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Temperature constrained cascade correlation networks (TCCCNs) are computational neural
networks that configure their own architecture, train rapidly, and give reproducible prediction
results. TCCCN classification models were built using the Latin-partition method for five
classes of pathogenic bacteria. Neural networks are problematic in that the relationships
among the inputs (i.e., mass spectra) and the outputs (i.e., the bacterial identities) are not
apparent. In this study, neural network models were constructed that successfully classified
the targeted bacteria and the classification model was validated using sensitivity and target
transformation factor analysis (TTFA). Without validation of the classification model, it is
impossible to ascertain whether the bacteria are classified by peaks in the mass spectrum that
have no causal relationships with the bacteria, but instead randomly correlate with the
bacterial classes. Multiple single output network models did not offer any benefits when
compared to single network models that had multiple outputs. A multiple output TCCCN
model achieved classification accuracies of 96	 2% and exhibited improved performance over
multiple single output TCCCN models. Chemical ionization mass spectra were obtained from
in situ thermal hydrolysis methylation of freeze-dried bacteria. Mass spectral peaks that
pertain to the neural network classification model of the pathogenic bacterial classes were
obtained by sensitivity analysis. A significant number of mass spectral peaks that had high
sensitivity corresponded to known biomarkers, which is the first time that the significant peaks
used by a neural network model to classify mass spectra have been divulged. Furthermore,
TTFA furnishes a useful visual target as to which peaks in the mass spectrum correlate with
the bacterial identities. (J Am Soc Mass Spectrom 2002, 13, 10–21) © 2002 American Society
for Mass Spectrometry

Mass spectra of microorganisms are complex
and often require pattern recognition to over-
come variations that arise from the measure-

ment and biological factors. Artificial neural networks
(ANNs) have been successfully applied to these spectra
to characterize and identify microorganisms such as
bacteria [1–3]. In general, ANNs have been shown to be
a rapid and accurate method for classification and
discrimination of various microorganisms using pyrol-
ysis mass spectrometry (Py-MS) data. Goodacre et al.
have demonstrated that ANNs can be utilized to dis-

criminate between the mass spectra from methicillin-
resistant and methicillin-susceptive Staphylococcus au-
reus [4] and to rapidly identify urinary tract infection
bacteria [5]. Sisson et al. [6] have achieved rapid detec-
tion of verocytotoxin production status in Escherichia
coli by analysis of Py-MS data with ANN models.
Freeman et al. [7] used ANN models for resolution of
batch variation in bacteria. Kenyon et al. [8] have
applied ANNs to identify members of a Streptomycete
species-group.
The deployment of biological weapons by terrorists

concerns a number of governments. Pathogenic bacteria
are potential agents of mass destruction and are rela-
tively inexpensive to produce. Researchers at the Colo-
rado School of Mines [9–11] have demonstrated that
thermal hydrolysis methylation-mass spectrometry
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(THM-MS) coupled with pattern recognition techniques
can provide sensitive detection of targeted bacteria in
various environments. By combining sensitive, field-
portable pyrolysis mass spectrometry with neural net-
work pattern recognition software, rapid detection and
classification of pathogenic bacteria may be obtainable.
The bacteria and spores were chosen for this study

because they are potential biological agents. Bacillus
anthracis was studied in both vegetative and sporulated
states. Bacillus anthracis is a Gram-positive bacterium
which causes the disease anthrax. The other three
bacteria were Gram-negative. Yersinia pestis is respon-
sible for the plague, Francisella tularensis causes tulare-
mia, which is also known as rabbit fever, and Brucella
melitensis causes brucellosis, which is also known as
Gibraltar, Malta, Rock, and undulant fever.

Theory

Artificial neural networks are powerful tools for devel-
oping classifiers that can relate mass spectra to user-
specified properties. In this work, the user-specified
property is the bacterial class. The neural network
builds a model that allows the bacteria to be classified
by their mass spectra. The problemwith neural network
classification is that it is difficult to verify if the model is
classifying the spectra on biomarker peaks or artifacts
that correlate with the experiment. For example, if
samples from a bacterium differed from the other
bacterial samples in that they contained a contamina-
tion, the classification model may perform well in
recognizing the bacterium. However, the model may be
recognizing the bacterium by peaks that arise from the
contamination instead of peaks that arise from charac-
teristic bacterial components (i.e., biomarkers).
TCCCNs can rapidly construct robust classification

models. The characteristic properties of the TCCCNwill
be summarized, but detailed papers on the TCCCN can
be found in the literature [12–14]. The cascade correla-
tion network (CCN) trains much faster than other
artificial neural networks because it adjusts only a
single processing unit at a time [15]. The hidden pro-
cessing units are incrementally added to the network
until the training error criterion is satisfied. The TCCCN
is a self-configuring network that optimizes its architec-
ture (i.e., number of layers and hidden units) during the
model building process. With the cascade architecture,
computational temperature may be optimized for each
hidden unit [12]. The temperature parameter controls
the slope of the sigmoid of each hidden unit’s output so
that selectivity is optimized [16]. Constraining the com-
putational temperature allows the neural network
model to avoid local minima during training. Uncon-
strained hidden units usually furnish crisp or binary
logic for which the output values for the objects are
extrema, e.g., either 0 or 1. The temperature constrained
hidden units furnish fuzzy logic that characterizes
uncertainty. As a result, TCCCN models are better at

interpolation among the training spectra than other
types of neural networks.
The neural network outputs ranged between 0 and 1.

