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Abstract 

Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signal‑
ing. To advance our understanding of plant biology and facilitate innovations in plant‑based product development, 
we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive 
overview of current research investigating plant lipids, including their structures, metabolism, and functions. We 
explore major lipid classes, i.e. fatty acids, glyceroglycolipids, glycerophospholipids, sphingolipids, and phytosterols, 
and discuss their subcellular distributions. Furthermore, we emphasize the significance of lipidomics research tech‑
niques, particularly chromatography‑mass spectrometry, for accurate lipid analysis. Special attention is given to lipids 
as crucial signal receptors and signaling molecules that influence plant growth and responses to environmental 
challenges. We address research challenges in lipidomics, such as in identifying and quantifying lipids, separating 
isomers, and avoiding batch effects and ion suppression. Finally, we delve into the practical applications of lipidomics, 
including its integration with other omics methodologies, lipid visualization, and innovative analytical approaches. 
This review thus provides valuable insights into the field of plant lipidomics and its potential contributions to plant 
biology.
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1 Introduction
Lipids are small hydrophobic or amphipathic molecules 
that are readily soluble in organic solvents. These mole-
cules are vital components of plant cells that play crucial 

roles in many biological processes. Plants have thousands 
of types of lipid molecules, which can be divided into 
fatty acids, glycerolipids, sphingolipids, and sterols based 
on their structures and chemical properties. Some lipids 
participate in the cell membrane system as membrane 
lipids (Horvath and Daum 2013; Kobayashi et  al. 2016), 
some participate in metabolism and the generation of 
energy (Fan et  al. 2019), and others regulate biological 
activities by functioning as signaling molecules (Bi et al. 
2014; Huang et al. 2021; Zeng and Yao 2022). Moreover, 
the lipid layer on the plant epidermis serves as a basic 
protective system for plants (Riederer and Schreiber 
2001).

Fatty acids (FAs) are carboxylic acids consisting of 
a hydrocarbon chain and a terminal carboxylic group 
(Fig.  1) and are mainly produced in plastids. Most 
FAs exist as glycerolipids or sphingolipids, and other 
extracellular lipids (cutin and waxes), and only a few 
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exist in the free state (Lim et  al. 2017). Glycerogly-
colipids are neutral lipids consisting of a diacylglycerol 
and a hexose. The most common glyceroglycolip-
ids in plants include monogalactosyl diacylglycerol 
(MGDG), digalactosyl diacylglycerol (DGDG), and sul-
foquinovosyl diacylglycerol (SQDG). Phytosterols are 
isoprenoid derivatives belonging to the triterpenoid 
family (Fig.  1). Similar to animal sterols, phytosterols 
contain a tetracyclic ring backbone with a hydroxyl 
group at the 3rd carbon atom and an aliphatic side 

chain containing eight to ten carbon atoms at the 17th 
carbon atom (Valitova et al. 2016).

Glycerophospholipids, which are also referred to as 
phospholipids, consist of a diacylglycerol and a polar 
phosphate group. The lipophilicity of glycerol and the 
hydrophilicity of the polar head group make phospho-
lipids amphiphilic, allowing them to easily form a bilayer 
structure, with FA chains toward the inside and polar 
groups toward the outside. Phospholipids are character-
ized as phosphatidic acids (PAs), phosphatidylcholines 

Fig. 1 Structures of major functional lipids. a Chemical structures of common fatty acids, showing the hydrocarbon chain and terminal carboxylic 
group. b Examples of glyceroglycolipid categories. Glyceroglycolipids are neutral lipids consisting of a diacylglycerol and a hexose group. MGDG, 
monogalactosyl diacylglycerol, DGDG, digalactosyl diacylglycerol, SQDG, sulfoquinovosyl diacylglycerol. c Phytosterol consists of a tetracyclic ring 
backbone, with a hydroxyl group at the 3rd carbon atom and an aliphatic side chain containing eight to ten carbon atoms at the 17th carbon 
atom. d A phospholipid molecule consists of a polar phosphate head, which is hydrophilic, and a non‑polar, hydrophobic lipid tail. e The chemical 
structures of representative sphingolipids. Sphingolipids consist of a sphingoid long‑chain base, a fatty acid chain, and a head group
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(PCs), phosphatidylethanolamines (PEs), phosphatidyl-
glycerols, (PGs), phosphatidylinositols (PIs), and phos-
phatidylserines (PSs) based on their polar groups.

Sphingolipids consist of a sphingoid long-chain base 
(LCB), an FA chain, and a head group. Based on the 
head group and FA chain, sphingolipids are character-
ized as glycosyl inositolphosphoceramides (GIPCs), 
glucosylceramides (GlcCers), ceramides, hydroxycera-
mides (hCers), and LCBs, or their phosphate derivatives 
(Fig.  1). In Arabidopsis (Arabidopsis thaliana), GIPCs 
account for 60–65% of total lipids, GlcCers account 
for 30% of total lipids, and the others make up the rest 
(Markham et al. 2006).

In the 1950s, thin-layer chromatography (TLC) was 
the main method used for analyzing lipids. TLC is 
inexpensive and simple and is still widely used in many 
laboratories today. Although TLC can be performed 
easily and quickly for lipid analysis, the accurate iden-
tification and quantification of lipids requires advanced 
techniques. Chromatography-mass spectrometry (MS) 
provides a platform for the accurate analysis of lipids. 
For low molecular weight lipids such as FAs and ster-
ols, gas chromatography (GC) electron-impact MS is 
the most common technique used for analysis (Christie 
et al. 2007). This method was initially used for the sepa-
ration and identification of lipid molecules in high ioni-
zation energy mode. It can also be used to distinguish 
the isomers of double-bonded lipids in low ionization 
energy mode after optimization (Hejazi et  al. 2009b). 
Moreover, field ionization (FI) can be combined with 
orthogonal acceleration time-of-flight mass spectrom-
etry (TOF–MS) and GC × GC to analyze the structures 
of lipids more accurately, even to detect new structures 
(Hejazi et al. 2009a).

Since most lipids require derivatization in gas phase 
mode prior to analysis, sample preparation is a relatively 
complicated process. Incomplete derivatization com-
monly occurs, leading to quantitative and qualitative 
inaccuracies (Beale et al. 2018). Currently, the most com-
monly used strategy in lipidomics analysis is ionization 
prior to MS scanning. The major methods include shot-
gun and other approaches based on liquid chromatogra-
phy-mass spectrometry (LC–MS). With the development 
of ionization techniques and MS, various types of ioni-
zation can be utilized in lipidomics, such as electrospray 
ionization (ESI), matrix-assisted laser desorption/ioniza-
tion (MALDI), atmospheric pressure chemical ionization 
(APCI), secondary ion mass spectrometry (SIMS), and 
desorption ESI (DESI). The analysis methods for tandem 
MS include product ion scan, precursor-ion scan, neu-
tral-loss scan, selected reaction monitoring (SRM), mul-
tiple reaction monitoring (MRM), and others (Yang and 
Han 2016). Using different tandem ionization techniques 

and MS scan mode, we can achieve most of the require-
ments for lipidomics. DESI was recently used as the 
ionization mode to increase the resolution of shotgun 
lipidomics. The rapid, simple, high-throughput nature 
of the shotgun approach makes it the major method in 
untargeted lipidomics. Ultra-high-performance liquid 
chromatography (UHPLC) has gradually replaced HPLC 
in recent years, significantly enhancing the resolution of 
lipid identification (Zullig and Kofeler 2021).

