where the first and second derivatives
computed in part one of the evaluation are utilized.
In the third part, residuals produced by the replicate

experiments are resampled to obtain second-order sta-
tistics for the unknown parameter estimates. Each ex-
periment replicate produces a vector of residuals. Each
vector coordinate value is a residual between the ex-
pected mass shift for the fitted unknown parameter
values found in the modeling and the replicate mea-
sured mass shift at the corresponding total-ligand con-
centration of the titration. A random vector generator
produces a uniformly distributed list of indices that
match the titration points in number. Each index in the
list corresponds to a titration point and specifies from
which replicate residual vector to extract a coordinate
value for the corresponding titration point. Each ran-
dom vector of indices specifies another mix of residuals
to form a new vector of residuals. The first-order
estimate of the changes in the unknown parameter is
given by product of the matrix computed in the second
part of this component and the new vector of residuals.
For a titration performed as X replicates with Y points
in each run, this process is repeated approximately XY

times, from which the second-order statistics are tabu-
lated.

Results and Discussion

Method for Data Analysis

To obtain PLIMSTEX data, we sample various points in
a titration of a protein with a ligand by measuring the
extent of H/D exchange of the protein. We quench the
H/D exchange, desalt the solution, and determine the
molecular weight of the protein by admitting it to the
mass spectrometer. With quenching and desalting, the
ligands usually dissociate from the protein, allowing us
to determine for the newly freed protein the number of
deuteriums introduced on solvent-accessible amide ni-
trogens. This is simply the mass difference between the
deuterated and non-deuterated protein (deuterium up-
take), which is plotted vs. the ratio of total ligand to
total protein concentration. We then fit the PLIMSTEX
curve by using the model described above.
There are several new aspects of the model. It is the

first model of the relationship between mass shift in
H/D exchange and the binding constant of protein–
ligand interaction. The most challenging step in the
model is the extraction of a free ligand concentration in
solution from the total ligand concentration. This step
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has usually been avoided because it is difficult to solve
for free ligand concentration, [Lig], as a function of
[LigT] by a direct algebraic method. To our knowledge,
this is also the first time that an ordinary differential
equation has been employed to calculate [Lig] from
[LigT]. We believe the model employs a computation-
ally efficient method and will be of general interest to
chemists and biochemists who model reaction equilib-
rium.
Furthermore, in most non-mass spectrometric meth-

ods, the free [Lig] is directly measured in solution, but
this is not possible when using MS (i.e., the complex
must be introduced into the gas phase). When using
MS, one must infer the corresponding solution concen-
trations from the gas-phase measurements, a difficult
proposition owing to the discriminatory effects of ESI
and MALDI.
In addition, we have incorporated a resampling

method to evaluate the uncertainties of the fitting
parameters. With this step, one is not required to
acquire large data sets and fit them separately to obtain
an average and a standard deviation for each fitting
parameter, an onerous requirement and sometimes
impossible when the protein is difficult to obtain. The
current model, which is accompanied by statistical
analysis and resampling, evaluates the reliability of the
affinity determination. Further, we can use the model to
obtain a deeper understanding of the titration curve
and the selection of parameters. However, if multiple
data sets were acquired under considerably different
experimental conditions, the resampling statistical anal-
ysis should not be used. Each data set should be
analyzed separately, using the first two components in
the modeling procedure, to give an average and a
standard deviation for the binding constant(s).
We chose not to use the standard resampling statis-

tical methods such as Bootstrap or Jackknife [23–26]
although our method resembles Bootstrap. The reason
for our choice is that various data points in the PLIM-
STEX curve contribute differently to the extracted bind-
ing constants. Therefore, the residuals of the titration
data were resampled at every [LigT]. Further, the titra-
tion curve has a nonlinear nature and is comprised of a
relatively small number of experimental data in prac-
tice.