A classification criterion of 0.5 was used, so that outputs
that were greater than or equal to 0.5 indicated class
membership.
We advocate constructing classification models to a

predetermined relative error. Instead of training neural
network models so that an external prediction set of
data furnishes a minimum error, the TCCCN models
were trained to achieve a 10% relative root mean square
error of calibration (RRMSEC). This error is defined as

RRMSEC � ��
i�1
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j�1

p


 ŷij � yij�
2

�
i�1

n �
j�1

p


 yij � yj�
2

(1)

for which n is the number of training objects (i.e.,
spectra), p is the number of classes, yij is the target value
for object i and class j, ŷij is the network model output
for spectrum i and class j, and y� j is the average target
value for class j. Matrices are indicated by upper-case
bold typeface and vectors as lower-case bold typeface.
Each row of Y corresponds to a mass spectrum and
comprises values of zero except for the component that
designates the class. This component has a value of
unity. The error is relative to the pooled standard
deviation for each column or class of target output
values. The relative root mean square error of predic-
tion (RRMSEP) is a similar figure of merit except the
target values and network outputs are obtained from
the external prediction sets of data. Using relative
standard errors allows the comparison of errors among
different neural network models and applications.
The importance of each mass spectral peak to the

neural network models can be assessed with sensitivity
analysis, which has been described in detail [17]. The
sensitivity of a neural network model is the gradient of
a neural network model output with respect to the
input variables. The neural network model is a nonlin-
ear function F acting on an object xi to estimate a set of
output values ŷi.

ŷi � F
xi� (2)

The spectrum xi, which has v variables, generates the
estimate ŷi that has p components (i.e., one for each
class or output unit). The sensitivity spectrum for class
j and object i, sij is defined as

sij � �jF
xi� (3)

for which the gradient � of the neural network model
F(xi) is calculated for output unit j that corresponds to
class j. For calculating the gradient, an increment is
used that is 0.1% of the maximum intensity of the mean
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spectrum from class j. In this paper, the training objects
are used, but prediction data sets can also be used. The
average sensitivity for each bacterial class is reported.
Because the bacteria spectra were inherently com-

plex, a method was needed to determine which features
in the spectra correspond to each class of bacteria and
validate the sensitivity spectra. Target transformation
factor analysis (TTFA) is a useful visualization tool for
complex multivariate data [18, 19]. TTFA furnishes
factor spectra from the mass spectral data sets that
characterize the differences among the mass spectra for
the target classes of bacteria. Therefore, sensitivity and
TTFA spectra should correspond to some extent. The
TTFA spectra give the mass spectral features that cor-
relate with each bacterial class, whereas the TCCCN
sensitivity spectra give mass spectral features that dis-
cern each class. Another difference is that TTFA spectra
depict only linear relations between the mass spectra
and the classes, while the sensitivity spectra may also
depict nonlinear relationships among the spectra and
classes.
The first step of TTFA is to calculate the principal

components from the mass spectral data. The principal
components are combined and obliquely rotated so that
one factor is obtained for each class of bacteria. The
mass spectra for each class, when projected on its
corresponding factor spectrum, will yield a score close
to unity and yield a score close to zero on the factors
that correspond to the other bacteria. The eigenvalues
correspond to the relative amount of variance spanned
by each principal component or factor spectrum.
Each mass spectrum was normalized to unit vector

length to correct for any differences in concentration.
The average spectrum of the mass spectral data set was
subtracted from each spectrum, so that the constant
features in the spectra would be removed. This set of
mass spectral data was then decomposed using singular
value decomposition (SVD) [20]. The decomposition
yielded sets of row (V) and column (U) space eigenvec-
tors and a square diagonal matrix of singular values (S).

X � USVT (4)

for which X is the set of normalized and mean-centered
mass spectra. SVD gives the principal components for
which V corresponds to the principal components and
the mass spectral scores comprise the product of US.
The squared singular values characterize the relative
amount of variance spanned by each principal compo-
nent. Twenty-six of these components spanned 99% of
the cumulative variance of the data set and they were
used in the following factor analysis.
The matrix of class target values, Y as defined in eq

1, is also used as the target for factor rotation. The
transformation matrix (T) is used to rotate the row
eigenvectors V to furnish factor spectra for each target
class. The transformation matrix (T) was calculated

using the column eigenvectors from the SVD of the
mass spectral data set X as given in eq 4.