2  The functions of lipids
2.1  Functions of lipids in organelles
Lipids can easily form continuous hydrophobic barriers 
due to their hydrophobic properties. These hydropho-
bic barriers constitute the main area of biological mem-
branes and these membranes divide the eukaryotic cell 
into various independent and functionally related sub-
regions. Phospholipids are the basic units in plant lipid 
membranes, which provide support for other lipids, 
proteins, and polysaccharides. Lipids do not randomly 
exist in membranes; their specific distribution affects 
the structures, functions, and properties of membranes. 
Therefore, identifying the lipid components in different 
membranes is important for unveiling the different func-
tional subregions of plant cells.

The plant epidermis is covered with a continu-
ous transparent hydrophobic layer that regulates the 
exchange of water and gas between the plant and the 
external environment and protects the plant against 
biotic and abiotic stress (Delude et  al. 2016). This 
hydrophobic cover on the plant surface contains large 
amounts of lipids, which attach to the outside of the cell 
wall to form the inner cuticle, surface waxy mixed layer, 
and epidermal waxy outer layer (Samuels et  al. 2008). 
Cutins are a class of lipid polymers primarily formed 
by long-chain FAs. Hexadecane and octadecane fatty 
acids are catalyzed by cytochrome P450 to form dicar-
boxylic acids, which are further converted to mono-
acylglycerol (MAG) by glycerol-3-phosphate acyl-CoA 
transferases (GPATs) (Yang et al. 2012). Cutin Deficient 
1 (CD1), a GDSL family protein discovered in tomato 
(Solanum lycopersicum), catalyzes the polyesterifica-
tion of MAGs in  vitro to produce linear cutin oligom-
ers (Yeats et al. 2014), but the pathway that forms cutin 
polymers remains unclear. In general, cutin forms the 
backbone that supports substances on the plant surface 
and protects plants from mechanical damage. However, 
waxiness plays a vital role in water conservation and 
plant–environment interactions (such as plant–insect 
interactions) (Riederer and Schreiber 2001).

The mitochondrion is the main organelle that produces 
energy in cells, whereas the chloroplast is the site of pho-
tosynthesis in plants. Both organelles have a double-layer 
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membrane. In plant mitochondria, lipids are not sym-
metrically distributed in the inner or outer membrane 
and matrix, but phospholipids are the predominant FAs 
in these regions (PC and PE roughly account for 80% of 
total lipids in mitochondria) (Horvath and Daum 2013). 
The phospholipid cardiolipin (CL), an essential compo-
nent of the respiratory chain (Gohil et  al. 2004), can be 
synthesized from PGs and diacylglycerol (DAG) in mito-
chondria (Liu et al. 2023b). Sphingolipids also are present 
in mitochondria and play vital roles in mitochondria-
associated cell death (Bi et  al. 2014). Interesting, Liu 
et al. (2023b) observed the accumulation of GIPCs in leaf 
mitochondria and suggested that GIPC might function in 
establishing communication between mitochondria and 
other organelles.

Apart from their double-layer membrane structure, 
chloroplasts have also evolved thylakoid membranes. 
The chloroplast-associated nonspecific phospholipase C6 
promotes glycerolipid turnover in the membrane, leading 
to the accumulation of TAG in oil seeds (Cai et al. 2020). 
The sphingolipidome of chloroplasts differed from that 
of other membrane components in total leaf samples, 
with higher concentrations of free long-chain bases and 
hydroxyceramides and a greater proportion of complex 
sphingolipids with 16C FAs (Yang et al. 2024). The chlo-
roplast membrane can affect embryogenesis and germi-
nation by enhancing photosynthetic efficiency (Fujii et al. 
2014; Cook et  al. 2021). More specifically, MGDG and 
DGDG make up 60–80% of total lipids in the chloroplast 
membrane, while the remaining lipids primarily consist 
of SQDG, PG, and trace amounts of PI (Kobayashi et al. 
2016). The distribution of lipids in the chloroplast is 
closely related to chloroplast function (Cook et al. 2021).

Since the plasma membrane functions as a cellular bar-
rier, it encounters external biotic or abiotic stress and 
provides a relatively stable environment, allowing the 
cell to perform various biological functions. The domi-
nant types of lipids in the plasma membrane are phos-
pholipids, sphingolipids, and sterols. Similar to most 
membranes based on a phospholipid backbone, the 
major phospholipids in the plasma membrane are PC 
and PE, which contain long-chain fatty acids, whereas 
the contents of PG, PI, PA, and PS are relatively low. As 
the first gateway for the intercellular exchange of mate-
rials and signal transmission, the plasma membrane is 
rich in polyphosphorylated PIPs, which can act as sign-
aling molecules. The plasma membrane is also rich in 
sphingolipids (comprising ~ 40–50% of total membrane 
lipids), primarily GIPCs (~ 70%) (Grison et al. 2015). The 
head group of negatively charged GIPCs plays a vital role 
in forming and maintaining stable differences in mem-
brane potential. Free sterols constitute the major sterol 
lipid class (∼80%) in the plasma membrane, whereas 

conjugated sterols are present at lower levels (Grison 
et  al. 2015). An evolving model describes how mem-
branes are occupied by fluctuating nanoscale assemblies 
of sphingolipids, sterols, and proteins that can be stabi-
lized into platforms that are important for signaling, viral 
infection, and membrane trafficking (Simons and Gerl 
2010; Chen et al. 2023).

The endoplasmic reticulum (ER), an organelle enclosed 
by a continuous membrane system made of double lipid 
layers, is an extraordinarily active site for the biosyn-
thesis of materials such as lipids, saccharides, and vari-
ous protective compounds (Sparkes et al. 2009). The ER 
membrane provides a relatively stable micro-region for 
substance metabolism and supports most trans-mem-
brane enzymes (Kanehara et al. 2022). Furthermore, the 
ER membrane is in a relatively active, dynamic state and 
can convey the synthesized substance to different loca-
tions of the cell through its extensive network system 
(Sparkes et al. 2009).

The Golgi is a complex formed by a flat sac-like mem-
brane and surrounding vesicles. This organelle is usu-
ally located between the ER and plasma membrane and 
is the main site for intracellular material processing 
(including protein glycosylation modification and lipid 
processing) and material sorting (Dupree and Sher-
rier 1998). From the perspective of lipid composition, 
the dominant components of the ER membrane and 
Golgi membrane are phospholipids, sterols, and sphin-
golipids. The phospholipids primarily include PCs and 
PEs, the sterols are mainly free sterols, and the sphin-
golipids are mainly glucosylceramides (Fouillen et  al. 
2018). In plants, the proportion of various lipids in the 
internal membrane system is relatively stable, and the 
membrane structure will collapse if an imbalance in the 
proportion of lipids occurs. For instance, the accumula-
tion of PEs and PCs will lead to unusual ER membrane 
extensions (Eastmond et al. 2010).