One-to-One Protein–Ligand Binding

The interaction between intestinal fatty acid binding
protein and potassium oleate involves one-to-one pro-
tein–ligand binding as showed by others [27, 28] and
recently by us using PLIMSTEX [9]. Although we
previously published one titration curve and the results
of other titrations [9], we chose this system to demon-
strate the modeling of a H/D exchange titration and the
use of the newly implemented statistical analysis of the
uncertainties. We acquired two independent sets of
PLIMSTEX data for titrating wild-type rat I-FABP with
K�-oleate under similar experimental conditions, and
fit them by using a 3-parameter, 1:1 binding model
without and with statistical analysis (see Table 1 for the
fit results). Fitting separately the two sets of titration
data (Figure 2) gave average values and deviations for
the search parameters (�1, same as K1; �D1; and D0)
(Table 1). The RMS values for the two runs are 0.86 and
0.81 mass units, respectively. The best-fit obtained us-
ing the 1:1 binding model for average values from the
two data sets can be seen by consulting [9], Figure 1.

Table 1. Binding properties obtained from PLIMSTEX analysis for IFABP–Oleate interaction

Data Parameter Run 1a Run 2b
Ave & Dev. for

Run 1 and Run 2
Set Averagec

with statistics Literature values

K (� 106 M�1) 2.4 2.8 2.6 � 0.2 2.6 � 0.6 3.0d; 4.8e or 25f

�D1 13.1 14.5 13.8 � 0.7 13.8 � 0.7 N/A
D0 95.0 95.9 95.4 � 0.5 95.4 � 0.7 N/A
RMS 0.86 0.81 0.84 0.49

aFor the blue curve shown in Figure 2.
bFor the magenta curve shown in Figure 2.
cFor the curve fit to the average data of Run 1 and Run 2.
dFrom Ref. [28].
eFrom kinetic analysis in Ref. [27].
fFrom equilibrium analysis in Ref. [27].

Figure 2. Two sets of independent PLIMSTEX data individually
fit with a 3-parameter 1:1 binding model for 0.3-�M wild type
I-FABP titrated with K�-oleate in 95% D2O, 20-mM pyrophos-
phate buffer containing 135-mM KCl, and 10-mM NaCl (apparent
pH � 9.0), after 3 h of exchange.
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Here we invoke for the first time in our efforts the
resampling statistical analysis to evaluate the uncertain-
ties for the search parameters K1, �D1, and D0 for
I-FABP (see Table 1).
The RMS for averaged data decreases to 0.49 u,

which indicates a better fit than can be obtained for the
individual data sets. Despite the better fit, the mean
values of K1, �D1, and D0 from fitting the average data
are similar to the average results from the separate fits.
We have found similar trends for other protein–ligand
systems [9] when comparing results with and without
resampling. The uncertainty estimated from limited
data sets without statistical analysis may be biased
because only results from two or three titrations were
used, and the error distribution may not represent that
of a larger population of data. Resampling the IFABP-
oleate titration gave 215 non-replicated combinations of
titration data when resampling was used for at least
two independent titrations acquired under similar ex-
perimental conditions. Thus, the calculated error distri-
bution for each search parameter should be more sim-
ilar to the real error distribution. Moreover, less sample
quantity and less time for data acquisition are required
when one employs resampling.

One to Four Protein–Ligand Binding

To explore a more complex binding situation, we ap-
plied PLIMSTEX to the Ca2� binding to calmodulin
(CaM). Figure 3 shows the average titration data for 15
�M of porcine calmodulin titrated with Ca2�. We used
17 data points to define the titration and three trials for
each point. The H/D exchange time was 1 h for each

titration point; at this time the extent of exchange had
reached steady state and there was a significant differ-
ence in the extent of exchange between apo and holo
CaM. With the first additions of Ca2�, the extent of
H/D exchange either stayed constant or increased
slightly, indicating no gain, and even a small loss, of
protection for CaM when binding to one Ca2�. As more
Ca2� was added, the extent of H/D exchange dropped
significantly and leveled off as the protein became
saturated with Ca2�. Use of a 4-parameter (�3, �4, �D4

and D0) fit gives the blue curve (Figure 3), a fit obtained
for a 1:4 protein:Ca2� sequential binding model in
which we assume that the change in H/D exchange
behavior is due principally to an increase in protection
afforded by the CaM-4Ca form. Because the binding of
the fourth, and possibly the third, Ca�2 are important in
changing the conformation of CaM, only �3 and �4 were
searched in the model (for the calculation of K3 and K4,
we took �1 and �2 from the literature [29]). The averages
and standard deviations for the various search param-
eters are based on three independent titrations. The
stepwise macroscopic binding constants (Ki), which are
readily calculated from �i, compare favorably with the
literature values (Table 2).
One shortcoming of the 4-parameter model is that it