T � UTY (5)

Ŷ � UT (6)

for which Y is composed of columns of target values
that were used to train the neural networks, T is the
transformation matrix, U is the set of principal (i.e.,
reduced set of 26) column-space eigenvectors, and Ŷ is
the estimated target matrix. The factor spectra, F, were
obtained by regressing the matrix of variable loadings
V onto the target vectors T, which has 26 rows and 5
columns (i.e., one for each class).

F � VT
TTT��1 (7)

The factor spectrum for each class is a column of F.

Experimental Section

Reagents and Instrumentation

All chemicals were purchased from Sigma Chemical
Co. (St. Louis, MO) and were used without further
purification. Bacillus anthracis (spores and cells), Fran-
cisella tularensis, Yersinia pestis, and Brucella melitensis
were obtained as gamma-killed freeze-dried cells from
the Armed Forces Institute of Pathology (Washington,
DC). These samples were prepared as 10 mg/mL water
suspensions. For mass spectral analysis, 15 �L of the
bacterial suspension was coinjected with 5 �L of 1 M
tetramethylammonium hydroxide (TMAH) in water
immediately prior to pyrolysis [11, 21]. TMAH and
similar derivatization reagents have been used on bac-
teria to chemically lyse the biopolymers and increase
the volatility of analytes, allowing analysis by gas
chromatography and mass spectrometry [22, 23]. This
reagent also enhances membrane permeability, as the
methylation process forms products that are less polar
than the underivatized species [21].
All analyses were performed using a chemical/

biological mass spectrometer (CBMS) that is an air
buffered quadrupole ion trap mass spectrometer fitted
with an infrared pyrolyzer (Bruker-Franzen, Bremen,
Germany) [21]. See Figure 1 for a schematic of the
instrument. The quartz pyrolysis chamber is a 4 cm tube
with an i.d. of 3 mm and an o.d. of 4 mm. Centered in
this chamber is a quartz frit (3 mm thickness), upon
which the sample is collected prior to pyrolysis. During
thermal hydrolysis and methylation, a temperature of
450 °C was maintained for 55 s. THM products were
transferred through a three meter deactivated fused
silica transfer line using air as the carrier gas at a flow
rate of 1.5 L/min. All thermal reactions were performed
in air at atmospheric pressure. The transfer line was
held at a temperature of 180 °C and the furnace base
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unit was held at a temperature of 200 °C. A temperature
of 200 °C was used for the silicone membrane that
interfaces the transfer line to the ion trap mass spec-
trometer. The quadrupole ion trap pressure was main-
tained at 5.0� 10�5 torr. Electron ionization (70 eV) was
used for all analyses. Ionization times were automati-
cally controlled and varied from 50 �s to 15 ms to
prevent space charge effects from occurring in the trap.
An ion cooling time of 50 �s was used prior to scanning.

Hardware and Software

The TTFA and TCCCN programs were written in C��
and compiled using Borland C�� 5.02. The code was
executed on a 450 MHz Pentium II computer with 128
MB of RAM that operated under Windows NT 4.0 SP6.
All calculations used single-precision (32 bit) floating-
point arithmetic. The TCCCNs trained within 2 min for
both the single network models with multiple outputs
and the multiple network models with single outputs.
Random numbers were obtained from the uniform
random number function and were then randomly
shuffled [20]. The random seed values for the random
number generator were 10 digit random numbers.

Target Transformation Factor Analysis

The principal components were calculated using SVD
[20]. The number of principal components was calcu-
lated so that 99% of the variance in the mass spectral
data set would be spanned. The number of components
that spanned 99% of the variance was 26. Other num-
bers of components (i.e., 20 and 156) only marginally
affected the factor spectra. The TTFA calculated five
factors that characterized class differences. A pseudo-
inverse T� calculated using a second SVD computation
replaced T(TTT)�1 in eq 7. The pseudoinverse used one
ppm of the summed singular values as its threshold
criterion.

Evaluation of the Neural Network Models

The 214 pyrolysis mass spectra were grouped into the
five classes that are given in Table 1. Each bacterial class

comprised several sub-species. In addition, a two level
factorial design was used with the bacteria cultivated
on different media and different culture times. Each
sample (i.e., bacterial subspecies, media, and culture
time) furnished four spectra collected at different times.
Ten spectra were removed from this data set, because
they were of poor quality. Further details may be found
in Hendricker et al. [21]. The Bacillus anthracis spores
and cells were grouped into separate classes because
their mass spectra were different. The data were parti-
tioned into training and test sets using the Latin-
partition method [14]. The test sets were used to eval-
uate the predictability of the neural network models.
Every neural network was trained so that a model

was obtained once the 10% RRMSEC criterion was
satisfied. The TCCCNs converged for all cases to a
relative training error below 10%. No TCCCN models
were excluded because they performed poorly.
The Latin-partition method [14] builds sets of train-

ing and test set pairs so that each spectrum occurs once
and only once among the partitioned test sets. The
advantage of this method is that the entire set of spectra
is evaluated as opposed to a subset. The method ran-
domly draws spectra without replacement from the
training set for each test set. Each class is represented in
the same proportions in the training and test sets that
are found in the entire data set. The effects of partition-
ing and the neural network training were evaluated by

Figure 1. Schematic of the chemical/biological mass spectrome-
ter (CBMS).