Lipid droplets (LDs), which exist in various organisms, 
contain a hydrophobic core surrounded by a phospho-
lipid monolayer (Xu et  al. 2023). LDs play vital roles in 
seedling development, pollen formation, and abiotic 
stress responses (Ischebeck et  al. 2020). Although the 
size and number of LDs vary in different cells (Xu et al. 
2023), all LDs contain large amounts of neutral lipids, 
specifically storage lipids (such as TAG and steryl esters). 
These neutral lipids can be synthesized de novo from the 
ER membrane and can also form from redundant struc-
tural membrane lipids or other lipids via lipotransferase 
(Zhang et  al. 2009). Vast amounts of neutral lipids can 
aggregate into the convex point in the ER lumen. When 
the convex point reaches a certain size, it is released into 
the plasma to form simple LDs covered by a phospholipid 
monolayer. The hyper-accumulation of most lipids in 
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plants, such as FAs, PAs, ceramides and sterols, can cause 
significant harm to cells. Storage lipids, which function as 
energy substances in the cell, are one of the main sources 
of metabolic energy production from lipids. Through the 
process of lipophagy, TAGs in LDs can be degraded into 
free FAs, which can enter mitochondria or peroxisomes 
to produce energy for various cellular activities (Fan et al. 
2019). These storage lipids in plants, especially TAGs, are 
the main components of lipids in seed oils. It is impor-
tant to increase the accumulation of TAGs and other 
storage lipids in oilseed crops.

2.2  The functions of lipids as signaling molecules
Recent research indicates that lipids are not only the 
basic units of the membrane system but also the primary 
receptors of intracellular and extracellular signaling sub-
stances, responding to and transmitting these signals. 
The plasma membrane of Arabidopsis contains large 
amounts of GIPCs, which can combine with  Na+ and reg-
ulate  Ca2+ channels in the plasma membrane, function-
ing as receptors for salt-stress signals (Jiang et al. 2019). 
GIPCs can also function as receptors to identify Necrosis 
and Ethylene-inducing Peptide 1-like (NLP) proteins, a 
class of toxic proteins from pathogens, in plant–pathogen 
interactions (Lenarcic et al. 2017).

Several types of free lipids, such as free FAs, phospha-
tidic acids, sphingosines, and ceramides, act as signal-
ing molecules to regulate various biological processes 
in plants. Free FAs interact with plant hormones during 
growth, development, and responses to external stress. 
Some oxidized forms of unsaturated FAs (such as ara-
chidonic acid, linoleic acid, and alpha-linolenic acid) 
can act as signaling molecules to activate most physi-
ological responses in  vivo. For example, the oxidized 
form of alpha-linolenic acid is a precursor of jasmonate 
(JA) (Tang et  al. 2024), thereby functioning in the JA-
mediated pathway, and affects the formation of plant 
cell walls and protective responses to insects. Moreo-
ver, the C18:2 and C18:3 linoleic acids in plants directly 
affect the plant’s ability to defend against pathogens 
(Ongena et al. 2004).

Glycerophospholipids (such as PAs, PIs, and their 
phosphorylated forms) are thought to function as signal-
ing molecules. PAs function as crucial secondary messen-
gers during plant responses to external stimuli and stress. 
When plants are infected with pathogens, large amounts 
of PAs accumulate to increase reactive oxygen species 
(ROS) production and the hypersensitive response (Lax-
alt and Munnik 2002). PIs also serve as critical signaling 
molecules, which not only interact with proteins to acti-
vate their functions but can also be degraded to the form 
the soluble signaling molecules inositol polyphosphates 

(IPPs) via the activity of PI-phospholipase C (PI-PLC) 
(Gunesekera et al. 2007).

Sphingolipids, including free sphingosines (long 
chain bases, LCBs), ceramides, and their phosphoryl-
ated forms, are vital signaling molecules (Bi et  al. 2014; 
Zeng and Yao 2022). LCBs/LCB-Ps and ceramides/
ceramide-1-Ps function as pairs of signaling molecules 
responsible for programmed cell death. The LCB compo-
nent 4-hydroxysphinganine activates ROS to upregulate 
resistance-related genes and causes plant cell death to 
strengthen the plant’s defensive ability against pathogens 
(Peer et al. 2010; Liu et al. 2020b; Zeng et al. 2021; Zeng 
and Yao 2022). A recent study showed that the JA-medi-
ated pathway also affects the metabolism of ceramides. 
For instance, JA induces the accumulation of ceramides 
and hydroxyceramides and is involved in regulating the 
transcription of ceramide-related genes. The deficiency 
of sphingolipid-related enzymes impairs the defensive 
function of JA against insects (Huang et al. 2021 & 2022).

3  Analysis of plant lipids: mass spectrometry 
platforms

The lipidome (the total contents of molecular species 
of each lipid class) is analyzed using lipidomics tech-
niques. Although many lipidomic approaches may not 
fully uncover the subtleties of different molecular species 
of lipids, such as the complete FA compositions of cer-
tain lipid classes (Romsdahl et al. 2022), several LC–MS 
methods have been successfully employed to characterize 
and quantify the lipidome (Herrfurth et al. 2021; Kehel-
pannala et  al. 2021). Here, we describe the entire lipid-
omics workflow  and highlight the crucial points.

3.1  Key elements of the mass spectrometry platform 
to analyze plant lipids

MS-based lipidomics is rapid compared to traditional 
lipid analysis techniques such as TLC. Because MS 
measurements are based on mass-to-charge ratios (m/z), 
ionization is essential for this process. Ionization causes 
sample components to become positively or negatively 
charged. The ion-source parameters and their optimum 
values depend on the specific electrospray ionization 
source applied. For example, in some ionization source 
designs, the optimum voltage difference between the 
needle and counter-electrode is approximately 4.5–5 
kV, while the optimum voltage is approximately 3 kV in 
other designs. Most commonly used systems allow for 
automatic optimization of the parameters for the ion 
source and mass spectrometer. These procedures search 
for optimum ion production and transmission toward 
the analyzer.

Mass analyzers (also known as separators) are another 
basic component of mass spectrometers. After ionization, 
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the ions are accelerated into mass analyzers for sepa-
ration. Various types of field mass spectrometers are 
employed, which use magnetic sectors or additional elec-
trostatic sectors, such as quadrupole mass spectrometers, 
time-of-flight mass spectrometers (TOF–MS), or ion trap 
mass spectrometers. To achieve fragmentation, multiple 
analyzers are combined (MS/MS mass spectrometry). 
The major types of mass spectrometers that are currently 
used for lipidomic analysis are triple quadrupole (QqQ), 
quadrupole TOF (Q-TOF), Q-linear ion trap (Q-LIT), 
and LIT-Fourier transform ion cyclotron resonance (LIT-
FT-ICR) (Wu et  al. 2020). The modular instrumentation 
strategy promotes the combination of various sample 
introduction systems, ion sources, analyzers, and detec-
tors. This approach provides a high degree of flexibility 
in instrumentation to effectively address the challenges 
encountered in lipidomics. The performance of various 
MS modules may vary, which can be observed in terms 
of sample stability, detection sensitivity, and other factors. 
Users can select the most suitable experimental scheme 
based on the reported experimental results or optimize 
the detection method according to their specific experi-
mental requirements and instrument conditions.

The most commonly used MS-based lipidomic 
approach involves the analysis of transitions of precur-
sor m/z and fragment m/z to identify and quantify lipid 
species. This analysis is efficiently performed using a tri-
ple quadrupole mass spectrometer. Plant sphingolipids, 
in particular, are amenable to analysis by electrospray 
ionization triple quadrupole mass spectrometry coupled 
with liquid chromatography. A QqQ mass spectrometer 
contains two analyzer quadrupoles (Q1 and Q3) with a 
collision cell (the second quadrupole, Q2) in between. Q1 
passes precursor ions to the collision cell, where the ions 
are fragmented and passed to Q2; Q3 passes fragment 
ions to the detector. The structures of sphingolipids can 
be analyzed by precursor ion scanning and product ion 
scanning to explore structural variations. In a study using 
the TurboIonSpray source of a 4000 QTRAP LC/MS/MS 
System, sphingolipids were detected with a needle tem-
perature of 100°C, needle voltage + 5000 V, curtain gas at 
10 psi, nebulizing gas (GS1) at 20 psi, focusing gas (GS2) 
at 0 psi, and the interface heater engaged. Declustering 
potential and collision energy were optimized on a com-
pound-dependent basis (Markham and Jaworski 2007).