does not fit well the initial part of the titration curve,
probably because we ignored contributions to the ex-
tent of exchange by Ca-bound species other than CaM-
4Ca. To correlate better the data, we implemented a
more sophisticated 7-parameter model (�3, �4, D0, �D1,
�D2, �D3 and �D4) to take into account any changes in
exchange due to all five CaM-xCa (x � 0–4) species.
The resulting fit (magenta curve in Figure 3) not only
accommodates the early data in the titration but also
has a reduced RMS (0.7). The outcome of the search
with seven parameters (summarized in Table 2) gives
information for all the binding species, but the relative
deviation for each search parameter is larger when
seven parameters were used instead of four. The poorer
precision suggests that the number of data for defining
the titration curve is insufficient and the outcome too
sensitive to experimental error. After all, one expects
that the introduction of more parameters should be
compensated for by using more data points in the
titration.
As a test of the outcome, a better defined (i.e., by

using more points) titration is the Ca-titration of CaM in
50 mM of HEPES buffer in which 59 data points were
used, and each point was obtained in duplicate. The
percentage of D2O was decreased from 99 to 90% in the
H/D exchange media to minimize dilution of the pro-
tein and to conserve it. The new data were fit by using
both the 4-parameter and the 7-parameter models; the
results are in Table 3 (the curves were published in our
recent article [30]). The relative standard deviation for
each binding constant was 40–70% less than those
estimated when using the smaller number of data in the
titration. This comparison clearly shows that more

Figure 3. PLIMSTEX data averaged from three independent runs
for titration of 15-�M porcine CaM with Ca2� in 99% D2O, 50-mM
HEPES buffer (apparent pH� 7.4), H/D exchange time� 1 h. The
error bars for each data point were the standard deviations from
the three runs. The solid blue line is the fitted curve for the average
data using a 1:4 binding model and a 4-parameter (�3, �4, D0, �D4)
fit. The magenta line is the fitted curve that was obtained by using
a 7-parameter (�3, �4, D0, �D1, �D2, �D3, �D4) fit.
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reliable results for the binding constants and �D values
can be obtained when more data points are taken in the
titration. Another advantage of the larger amount of
data is that the precision for K3, K4, �D4, andD0 with the
7-parameter fit is now comparable to that obtained with
the 4-parameter model.
Although the precision of the binding constants is

better when more data are used, two other features of
the results do not show improvement. First, the values
for �D1 and �D3 still do not have high confidence. This
is due to the nature of binding. There is a strong
positive cooperativity in the binding of the first two
Ca2� to CaM, as well as that of the last two. CaM-1Ca
and CaM-3Ca never became the predominant species in
the titration. Second, the fits (RMS values) that were
obtained with the 4- and 7-parameter models applied to
the titrations defined by 59 data points are similar to
those achieved for the titrations shown in Figure 3.

The shape of the titration curve is determined prin-
cipally by the complexation of the fourth Ca2�, as
discussed earlier. Thus, PLIMSTEX is not a reliable way
to determine K1 and K2 in this situation, and these
values must be taken from the literature or, in the case
of an unknown protein, estimated until they can be
measured by another method. Thus, an important ques-
tion is: What is the sensitivity of K3 and K4 to the values
of the values of K1 and K2 that are input into the
4-parameter model? We also posed this question and
provided an answer in another article [30]. When the
values of K1 and K2 were artificially increased or de-
creased by a factor of 8, both �3 and �4 obtained with
the 4-parameter fit changed, but K4 remained nearly
constant (within a factor of 1.2), and K3 only varied
within a factor of 2. Thus, the relative insensitivity of
the values of K3 and K4 to the choices of K1 and K2
speaks well for the method given that K1 and K2 are not

Table 2. Binding properties obtained from PLIMSTEX analysis for CaM-Ca interaction (17 data points)a

Models Parameters

4-Parameter fit
(�3, �4, D0, �D4)

7-Parameter fit
(�3, �4, D0, �D1,
�D2, �D3, �D4)