Table 1. THM-MS data of the five bacteria classes with species
and sub-species

Class Sample

Number
of

spectra

A Bacillus anthracis cells 33
Vollum
Zimbabwe
Ames
Sternes

S Bacillus anthracis spores 32
Vollum
Zimbabwe
Ames
Sternes

B Brucella melitensis 60
melitensis/Wild
melitensis/Rev-1
Suis
abortus/Wild
abortus/S19/vac

F Francisella tularensis 43
Type A/Utah
Palaeartica
LVS

Y Yersinia pestis 46
195/P India
La Paz
Nair Kenya
A1122 California
EV76

Total 214
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using different seeds for the random number genera-
tion in the partitioning algorithm and the initial neural
network models.
In this work, the effect of randomly partitioning the

data into training and test sets was investigated. A
Latin-partition split the data so that 75% of the spectra
comprised a training set and 25% of the spectra com-
prised the test set. Every spectrum in the entire set of
data was used once and only once among the four test
sets obtained from these partitions. The prediction
results of the four test sets were pooled to yield statistics
that characterized the entire set of 214 spectra. The
partitioning was evaluated with five replications, so
that the effect of the random drawing of the data could
be evaluated. This set of experiments resulted in twenty
neural network models and evaluations.

Results and Discussion

Data Preprocessing

The mass range between m/z 146 and 398 was used
because this range was optimal for detecting character-
istic bacterial fatty acid methyl ester (FAME) peaks.
This range avoids mass spectral peaks that correspond
to the TMAH reagent. Before training and testing, each
spectrum was normalized so that it had a unit vector
length. The network models identified classes with
output values that were greater than or equal to 0.5, and
output values less than 0.5 indicated that a class was not
present.

Principal Component Analysis

Principal component analysis was applied to the entire
set of mass spectra. The scores of the 214 objects of five
classes of bacterial mass spectra using the first two
principal components are given in Figure 2. The prin-
cipal component scores were obtained from SVD of the
mean-centered data set. The spectral scores on addi-
tional components did not indicate any further cluster-
ing of the bacteria, which could be expected because the
experimental factors of sub-species, culture times, and
growth media were varied for each bacterial class. The

Francisella tularensis (F) spectra are almost linearly sep-
arable from the other classes with the exception of a
single Brucella melitensis (B) spectrum; however, no
linearly separable region is observed among the other
classes for the first two principal components observa-
tion scores.

Neural Network Classification Models

The first set of experiments used Latin partitions to
create four training-test set pairs. The partitioning and
network training processes were run five times so that
twenty prediction set results were obtained. Each neu-
ral network output unit corresponds to a target class.
The prediction results were pooled for each set of four
partitions. The results are presented in Table 2 for single
neural network models with five outputs. The figures of
merit (FOM) in Table 2 are described in the following
paragraphs.
The root mean square standard error of prediction

(RMSEP) is calculated by a similar formula as the

Figure 2. Scores of the THM-MS objects on the first two principal
components of the THM-MS data set: Bacillus anthracis cells (A)
and spores (S), Brucella melitensis (B), Yersinia pestis (Y), and
Francisella tularensis (F). The percent variance spanned by each
component is given with the axis label.

Table 2. Results from 5 sets of Latin partitions using a 75%/25% split of the training and testing data

RMSEPb RRMSEPc FPd FNe HIf

Run 1 0.11 0.28 8 7 207
Run 2 0.11 0.26 6 8 206
Run 3 0.09 0.22 2 6 208
Run 4 0.14 0.35 8 14 200
Run 5 0.13 0.33 10 10 204
Averagea 0.11 	 0.02 0.29 	 0.06 6.8 	 3.8 9.0 	 3.9 205.0 	 3.9

aThe average results for the prediction with multiple output TCCCN models are accompanied with a 95% confidence interval.
bRoot mean standard error of prediction.
cRelative root mean square error of prediction.
dNumber of false positive.
eNumber of false negative.
fNumber of correct identifications.
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RRMSEP and RRMSEC in eq 1 except the denominator
is the product of the number of objects n and classes p,
and the prediction results from the test sets are used
instead of the estimates from the calibration sets. RM-
SEP is a good measure of the selectivity of the neural
network model. The RMSEP will be low when the
correct target class output value is 1.0 and all the other
class outputs are zero.
In addition, the same data sets were used to compare

prediction results with a reference method. Discrimi-
nant partial least squares (DPLS) [24] was used to
compare prediction results with the TCCCN. DPLS
models used the same classification rules and pre-
processing as the TCCCN models. Because TCCCN
models were not optimized, a reference method such as
DPLS was used to verify that the TCCCN classification
performance was satisfactory. The PLS program was
written in C�� and implemented the orthogonal PLS-2
algorithm [25, 26]. The number of latent variables was
selected to yield the minimum RMSEP for each set for
the four training-test set pairs. The resulting DPLS
FOMs were biased for the Latin-partitions, but yield a
good lower bound for the prediction errors.
The average value for the DPLS RMSEPs for the five