3.2  Fragmentation patterns of plant lipids
There are many types of MS instruments with differ-
ent ionization sources. Depending on the ionization 
method, the molecule may break apart into a population 
of smaller fragments. Below, we summarize some general 
rules on how plant lipids with various chemical skeletons 
could be ionized.

The hydroxyl hydrogen atoms on the basic skeleton of 
glycerides can be replaced by different groups. The glyc-
erides in plants are mainly composed of acylglycerol, 
glyceroglycolipids, and glycerophospholipids. The detec-
tion of glycerides is generally performed by LC–MS. 
Under actual experimental conditions, when fragments 
of the glyceroglycolipid DG (16:0/16:0/0:0) were col-
lected at 40 V in positive ion mode, the resulting spec-
tral information showed that its parent ion was an adduct 
containing  Na+. Because  Na+ could be connected at dif-
ferent positions, three types of smaller molecules could 
be produced:  C16H31O2Na,  C19H35O3Na, and  C16H32O2. 
Hence, the fragmentation was successful (Fig. 2a). Most 
glycerides can be separated using a reverse-phase chro-
matography column such as a C18 column. The general 
fragmentation rule is shown in Fig. 2c.

Sphingolipids can be detected by LC–MS and are usu-
ally separated through a reverse phase chromatography 
column (e.g., a C8 or C18 column). Sphingolipids are a 
diverse class of compounds containing multiple LCBs 
and fatty acids with varying degrees of saturation and 
hydroxylation. Fatty acids usually differ by 2 carbon units 
with an m/z of 28; hence, sphingolipids were identified 
in each sample as a group of compounds that differed by 
an m/z of 28 (Pata et al. 2010). In actual circumstances, 
when fragments of ceramide (d18:0/16:0) were acquired 
at 40 V in positive ion mode, the resulting spectral infor-
mation revealed three groups of molecules that could be 
detected, including two -OH and a  C16H30O, indicating 
that fragmentation was successful (Fig.  2b). The general 
fragmentation rule is shown in Fig. 2d. In each case, frac-
tions containing the majority of charged sphingolipids 
(usually [M +  H]+) are infused into the mass spectrom-
eter, and a profile typical for sphingolipids is produced.

Fatty acids are generally detected by gas chromatog-
raphy-mass spectrometry (GC–MS). Chemical derivati-
zation is often introduced in MS-based analysis due to 
the inherent poor ionization efficiency and selectivity of 
fatty acids and fatty acyls. The formation of alkyl esters 
(methyl, ethyl, propyl, or butyl esters) is the most com-
mon type of derivative reaction used in the analysis of 
fatty acids (Watkins 2020). The MS fragmentation rule 
for widely analyzed methyl esters is shown in Fig. 2e.

Plant sterols are cholesterol-like terpenoids that are 
widespread in the kingdom Plantae. APCI-based LC–MS 
has been widely utilized to analyze plant sterols due to its 
ionization efficiency without the need for derivatization, 
primarily forming [M + H–H2O]+ ions (Mo et  al. 2013; 
Gu et al. 2016). Despite its widespread use, the chemical 
structures of many complex plant sterols still need to be 
fully characterized (Evtyugin et al. 2023). Although many 
analytical strategies can be employed to analyze sterols, 
the molecules may fragment into different components 
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using various derivatizing agents and ionization sources 
(Gachumi and El-Aneed 2017). For more detailed infor-
mation on plant sterol fragmentation rules, please see 
literatures (Wewer et  al. 2011; Gachumi and EI-Aneed 
2017; Evtyugin et al. 2023).

3.3  Sample preparation for LC–MS analysis
Proper sample preparation is a decisive factor for a suc-
cessful experiment. Here, we introduce sample prepara-
tion methods that are used when analyzing plant lipids by 

LC–MS. All sample preparation methods can be divided 
into three steps: sample collection, preservation, and 
extraction (Fig. 3).

For sample collection, a reasonable sampling standard 
must comply with the aims of the experiment and the 
specific experimental objective. When analyzing the lipid 
contents of roots, stems, leaves, and other plant organs, 
the amount of plant tissues that should be collected is 
determined by the actual growth state of the plant: dif-
ferent amounts of sample and different pretreatment 

Fig. 2 Validated fragmentation rules of various lipids. a Product‑ion mass spectra of glyceroglycolipid DG (16:0/16:0/0:0) at 40V voltage in positive 
ion mode. Three types of smaller molecules could be produced,  C16H31O2Na,  C19H35O3Na, and  C16H32O2, because  Na+ could be connected 
at different positions in the original molecule. b Mapping the fragmentation of ceramide (d18:0/16:0) at 40V voltage in positive ion mode. The 
resulting spectral information indicates that three groups of fragments could be produced: two ‑OH and one  C16H30O. c‑e Typical fragmentation 
patterns of glycerides (c), sphingolipids (d), and methylated fatty acids (e). The one‑way arrows indicate where fragmentation of the lipid molecule 
occurs
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methods are chosen for young leaf tissues with higher 
water content and highly lignified roots. With the devel-
opment of ion sources and ion optics in mass spec-
trometers, greater sensitivity in MS analysis has been 
achieved. The current instrument detection limit (IDL) 
of MS, i.e., the analyte concentration required to pro-
duce a signal that is distinguishable from the noise level 
within a particular statistical confidence limit, could 
be pg or even fg, and therefore, only a small amount of 
sample is sufficient for detecting lipids in plants. In most 
experiments, the fresh weight of each biological replicate 
is approximately 100–500 mg, and the weight should be 
increased for samples with high water content. The sam-
ple should be extracted as soon as possible to ensure the 
minimum degradation of lipids during sample preserva-
tion. If continuous sample collection is required over a 
period of time, the sample could be sealed and stored at 
–80°C for roughly six months to one year without gener-
ating extreme lipid degradation. Nevertheless, if unpro-
cessed or processed samples are stored at − 80°C for a 
long period of time, the stability of the lipid species to be 
examined should be verified.

In lipidomics, any extraction method serves two pri-
mary purposes. First, it simplifies the sample by eliminat-
ing unwanted nonlipid compounds. Second, it increases 
the concentrations of the analytes of interest (in this case, 
lipids), resulting in improved signal-to-noise ratios. The 
most commonly used sample preparation technique in 
lipidomics is liquid–liquid extraction, which relies on 
biphasic chloroform–methanol-water mixtures (Lebaron 

and Folch 1959; Bligh and Dyer 1959). Using this tech-
nique, the lipids are found in the organic chloroform/
methanol phase, while the aqueous phase contains 
the more hydrophilic compounds and salts. Lipidomic 
extraction methods are constantly being modified to 
meet different experimental needs, such as reducing deg-
radation and improve solubility, resulting in increased 
extraction efficiency (Guazzotti et  al. 2023; Ryan et  al. 
2023). Below, we describe specialized extraction methods 
for phospholipids, galactolipids, and sphingolipids.

3.3.1  Preparing plant phospholipids and galactolipids 
for analysis

Total plant lipids are generally extracted using previously 
established methods (Welti et  al. 2002; Devaiah et  al. 
2006; Zhou et al. 2022a). Here, we describe the key steps 
in detail.