Literature valuesbValues RSTD Values RSTD

�3 (�1016M�3) 18 � 11 66% 2.0 � 1.9 92% 5.0
�4 (�1021M�4) 13 � 9 68% 2.2 � 1.9 84% 16
K3 (�104M�1) 14 � 9 66% 1.6 � 1.5 92% 4.0
K4 (�105M�1) 0.7 � 0.7 94% 1.1 � 1.3 124% 3.2

K3K4 (�104M�1) 10 � 3 34% 5.0 � 0.8 42% 11
D0 138.4 � 0.4 0.4% 140.5 � 0.8 0.6%
�D1 0 �0.3 � 9.9 3973%
�D2 0 4.4 � 1.1 26% N/A
�D3 0 0.3 � 7.2 2526%
�D4 14.1 � 0.5 3.6% 16.2 � 0.9 5.2%
RMS 1.0 0.7 N/A

aFor curves in Figure 3: [CaM] � 15 �M; in 50 mM HEPES, 99% D2O, apparent pH � 7.4; T � 21.5 °C.
bFrom Ref. [29].

Table 3. Binding properties obtained from PLIMSTEX analysis for CaM-Ca interaction (59 data points)a

Models Parameters

4-Parameter fit
(�3, �4, D0, �D4)

7-Parameter fit
(�3, �4, D0, �D1,
�D2, �D3, �D4)

Literature valuesbValues RSTD Values RSTD

�3 (�1016M�3) 9 � 2 27% 2.5 � 0.6 25% 5.0
�4 (�1021M�4) 10 � 3 27% 3 � 1 34% 16
K3 (�104M�1) 7 � 2 27% 2.0 � 0.5 25% 4.0
K4 (�105M�1) 1.1 � 0.4 39% 1.1 � 0.5 42% 3.2

K3K4 (�104M�1) 9 � 1 14% 5.0 � 0.8 17% 11
D0 126.7 � 0.3 0.2% 128.4 � 0.8 0.59%
�D 0 �1 � 9 1571%
�D2 0 3.5 � 0.7 19% N/A
�D3 0 0.5 � 1.3 272%
�D4 12.6 � 0.3 2.6% 14.8 � 0.7 5%
RMS 1.0 0.8 N/A

a[CaM] � 15 �M; in 50 mM HEPES, 90% D2O, apparent pH � 7.4; T � 21.5 °C.
bFrom Ref. [29].
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reliably determined by PLIMSTEX. K3 and K4 calculated
from the 7-parameter model, however, are more sensi-
tive to changes in the input values of K1 and K2 than
from the 4-parameter model.
The positive cooperativity in binding of the last two

Ca2� ions to CaM, as shown in other studies [29],
suggests that the product of K3K4 would be better
determined than the individual K values. This is also a
favorable outcome because either the product of K3K4 or
the geometric average binding affinity for N-domain
(
K3K4) is used to compare results from various stud-
ies made under similar experimental conditions. The
geometric average binding affinity (
K3K4) and the
individual K’s for CaM-Ca binding using ether the 4- or
7-parameter fitting of PLIMSTEX data (Table 3) agree
with previously reported values within a factor of 3.

Conclusion

The modeling process described here not only is a new
tool in analyzing H/D exchange data acquired by
ESI-MS, but also contains novel aspects for quantifica-
tion of ligand binding by titrations. It is the first time
that H/D exchange accompanying a titration of a
protein with a ligand has been modeled to give the
binding constant for the interaction. An ordinary differ-
ential equation was used, also for the first time, to
calculate the free ligand concentration from the total
ligand concentration. A nonlinear least squares regres-
sion method minimizes the error between the calcula-
tion-produced and the experimentally-measured over-
all deuterium shift by varying the underlying
parameters. A resampling method and second order
statistics were used to evaluate the uncertainties of the
fit parameters. The statistical analysis also can give a
better understanding of results from H/D exchange
titrations and be a valuable asset in designing a sequel
round of experiments.
We demonstrated the model by applying it to two

1:n sequential binding in various protein–ligand sys-
tems. Although three parameters (�1, D0, and �D1) are
sufficient for modeling 1:1 protein:ligand binding, more
parameters are required when more than one ligand
binds. To choose the appropriate search parameters for
the model, one should consider the number of titration
points that are needed and the ability of H/D exchange
to respond to the various binding steps. A statistical
analysis of the uncertainty of each search parameter (�i,
D0, and �Di) also provides a basis for designing an
appropriate titration.
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