Latin partitions was 0.17 	 0.04. The precision is a 95%
confidence level obtained from a t-statistic. In Table 2,
the TCCCN furnished a lower RMSEP of 0.11 	 0.02,
and the TCCCN prediction results were unbiased and
obtained from neural network models that were not
optimized but trained to a predetermined RRMSEC of
10%. A reason the TCCCN furnishes lower RMSEP
values is that the sigmoidal output units can fit the
binary structure of encoded classes, which is more
difficult for PLS and other linear classifiers. The other
biased PLS classification FOMs were statistically similar
to the results reported in Table 2 and Table 3.
The neural network outputs ranged between 0 and 1.

A classification criterion of 0.5 was used, so that outputs
that were greater than or equal to 0.5 indicated class
membership. Therefore, three informative statistics are
the number of false positives (FP), false negatives (FN),
and the hit index (HI). A false positive occurs when a
bacterial class is misidentified as present (i.e., the net-
work output is greater than or equal to 0.5 and the
target value is 0). A false negative occurs when a
bacterial class that is present is not recognized by the
neural network model (i.e., the network output is less

than 0.5 and the target value is 1). The HI is a measure
of correct recognition (i.e., the network output is greater
than 0.5 and the target value is 1). The sum of HI and
FN should equal the total number of spectra for these
data sets. All the averages are accompanied by 95%
confidence intervals that characterize the variations of
partitioning the test sets and training the neural net-
work models with different randomized weights.
A poorly conditioned class of bacterial samples

could have a detrimental impact on the entire neural
network model, thus having multiple networks with
single outputs may provide better classification. Be-
cause each class has its own network, the poorly con-
ditioned class would be isolated and not introduce
errors into the other classifications.
A second evaluation was run on the same design. For

this evaluation, five neural network models were used
with a single output. The run numbers correspond to
the same sets of training-test set pairs for the two
evaluations; in this case, five neural network models for
which each network model recognizes a single target
class. The prediction results of this study are presented
in Table 3.
The results from the two studies are interesting

because they indicate that using multiple networks with
single outputs provided no tangible benefits for these
data. The results indicate a marginal improvement for
using a single network with multiple outputs. How-
ever, a paired t-test revealed that the multiple output
network model was significantly better with 95% con-
fidence for the FP statistic and 90% confidence for the
RMSEP values.
The prediction results for the five Latin-partitions of

the multiple output TCCCN (i.e., reported in Table 2)
were rearranged into a confusion matrix. The confusion
matrix comprises rows that correspond to the target
classes and columns that correspond to the TCCCN
output for the target class [27]. The number of correct
classifications for each class is located along the diago-
nal of the matrix. The numbers of misclassifications are
located in the off-diagonal elements. When a spectrum
is misclassified, the mistaken bacterial class is indicated
by the column of the off-diagonal result. If two classes
of bacteria are confused by the model, then large values
will occur on the off-diagonal elements indicated by the
rows of the true bacterial classes and columns of the
mistaken classes.

Table 3. Results from 5 sets of Latin partitions using a 75%/25% split of the training and testing data

RMSEP RRMSEP FP FN HI

Run 1 0.12 0.31 13 8 206
Run 2 0.14 0.34 11 13 201
Run 3 0.10 0.26 3 8 206
Run 4 0.14 0.35 13 12 202
Run 5 0.14 0.36 13 13 201
Averagea 0.13 	 0.02 0.32 	 0.05 10.6 	 5.4 10.8 	 3.2 203.2 	 3.2

aThe average results for the prediction with single output TCCCN models are accompanied with a 95% confidence interval.
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Because outputs from the TCCCN models greater
than 0.5 are used to classify bacteria as opposed to using
the largest output from the neural network, a single
spectrum may result in several misclassifications. In
addition, a spectrum may not be classified into any of
the target classes when all of the TCCCN outputs are
less than 0.5. Thus, a column labeled null estimate
indicates the number of times no class assignment is
made for each class. For poor quality spectra, a null
estimate is preferable to wrongly classifying the spec-
trum.
The confusion matrix presented in Table 4 contains

the average prediction results for the five partitions. A
value of 0.2 would indicate that a misclassification
value occurred only once during the five evaluations
and a value of 0.6 would indicate that a misclassifica-
tion occurred three times for the five evaluations.
In Figure 2, one spectrum for Brucella melitensis (B) at

approximate coordinates of 0.1, �0.1, is located close to
the Francisella tularensis (F) cluster, which makes it an
obvious candidate for misclassification. This point was
misidentified in all five of the PLS Latin-partitions;
however, it was correctly classified by a single run (i.e.,
Latin-partition) with the TCCCN, misclassified by three
runs, and in one run no classification was made for this
spectrum. These results appear in Table 4 for which the
three misclassifications for this spectrum were for Fran-
cisella tularensis (F) and one occurred as a null estimate
(i.e., no classification).