(1) Organs are harvested and transferred to 3 ml of 
75°C isopropanol with 0.01% butylated hydroxy-
toluene (BHT) in a 50 mL glass tube with a Teflon-
lined screw cap to fully immerse the tissue. The 
sample is heated at 75°C for 15 min.

(2) After adding 1.5 mL of  CHCl3 and 0.6 mL of water 
to each sample, the tubes are vortexed and shaken 
at 100 rpm at room temperature for 1 h. Each lipid 
extract is transferred to a new 50 mL tube, and the 
tissues are re-extracted with 4 mL  CHCl3: MeOH 
(2:1 v/v) with 0.01% BHT. The tubes are shaken for 
30 min. The solvents from the tissues are removed, 

Fig. 3 The lipidomics workflow. Lipidomics involves collecting samples of various biological materials, such as whole organisms, different tissues, 
or cells, and extracting their lipids. The lipid extracts are then combined with the appropriate internal standards for semi‑ or relative‑quantification 
of the biological lipidomes, primarily using mass spectrometry (MS). Targeted or non‑targeted approaches can be used in quantitative MS‑based 
lipidomics. The use of MS‑imaging to map the spatial distribution of different lipids in tissue sections is also increasing. After the lipidome dataset 
is obtained, phenotypic validation and pathway mapping can be performed using various bioinformatics techniques
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transferred to 50 mL tubes, and combined with the 
lipid extracts. This extraction procedure is repeated 
three times, until all of the remaining plant tissue 
appears white.

(3) The combined extracts are washed with 1 ml of 1 
M KCl, vortexed, and centrifuged at 500 × g for 10 
min. The upper phase is discarded, and 2 mL water 
is added to the combined extracts. The samples are 
vortexed, centrifuged at 500 × g for 10 min, and the 
upper phase discarded. The extracts are evaporated 
under nitrogen, and the lipid extract is dissolved in 
1 mL of  CHCl3.

(4) The remaining plant tissue is heated overnight at 
105°C and weighed. The weights of these dried and 
extracted samples are the dry weights; each sample 
should weigh approximately 0.2 mg.

3.3.2  Sample preparation for sphingolipid analysis
The method used for plant sphingolipid extraction has 
been described previously (Markham and Jaworski 2007; 
Bi et al. 2014; Zeng et al. 2021). Here we provide an over-
view of this method.

(1) Approximately 15 mg of freeze-dried plant tissue is 
placed into a 2 mL Eppendorf tube to which inter-
nal standards and 1 mL of extraction solvent (hex-
ane/water/isopropanol, 20:25:55, v/v/v) have been 
added. Standard A consists of C12-GlcCer, C12-
Cer, and sphingosine (C17 base) dissolved at 1 µg/
mL in methanol; 100 µL Standard A is sufficient 
for one sample. Standard B is GM1 dissolved at 1 
mg/mL in tetrahydrofuran/methanol/water (2:1:2 
v/v/v); 5 µL of Standard B is sufficient for one sam-
ple. The tissue is fully homogenized with an oscilla-
tory tissue pulverizer by shaking for 2 min at 60 Hz.

(2) When homogenization is complete, the sample is 
immediately centrifuged to ensure that both the 
sample and extraction solvent reach the bottom 
of the tube. The tube is then incubated at 60°C for 
15 min.

(3) Following centrifugation at 10,000 × g for 10 min, 
the supernatant is transferred to a new tube; the 
pellet is extracted once more with 500 µL of extrac-
tion solvent.

(4) The samples are incubated at 60°C for 15 min and 
centrifuged as described above. The supernatants 
are combined, and 1.2 mL of the combine super-
natants is divided into three 2 mL centrifuge tubes 
and freeze-dried under a stream of nitrogen.

3.4  LC configurations
Extracts from plant tissues are complex and contain a vari-
ety of natural products that require further separation to 

obtain accurate information about lipid molecules. Many 
LC configurations have been described for the analysis of 
complex lipid mixtures. The three most important ones 
are reversed-phase LC (RPLC), normal-phase LC (NPLC), 
and hydrophilic interaction LC (HILIC). Among these 
methods, RPLC is the most widely used method (Cajka 
and Fiehn 2016). Typical methods in RPLC-based lipid-
omics use a short (50–150 mm) microbore column with 
sub-2 µm or 2.6–2.8 µm (fused-core) particle size and 
C18 or C8-modified sorbent (Cajka and Fiehn 2014). For 
a weak mobile phase, water or mixtures of organic solvents 
such as methanol and acetonitrile are used, while a strong 
mobile phase primarily consists of isopropanol or tetrahy-
drofuran mixed with other solvents. To improve LC sepa-
ration as well as ionization and the detection of lipids, the 
use of mobile-phase modifiers such as ammonium formate 
is highly recommended. To help the reader better under-
stand the importance of liquid phase conditions in LC–MS 
analysis, we will introduce some specialized LC standards 
that are currently used when analyzing plant lipids.

The profiles of phospholipids and galactolipids are deter-
mined by mass spectrometry as previously described (Welti 
et al. 2002; Devaiah et al. 2006; Munnik et al., 2013). Here, 
we present an integrated and modified version of these 
methods. Briefly, approximately 1 ml of plant lipid extract is 
collected to analyze phospholipids (PC, PE, PA, PG, PS, PI, 
LysoPC, LysoPE, and LysoPG) and galactolipids (MGDG 
and DGDG). Plant lipid extracts in  CHCl3 are combined 
with solvent containing 10 μL internal standards so that the 
ratio of  CHCl3/MeOH/50 mM ammonium acetate in water 
is 300/665/35 (v/v/v), and the final volume is 1 mL. The 
internal standards are acquired and quantified as previously 
described (Welti et al. 2002). Phospholipids and galactolip-
ids are usually separated through a C18 reverse phase chro-
matography column. Positive and negative scan modes are 
used to detect all phospholipids, while galactolipids are 
detected in positive mode. For positive mode, mobile phase 
solvent A comprises methanol/acetonitrile/water at a ratio 
of 42.5/42.5/15 (v/v/v) with 0.1% formic acid. For mobile 
phase solvent B, isopropanol with 0.1% formic acid is used. 
For negative mode, mobile phase solvent A includes metha-
nol/acetonitrile/water at a 42.5/42.5/15 (v/v/v) ratio along 
with 3 mM ammonium acetate, while mobile phase solvent 
B is prepared by mixing isopropanol with 3 mM ammo-
nium acetate. The gradient elution conditions are 0–40% B 
at 0–10 min, 40–65% B at 10–35 min, 65–0% B at 35–42 
min, and 100% A at 42–48 min for re-equilibration.

The mobile phase could be set at different starting and 
ending percentages to analyze sub-classes of plant sphin-
golipids (LCB, Cer, hCer, GlcCer, and GIPC) due to their 
different amphiphilic natures (Markham and Jaworski 
2007; Zeng et  al. 2021). Different gradients have been 
developed for use with various instruments. To detect 
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LCB, Cer, hCer, and GlcCer, mobile phase solvent A is 
0.2% formic acid and 2 mM ammonium formate in water, 
and mobile phase solvent B is 0.2% formic acid and 1 mM 
ammonium formate in methanol. The gradient elution 
conditions for LCB, Cer, hCer, and GlcCer are 80% B at 
0–4 min, 80–90% B at 4–10 min, 90–99% B at 10–20 min, 
and 99% B at 20–26 min, with 80% B at 26–31 min for re-
equilibration. To detect GIPC, the HPLC system is fitted 
with a fast wash station with two mixed wash solvents: 
wash 1, THF/methanol/water (7:2:1 v/v/v) with 0.5 mM 
ammonium formate, 0.1% formic acid; and wash 2, THF/
methanol/water (3:2:5 v/v/v) with 2 mM ammonium for-
mate, 0.1% formic acid. The gradient elution conditions 
for GIPC are 55% wash 2 at 0–0.1 min, 55–30% wash 2 
at 0.1–10 min, 30–55% wash 2 at 10–10.1 min, and 55% 
wash 2 at 10.1–15 min.