Assessment of Important Mass Spectral Features

A method for identifying the important variables from
TCCCN models has been devised using sensitivities

[17]. Characteristic features for each class are variables
that have large sensitivities. Five TCCCN models were
built by using the entire set of THM-MS data, training
the TCCCN to a 10% RRMSEC and using different
random starting conditions. The sensitivity for each
class was scaled by its largest sensitivity value (i.e.,
normalized to a maximum intensity of unity) to furnish
relative sensitivities. The relative sensitivities for each
class from the different TCCCN models were averaged
and plotted with respect to m/z values. The larger
absolute sensitivities are given in Tables 5, 6, 7, 8, and 9.
In many instances, the sensitivities would be similar but
differ in scale, which yielded the larger confidence
intervals. This approach was used to remove absolute
variations among scale from the replicate sensitivity
measurements. The size of the sensitivities indicates the
relative importance of mass spectral peaks for the
TCCCN classification. The positive features indicate
peaks that are characteristic for a class; the negative
features indicate peaks that are characteristic of the
other classes in the data set. A model linearity test was
applied to the TCCCN classification models as de-
scribed in reference [17]. For all classes this test for
linearity indicated that TCCCN models were simple
and linear.
There are several steps to validating the neural

network model. First, the TTFA spectrum should be
compared to the sensitivity spectrum. The two should
have some peaks in common and peaks that point in
similar directions. Bad neural network models that
overfit the training mass spectra set will give sensitivity
spectra that resemble white noise or are very noisy [17].
The next step is to examine the m/z of the larger peaks
in the sensitivity spectrum for correspondence to

Table 4. Confusion matrix from the 5 sets of Latin partitions using a 75%/25% split of the training and testing dataa

True A est. S est. B est. F est. Y est. Null est.

A 32 	 0.9 0.6 	 1.1 0 0 0.2 	 0.6 0.2 	 0.6
S 1.4 	 0.7 29.6 	 1.4 0 0 0.8 	 1.4 0.2 	 0.6
B 0 0 58.4 	 1.9 0.6 	 0.7 1 	 1.8 0.2 	 0.6
F 0.2 	 0.6 0.2 	 0.6 0 43 	 0.0 0 0
Y 0.8 	 1.0 0 0.4 	 0.7 0 43.4 	 1.9 1.4 	 1.4

aThe average results for the prediction with multiple output TCCCN models are accompanied with a 95% confidence interval. Each row represents
the true class and each column represents the average output classification across the five replicated partitions. Null estimate indicates that no
classification was made for an object.

Table 5. Largest average sensitivities with 95% confidence intervals for Bacillus anthracis cell class (A) and single TCCCN multiple
output models

m/z Absolute sensitivity
Relative

sensitivity
TTFA

loading
Probable
sourcea

168 (2.05 	 1.88) � 10�5 100 	 0% 44% Protein
188 (2.02 	 1.95) � 10�5 94 	 16% 85% Protein
162 (4.10 	 6.69) � 10�6 47 	 54% 29%
163 (3.53 	 3.24) � 10�7 20 	 43% 100%
193 (1.85 	 3.38) � 10�7 0.5 	 9% 62%
194 (5.99 	 9.24) � 10�8 0.9 	 1.8% 29% Protein

aThe source for each peak is postulated on published information.
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Table 6. Largest average sensitivities with 95% confidence intervals for Bacillus anthracis spores class (S) and single TCCCN multiple
output models and the corresponding relative TTFA loading

m/z Absolute sensitivity
Relative

sensitivity
TTFA

loading Probable sourcea

196 (3.98 	 3.67) � 10�5 100 	 0% 100% Dimethyl dipicolinic acid
215 (3.98 	 3.67) � 10�5 100 	 0% 37% Protein
166 (3.98 	 3.67) � 10�5 100 	 0% 40%
241 (3.98 	 3.67) � 10�5 100 	 0% 10% Lipid or protein
216 (3.98 	 3.67) � 10�5 100 	 0% 18% Protein
202 (3.97 	 3.66) � 10�5 100 	 0% 22% Protein
163 (3.97 	 3.69) � 10�5 94 	 9% 31%
164 (3.96 	 3.65) � 10�5 91 	 2% 11%
188 (3.93 	 3.62) � 10�5 99 	 1% �74% Protein
174 (3.93 	 3.61) � 10�5 96 	 5% 5% Protein or lipid

aThe source for each peak is postulated on published information.

Table 7. Largest average sensitivities with 95% confidence intervals for Brucella melitensis (B) class and single TCCCN multiple
output models and the corresponding relative TTFA loadings

m/z Absolute sensitivity
Relative

sensitivity
TTFA

loading
Probable
sourcea

235 (3.38 	 3.11) � 10�5 100 	 0% 100% Protein
249 (3.38 	 3.11) � 10�5 100 	 0% 52% Protein
161 (3.38 	 3.11) � 10�5 100 	 0% 22% Protein
175 (3.37 	 3.11) � 10�5 100 	 0% 23% Protein
179 (3.37 	 3.11) � 10�5 100 	 0% 25%
207 (3.37 	 3.10) � 10�5 100 	 0% 12% Protein
148 (3.37 	 3.10) � 10�5 100 	 0% 17%
189 (3.37 	 3.10) � 10�5 100 	 0% 28% Protein
149 (3.36 	 3.10) � 10�5 100 	 0% 25%
264 (3.35 	 3.09) � 10�5 99 	 1% 28% Lipid

aThe source for each peak is postulated on published information.

Table 8. Largest average sensitivities with 95% confidence intervals for Francisella tularensis (F) class and single TCCCN multiple
output models and the corresponding relative TTFA loadings

m/z Absolute sensitivity
Relative

sensitivity
TTFA

loading
Probable
sourcea

199 (3.25 	 3.00) � 10�5 100 	 0% 100% Lipid
185 (3.25 	 3.00) � 10�5 100 	 0% 59% Lipid
255 (3.25 	 3.00) � 10�5 100 	 0% 59% Lipid
213 (3.25 	 3.00) � 10�5 100 	 0% 30% Lipid
227 (3.25 	 3.00) � 10�5 100 	 0% 28% Lipid
241 (3.25 	 3.00) � 10�5 100 	 0% 22% Lipid
297 (3.25 	 3.00) � 10�5 100 	 0% 39% Lipid
269 (3.25 	 3.00) � 10�5 100 	 0% 33% Lipid
157 (3.25 	 3.00) � 10�5 100 	 0% 34% Lipid
298 (3.25 	 2.99) � 10�5 100 	 0% 30% Lipid

aThe source for each peak is postulated on published information.

Table 9. Largest average sensitivities with 95% confidence intervals for Yersinia pestis class (Y) and single TCCCN multiple output
models and the corresponding relative TTFA loadings

m/z Absolute sensitivity
Relative

sensitivity
TTFA

loading
Probable
sourcea

179 (0.62 	 1.33) � 10�5 20 	 56% 20%
148 (0.60 	 1.29) � 10�5 19 	 54% �9% Nucleic acid
233 (0.45 	 1.00) � 10�6 2 	 4% 46% Protein
160 (4.22 	 6.27) � 10�7 2 	 5% 34% Protein
178 (1.79 	 2.27) � 10�7 67 	 .58% 100% Nucleic acid
214 (4.68 	 6.96) � 10�8 39 	 58% 31% Protein
158 (3.84 	 5.17) � 10�8 31 	 51% 66% Protein

aThe source for each peak is postulated on published information.
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known biomarker peaks. For example, peaks corre-
sponding to pump oil appearing in the sensitivity
spectrum would be undesirable. Lastly, the confidence
intervals of the larger peaks in the sensitivity spectra
indicate the stability and the reproducibility of the
TCCCN models. They also indicate whether the inten-
sity of the peak is important for the classification.
Negative peaks in both the TTFA and TCCCN spectra
are characteristic for the other bacterial classes.
The class average spectrum, the TTFA spectrum, and

the TCCCN normalized averaged sensitivity spectrum
for the Bacillus anthracis vegetative spectra is given in
Figure 3. The low mass range of m/z 150–250 contains
the characteristic peaks in both the TTFA loadings and
in the neural network model sensitivities. The differ-
ence between the significant peaks in sensitivity and the
TTFA spectra can be seen in Table 5. This class and the
Yersinia pestis class were two classes that exhibited a
large degree of variability among the relative sensitivi-
ties. They also were the two classes with a few sensi-
tivities dominating the classification model. The vari-
ability in sensitivity is caused by model ambiguity
because only a few peaks in the spectrum are needed
for classification. The neural network models used

different peaks for replicate models to classify these two
sets of bacteria (A and Y).
The Bacillus anthracis classes (A and S) gave the

sensitivity spectra with the largest average values (see
Tables 5 and 6). For the Bacillus anthracis spores, the
peak at m/z 196 in Table 6 and Figure 4 corresponds to
the (M � H)� ion of the dimethylated derivative of
dipicolinic acid. Dipicolinic acid is a well-recognized
and common component of sporulated bacilli. The
TTFA variable loadings in Figure 4 contain small peaks
at high mass (m/z 300–400).
Good agreement was obtained for the Brucella

melitensis sensitivity spectrum and the TTFA loadings in
Figure 5. The largest averaged sensitivities are listed in
Table 7. Sensitivities that all have the same intensity
indicate that the corresponding intensities of the mass
spectral peaks were unused by the TCCCN classifica-
tion model. Because many of the peaks in the sensitivity
spectrum are at 100% indicate that peak intensity, the
corresponding spectral peaks in the input spectrum
were used qualitatively for discrimination (i.e., only the
existence and not the intensity of the peak was used to
classify the spectrum). Most of these peaks correspond
to peptide ions.