4  Lipidomics analysis tools
Three scan modes are commonly used in MS-based quan-
titative lipidomics: Data-Dependent Acquisition (DDA), 
Data-Independent Acquisition (DIA), and MRM. Unlike 
data from MRM, which is used for targeted lipidomics, 
the data from DDA and DIA are complicated and difficult 
to analyze. Unlike genes or proteins, metabolites are more 
diverse in structure, making their fragment forms very dif-
ferent, so de novo analysis is unavailable. Accurate quan-
titative lipidomics requires: (1) a professional database; (2) 
a theoretical match of an MS/MS spectrum; (3) an accu-
rate match of MS/MS spectra and a chromatogram; (4) 
multi-dimension downstream data filtering. Data analy-
sis is one of the most important processes in lipidomics, 
with a significant influence on the final results. Lipidom-
ics detection generates a large amount of raw data, posing 
challenges for subsequent analysis. To meet the demands 
of lipidomics data processing, numerous software pack-
ages and data processing methods have been developed 
(Table  1). Among these tools, we highlight some com-
mon lipidomics data analysis tools below, such as XCMS, 
MetaboAnalyst, and LipidIMMS Analyzer.

4.1  XCMS
XCMS, the acronym for various forms (X) of chroma-
tography mass spectrometry, is the name of an open-
source R package for metabolomics data analysis (Smith 
et al. 2006). XCMS is landmark software in the field of 
metabolomics. XCMS is mainly focused on LC–MS 
data, but GC–MS data are also allowed, and an online 
version for data visualization is available (https:// xcmso 
nline. scrip ps. edu/). The results from XCMS can be 
combined with other R packages for deep data min-
ing. For example, the results can be combined with 
the Mumu package to perform PCA and multivari-
able statistics, and they can also be combined with the 

ggplot2 and pheatmap packages to obtain visualization 
graphs. Based on the METLIN database, which provides 
the transitions of over 15,500 metabolites, a software 
package called XCMS-MRM was developed for MRM 
research (Domingo-Almenara et al. 2018).

The data formats used for XCMS includes netCDF, 
mzML, mzXML, and mzData. Raw data must be con-
verted to one of these formats using software such as pro-
teowizard. In brief, the first step of the XCMS workflow 
is to extract the peaks and correct the retention times of 
the same peaks from different runs. Next, XCMS will fill 
in the missing peaks and group them together. After the 
data from different samples are integrated, quantifica-
tion can be performed. Although quantification is based 
on peak intensity, XCMS is not able to normalize the 
intensities of different samples, making the quantification 
results imperfect; this needs to be upgraded in the future. 
Overall, XCMS, representing the earliest open-source 
package for metabolomics data analysis, is powerful and 
widely used, and the code can be modified based on the 
specific demands of users.

4.2  MS‑DIAL
Mass spectrometry-data independent analysis software 
(MS-DIAL) is a free software package for visualized 
metabolomics analysis (Tsugawa et  al. 2015). MS-DIAL 
can process various types of data from different sources, 
such as DDA and DIA data from GC–MS or LC–MS, 
and resolve metabolite structures obtained through sta-
ble isotope labeling. In June 2016, the MS-DIAL devel-
opment team released version 4.0 (Tsugawa et al. 2020); 
the non-targeted lipidomics platform was equipped with 
this version of the software (http:// prime. psc. riken. jp/). 
Version 4.0 has updated support for ion mobility infor-
mation and enhanced decision tree annotation capabili-
ties. All relevant analytical procedures are in line with 
the Lipidomics Standard Initiative (LSI). Moreover, the 
development team generated a lipid database of actual 
experimental data for 8,051 lipids in 117 subclasses from 
1,056 sample runs using 10 types of LC–MS equipment 
in 81 research studies, such as retention time (RT), col-
lision cross section (CCS), mass charge ratio (m/z), iso-
tope ion, adduct type, and MS/MS. This is currently the 
largest lipid database with actual experimental informa-
tion. Analysis of lipid annotation and semi-quantitative 
analysis using this platform exhibited a false positive rate 
of only 1–2%.

The data formats supported by MS-DIAL include ABF, 
mzML, netCDF, and IBF. Under certain settings, the 
detailed parameters can be adjusted based on specific 
equipment conditions to achieve optimal identification. 
The major parameters include adduct type, RT tolerance, 

https://xcmsonline.scripps.edu/
https://xcmsonline.scripps.edu/
http://prime.psc.riken.jp/
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m/z tolerance, and so on. If necessary, data filtering and 
quantification using an internal isotope standard can be 
performed in subsequent steps.

4.3  Metabo analyst
MetaboAnalyst is a widely used online platform designed 
for metabolomics analysis. This platform provides a 
streamlined workflow suitable for researchers at all lev-
els, from novices to senior scholars. MetaboAnalyst can 
process data from diverse sources, ranging from GC–MS 
and LC–MS to NMR data. From data normalization, 
batch effect removal, and functional analysis to explora-
tory statistics, users can perform data deconvolution to 
obtain the desired outputs (e.g. heatmaps, KEGG path-
ways, volcano plots).

In the latest version, MetaboAnalyst 5.0, numerous 
features have been upgraded, and the underlying code-
base has been refactored to improve performance (Pang 
et al. 2021). Notably, raw data are allowed in version 5.0 
to allow users to conduct their entire analysis in Meta-
boAnalyst, which avoids the need to perform raw data 
processing tasks with other tools using complex code 
commands. Moreover, MetaboAnalyst 5.0 allows other 
types of input data, such as MS peaks, annotated fea-
tures, and generic features. For lipidomics, MetaboAna-
lyst 5.0 implemented a smart name-matching algorithm 
and expanded its lipid database by adding 197,854 lipids 
from RefMet and LIPID MAPS. Multi-omics analysis is 
another new feature, including support for data-driven 
analysis by the well-established DSPC (debiased sparse 
partial correlation) algorithm.

4.4  Other tools
MZmine is a relatively early, powerful open-source 
metabolomics analysis software tool first published in 
2006. In 2023, the development team released the lat-
est version, upgrading various features (Schmid et  al. 
2023). MZmine 3.0 allows ion mobility data to be used 
in metabolite identification, resulting in more precise 
results. In the latest version, MS imaging is also available, 
offering opportunities for spatial metabolomics. Addi-
tionally, the analysis results can be exported in differ-
ent formats, allowing users to easily combine them with 
other external tools to perform additional downstream 
analysis.

LipidBlast (http:// fiehn lab. ucdav is. edu/ proje cts/ Lipid 
Blast/) is an opensource lipidomics database that includes 
212,516 spectra covering 119,200 lipids in 26 classes, 
such as phospholipids, glycerides, bacterial lipopolysac-
charides, plant glycolipids, and so on. The structures and 
spectra of many complex glycolipids were published for 
the first time in this database (Kind et  al. 2013). Most 

information in LipidBlast has been predicted in silico but 
has been verified using 40 types of mass spectrometry.