Figure 3. The average THM-MS spectrum for B. anthracis (A), the
TTFA spectrum, and the average sensitivity spectrum obtained
from the TCCCN model.

Figure 4. The average THM-MS spectrum for B. anthracis spores
(S), the TTFA spectrum, and the average sensitivity spectrum
obtained from the TCCCN model.
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For Francisella tularensis both the TTFA and sensitiv-
ity spectra indicate that the m/z range from 200–350
contains much of the important information classifica-
tion (see Figure 6). Table 8 gives a comparison between
the average sensitivities, average relative sensitivities,
and TTFA results. The characteristic sensitivities corre-
spond to saturated fatty acid methyl esters and carbo-
methoxy fragmentation series.
The sensitivities had very good reproducibility for

every class except for the Yersinia pestis class (see Table
9 and Figure 7). In the TCCCN models, only a few
sensitivities values were large. This class exhibited a
large degree of variability among the TCCCN models
obtained from different random conditions. For the first
TCCCN model, m/z 160 and 178 were the two larger
sensitivities. For the second TCCCNmodel, m/z 179 and
148 were the two larger sensitivities. For the third
through fifth TCCCN models, excellent repeatability
was achieved with the largest sensitivities at m/z 178
and 215. The results reported in Table 9 and Figure 6
were average sensitivities of these five models. The
peak at m/z 178 is a DNA base peak and the peak at m/z
215 is a protein oxidation product. There was an intense
negative sensitivity peak at m/z 162 that dominated in

magnitude four of the five models that was used for
distinguishing Yersinia pestis (Y) spectra from the Bacil-
lus anthracis (A) spectra. For these two classes, the mass
spectral peaks over m/z 200 were not useful for classi-
fication. The lack of discerning peaks in the spectra may
explain the larger variability in the replicated sensitivity
spectra for these two classes.

Conclusions

Target transform factor analysis, a linear multivariate
tool for exploratory analysis, was demonstrated for
validating neural network models and visualizing fea-
tures in complex multivariate data sets. The neural
network model should no longer be considered a black-
box classifier. Instead, using sensitivity analysis allows
the relationships among the input variables and the
output properties to be studied. Prediction results and
the test of linearity demonstrated that no benefits were
obtained from multiple network single output models.
For some classes of bacteria different mass ranges were
used for classification by the TCCCN models. In other
cases, the magnitudes of the mass spectral peaks were
not utilized by the neural network models. Discarding

Figure 6. The average THM-MS spectrum for F. tularensis (F), the
TTFA spectrum, and the average sensitivity spectrum obtained
from the TCCCN model.

Figure 5. The average THM-MS spectrum for B. melitensis (B),
the TTFA spectrum, and the average sensitivity spectrum ob-
tained from the TCCCN model.
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magnitude information is an attribute of nonlinear
classifiers. Furthermore, characteristic features were
recognized as originating from protein, lipid, or nucleic
acid sources and corresponded to other known biomar-
kers.
The neural network models recognized the target

bacteria from their THM-MS spectra with 96 	 2%
accuracy and had a false alarm rate of 3 	 2%. The
measures of precision are 95% confidence intervals.
These results were obtained without the time-consum-
ing process of optimizing the neural networks, but
instead training to a reasonable classification threshold
of a 10% RRMSEC. In addition, the TCCCN models
yielded significantly lower prediction errors than PLS
models that were optimized to yield the lowest possible
prediction errors.
For visualizing and discovering characteristic fea-

tures in intricate multivariate data sets, TTFA was
demonstrated as a useful tool. The sensitivity models
corresponded well with the TTFA spectra for the bac-
teria classes. A procedure for calculating relative sensi-
tivities was developed to control a main source of
variation of scale that occurs among replicate TCCCN
models.

Single networks comprised of multiple outputs fur-
nished simpler classification models that were less
susceptible to variations introduced in partitioning the
calibration and test sets. Both the multiple network
models with single outputs and single network models
took similar amounts of time (i.e., less than 2 min on a
personal computer) to train for these data sets. The
sensitivities of the TCCCNmodels were similar for both
the single output and multiple output networks and
agreed with the variable loadings obtained from TTFA
using the class designations as targets. Furthermore, the
sensitivity spectra indicate that the neural network
models are using mass spectral features for classifica-
tion that have been identified as biomarkers in previous
studies. The TCCCN provides a robust, reliable, and
rapid tool for solving complex classification problems.
Sensitivity spectra provide useful diagnostics for as-
sessing neural network models and the causal relation-
ships between the input data and the target classes.
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