LipidIMMS Analyzer (http:// imms. zhulab. cn/ Lipid IMMS/) 
is an online website for lipidomics analysis (Zhou et al. 2019) 
that was provided by the Zhu Lab from Shanghai Institute of 
Organic Chemistry, Chinese Academy of Sciences (CAS). Ion 
mobility was applied for the first time for lipid identification 
on this platform. A four-dimension library containing over 
260,000 lipids is available on the website. The ion mobility 
application in MS-DIAL4 mentioned above also comes from 
the Zhu Lab.

PlantMetSuite is an online analysis platform specifi-
cally designed for plant metabolomics (Liu et al. 2023a). 
This platform allows user to annotate their raw data in 
over 20 plant species, perform upstream-to-downstream 
analysis, and plot the usual types of figures. PlantMet-
Suite also supports integrative multi-omics investigation. 
Most notably, it has a visualization database that allows 
users to visualize the distribution patterns of specific 
metabolites in different Arabidopsis tissues.

5  Challenges and perspectives
The ultimate goals of lipidomics are to foster collabora-
tion among existing lipidomics research centers, inte-
grate lipid databases worldwide to standardize lipidomic 
analyses, and link technological advances to critical sci-
entific issues. However, despite remarkable progress 
in lipidomics technologies, many challenges in plant 
lipidome cannot be ignored, such as challenges in data 
interpretation. Here we summarize the current problems 
faced by scientists and propose possible solutions (Fig. 4).

5.1  Lipidomics using mass spectrometry methods
Due to the development of LC–MS and GC–MS tech-
niques, numerous lipids have been identified and quanti-
fied. However, there are still many problems with these 
methods: (1) These methods are information depend-
ent. Most LC–MS methods rely on information about 
the ionization characteristics of compounds and cannot 
detect unknown lipids. To solve this problem, research-
ers can improve lipid analysis by utilizing lipid databases, 
machine learning algorithms, and conjuncture with 
computational lipidomics to classify unknown lipids, 
although this approach requires substantial data and 
computational resources and enhanced accuracy and effi-
ciency (Colantonio et al. 2022; Shen et al. 2023). Moreo-
ver, research on the structures and functions of lipids 
has revealed their roles and mechanisms, which could 
help spur additional lipid analysis and the discovery of 
new lipids. (2) Isomers are rarely separated under iden-
tical column conditions and are difficult to identify. The 
use of ion mobility can help solve this problem (Zhou 
et  al. 2019), but high-performance ion mobility MS is 

http://fiehnlab.ucdavis.edu/projects/LipidBlast/
http://fiehnlab.ucdavis.edu/projects/LipidBlast/
http://imms.zhulab.cn/LipidIMMS/
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Fig. 4 Current challenges in lipidomics and potential solutions. The challenges of lipidomics (inner circle) at various stages along with possible 
solutions (outer circle). For challenges in sampling and extraction, the use of inert gas for lipid extraction can improve bioavailability, which can 
be limited due to instability, susceptibility to oxidation, and poor water solubility (Züllig et al. 2020). For challenges in LC–MS, methods such 
as computational lipidomics and machine learning can be used to address challenges such as ion characteristics information dependence 
and data interpretation in lipidomics (Peyraud et al. 2017; Colantonio et al. 2022; Shen et al. 2023). Using labeling, isotope labeling or IM‑MS 
techniques can distinguish isomers (Zhou et al. 2019). Ion suppression impairs the accuracy of quantification and identification by LC–MS, especially 
for low‑abundance lipids (Annesley 2003). Researchers can use internal standards or control samples to reduce the impact of ion suppression. 
Quality control of samples can reduce the batch effect (Sanchez‑Illana et al. 2018; Alseekh et al. 2021). Reproducibility, reusability, and transparency 
of data are vital concerns of lipidomics and other omics integration (Shen et al. 2023). Single‑cell lipidomics requires high coverage, accuracy 
and advanced data analysis methods (Wang et al. 2023). It is important to establish standards and consensus for the standardization of lipidomics, 
the nontargeted lipidome atlas MS‑DIAL 4 offers a one‑stop solution for lipidome data standardization (Tsugawa et al. 2020; Shen et al. 2023)
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still unaffordable for many laboratories. It is also possi-
ble to isolate and identify isomers more precisely using 
multi-dimensional chromatography or capillary electro-
phoresis-mass spectrometry or using labeling or isotope 
labeling techniques to distinguish isomers, such as lipid 
molecules labeled with specific isotopes, and determine 
the proportions of the isomers by mass spectrometry. (3) 
The batch effect. Unveiling the multiple of mechanism 
employed in organisms takes a couple of weeks or longer 
in large-scale studies. However, the performance of MS 
and sampling conditions can vary at different times, caus-
ing a batch effect that can interfere with a study. Quality 
control of samples can reduce this problem to a certain 
extent (Sanchez-Illana et  al. 2018; Alseekh et  al. 2021). 
(4) Ion suppression, a widely existing problem in LC–
MS analysis, is caused by the matrix effect, which affects 
the ionization of co-eluted analytes. Ion suppression is 
extremely harmful to the accuracy of quantification and 
identification by LC–MS, especially for low-abundance 
lipids (Annesley 2003). Researchers can use internal 
standards or control samples to reduce the impact of 
ion suppression and can also select the appropriate ana-
lytical methods and techniques, including techniques to 
improve the ion source and sample handling.

5.2  Identification and quantification of low‑abundance 
lipids

The extremely complex structures of plant lipids make 
fully analyzing all lipids a formidable challenge, especially 
for low-abundance lipids. Extracting lipids from complex 
biological systems by phase separation is usually the first 
step in lipid analysis. After extraction, the proteins and 
some minerals are removed; however, the sample might 
not be simple enough for low-abundance lipid analysis 
because some substances of similar polarity remain and 
may affect the ionization of target molecules (Saini et  al. 
2021). Strategies such as optimizing extraction condi-
tions and utilizing inert gases during lipid extraction and 
separation processes can mitigate alterations or losses 
of lipids, ensuring molecular stability (Zullig et  al. 2020). 
Another concern is that the extract solvents could induce 
the hydrolysis of endogenous lipids, resulting in the arti-
ficial generation or degradation of lipids (Pati et al. 2016). 
Thus, methods with high selectivity must be developed for 
the extraction of specific lipids and the separation of dif-
ferent lipid molecules, which are likely to be achieved by 
liquid chromatography or using an updated mass analyzer.

5.3  Standard workflow of lipidomics and consensus 
among laboratories

Compared to other omics fields like proteomics and 
genomics, lipidomics faces a notable lack of standard 

workflows and consensus among laboratories. This 
absence of uniformity poses a significant challenge when 
comparing and integrating findings from various research 
groups. Therefore, there is an urgent need to establish 
standards and a consensus within the realm of lipidom-
ics. This could be achieved through the development of 
uniform experimental procedures and data processing 
methods. In 2021, Alseekh et al. made recommendations 
for standard processing methods in metabolomics and 
advocated a simplified report form (Alseekh et al. 2021). 
The recently created nontargeted lipidome atlas MS-
DIAL 4 could offer a one-stop solution for lipidome data 
standardization (Tsugawa et  al. 2020). By implementing 
such standards, we could ensure that results obtained 
from different laboratories are comparable, fostering col-
laboration and the advancement of lipidomic research as 
a whole. Standardization efforts should encompass vari-
ous aspects of lipidomics, including sample preparation, 
mass spectrometry techniques, data analysis, and report-
ing guidelines. This will not only enhance the quality and 
reliability of lipidomic data but also enable the scientific 
community to harness the full potential of lipidomics 
for understanding complex biological systems. Further-
more, the establishment of standardized reference mate-
rials and analytical platforms can aid in the validation 
and harmonization of results, ultimately advancing our 
knowledge of lipids.

5.4  Unexplored biological mechanisms of plant lipids
It is well known that lipids are widely involved in various 
signaling pathways, but the details are currently unclear. 
For example, our understanding of the sphingolipid 
mechanism is still in its rudimentary stages. In the past 
decade, several studies have shown that sphingolipids 
undergo crosstalk with almost all plant hormones (Wu 
et al. 2015; Corbacho et al. 2018; Yang et al. 2019; Huang 
et al. 2021; Zeng et al. 2021). However, how sphingolipids 
interact with other signaling molecules remains a mys-
tery. Apart from signaling pathways in plants, the pat-
terns of sphingolipids are also intricate in both mammals 
and plants. After being treated with Fumonisin B1 (FB1), 
a water-soluble toxic from Fusarium verticillioides, C16 
Cer levels decreased in mammals but increased in plants 
(Markham et al. 2011; Aflaki et al. 2012; Zeng et al. 2020), 
highlighting the complexity of sphingolipid-modulated 
mechanism. Even though more than 200 species of sphin-
golipids have been identified to date (Cahoon et al. 2021), 
the plant cellular sphingolipidome comprises at least 500 
different species of sphingolipids (Pata et al. 2010). More 
target proteins of sphingolipids and their underlying 
mechanism need to be explored in the future; such stud-
ies will be facilitated by multi-omics analysis.
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5.5  Benchmarked joint multi‑omics analysis
Association analysis of lipidomic data with genomics, 
transcriptomics, and proteomics data provides a power-
ful way to explore physiological mechanisms. A method 
combining lipidomics and genomics called metabolome 
genome-wide association study (mGWAS) was designed 
to explore the relationships between metabolites and 
genes. A recent mGWAS of 52 lipid-related metabo-
lites with 214 soybean (Glycine max) accessions led to 
the generation of a three-dimensional genetic network 
of phenotypes, metabolites, and genes (Liu et al. 2020a). 
Association analysis of lipidomics data with transcriptom-
ics and proteomics data is often used to explore pathways. 
For instance, the biosynthetic pathway of steroidal gly-
coalkaloids in potato (Solanum tuberosum) and tomato 
(S. lycopersicum) was revealed through association analy-
sis of transcriptomics and metabolomics data (Itkin et al. 
2013). Moreover, in an association analysis of proteom-
ics and lipidomics based on the Arabidopsis autophagy 
mutant atg5, the levels of peroxisome-related proteins, 
ER-related proteins, phospholipids, and sphingolipids 
were shown to change dramatically in the mutant, indi-
cating that autophagy is extremely important for ER 
stress, lipid homeostasis, and inner membrane compo-
sition (Have et  al. 2019). Traditionally, researchers have 
preferred to explore certain lipids or proteins that show 
dramatic changes in levels (Raffaele et al. 2008), but this 
is not sufficient due to the existence of redundant compo-
nents. Model construction, a machine learning method, 
has gradually begun to play a major role in multi-omics 
analysis, as it can predict phenotypes and unveil the 
interactions of biological molecules (Peyraud et al. 2017). 
However, reproducibility, reusability, and transparency 
could become crucial issues due to the massive amounts 
of data generated daily in multi-omics studies. Integrating 
lipidomics and other omics datasets must become more 
systematic in order to understand complex biological net-
works and build a more thorough biological knowledge 
base by addressing these issues (Shen et al. 2023).

5.6  Imaging spatiotemporal changes in plant lipids
The visualization of lipids is an important way to explore 
their functions in various biological processes. A uni-
versally implemented method to image plant lipids is to 
employ genetically encoded biosensors based on fluo-
rescence and lipid–protein interactions (Vermeer  and 
Munnik 2013; Walia et  al. 2018). Perhaps the greatest 
drawback associated with the use of lipid biosensors is 
that they can sequester their target lipids and hence dis-
rupt physiological interactions with effector proteins. 
Another key point is that the biosensor is expressed in 
the cell independently of the presence of its lipid target. 
Therefore, changes in local concentrations of the lipid 

alter the localization of the biosensor and not its overall 
expression level or total fluorescence. These issues pre-
clude the use of this technique for low-abundance plant 
lipids. The development of Mass Spectrometry Imaging 
(MSI) provided a new opportunity for lipidomics visuali-
zation. This method uses MALDI to scan the sample sur-
face, mix it with a matrix, and apply it to a metal plate. 
The lipid molecule and matrix undergo desorption and 
ionization, and the signal intensity of the ions is exam-
ined by MS. The resulting data can be processed using 
image processing software to reveal the distribution and 
proportion of a certain lipid in different areas, making 
the visualization of lipids possible (Klein et  al. 2018). 
This technique provides a convenient way to explore the 
distribution of lipids in plant cells. Lipotype classifica-
tion in human fibrocytes was successfully performed in a 
recent study using MADLI-MSI and single-cell lipidom-
ics analysis (Capolupo et al. 2022). Even though MALDI-
MSI has achieved some exciting results, this method still 
has some drawbacks, such as weak performance in terms 
of scan range and resolution, matrix limits, and difficulty 
in comparing different samples (Li et  al. 2014; Bartels 
and Dörmann 2021; Pathmasiri et al. 2021).

5.7  Development of single‑cell lipidomics
Classical lipidomics provides a map of the average cell 
population, reflecting its general biological state, but 
ignores the spatial distribution of lipids, which is often 
important in biology. The important role of sphingolip-
ids in determining the state of fibroblasts was revealed 
through the detection of lipid compositions in individual 
cells, further confirming that intercellular heterogene-
ous lipid metabolism plays a role in guiding the self-
organization of multicellular systems (Capolupo et  al. 
2022). Therefore, single-cell lipidomics is also an impor-
tant future direction. However, to date, little research on 
single-cell lipidomics in plants has been performed. The 
ultimate goal of single-cell lipidomics is to create accu-
rate maps of single-cell lipidomes to reveal subtle differ-
ences between cells. Changes in lipid levels in single cells 
are small compared to changes at the transcriptome level. 
Thus, high coverage, accurate identification, and quanti-
tative measurements are needed to accurately interpret 
these subtle but meaningful changes. The creation of a 
lipid tag library or analysis using a pool of cells of a single 
type (Misra et al. 2014) may make it easier to address this 
problem. In addition, the analysis of omics data is essen-
tial for gaining useful biological insights. However, single-
cell lipidomics is at an early stage of development, and no 
systematic data analysis system has thus far been estab-
lished. Single-cell data sets are nosier and more sparse 
than standard data sets, which exacerbates the challenge 
of single-cell lipidomics data analysis (Wang et al. 2023). 
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Given the current limitations in lipid coverage in single-
cell lipidomics, long-term efforts are needed to resolve 
the bottleneck of data analysis in single-cell lipidomics.

As a whole, high-throughput and high-accuracy lipid-
omics techniques must promote the development of lipi-
domics. At the same time, single-cell lipidomics analysis 
using a combination of targeted/untargeted lipidomics 
and visualized lipidomics will provide a new viewpoint 
for refined lipidomics studies. The application of lipi-
domics techniques has allowed for the identification 
and quantification of a wide range of lipids, providing 
insights into their roles in plant metabolism, signaling, 
and responses to environmental stress. Such information 
should ultimately lead to the development of more sus-
tainable, efficient agricultural practices and the creation 
of novel plant-based products.
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