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Principles, challenges, and advances 
in ribosome profiling: from bulk to low-input 
and single-cell analysis
Qiuyi Wang1,2 and Yuanhui Mao1,2*   

Abstract 

Ribosome profiling has revolutionized our understanding of gene expression regulation by providing a snapshot 
of global translation in vivo. This powerful technique enables the investigation of the dynamics of translation initia-
tion, elongation, and termination, and has provided insights into the regulation of protein synthesis under various 
conditions. Despite its widespread adoption, challenges persist in obtaining high-quality ribosome profiling data. In 
this review, we discuss the fundamental principles of ribosome profiling and related methodologies, including selec-
tive ribosome profiling and translation complex profiling. We also delve into quality control to assess the reliability 
of ribosome profiling datasets, and the efforts to improve data quality by modifying the standard procedures. Addi-
tionally, we highlight recent advancements in ribosome profiling that enable the transition from bulk to low-input 
and single-cell applications. Single-cell ribosome profiling has emerged as a crucial tool for exploring translation 
heterogeneity within specific cell populations. However, the challenges of capturing mRNAs efficiently and the sparse 
nature of footprint reads in single-cell ribosome profiling present ongoing obstacles. The need to refine ribosome 
profiling techniques remains, especially when used at the single-cell level.
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1 Introduction
The ribosome is a molecular machine that translates the 
nucleotide sequence of messenger RNAs (mRNAs) into 
the amino acid sequence of proteins. mRNA translation 
is a pivotal process in gene expression and consumes 
a substantial amount of cellular energy (Liu et  al. 2016; 
Lahtvee et al. 2017).

The translation of mRNA typically begins with the 
recruitment of the preinitiation complex, comprising 
the ribosomal small subunit, a ternary complex, and 

initiation factors, to the mRNAs. In prokaryotes, the 
preinitiation complex is loaded onto the initiation site, 
usually through a Shine-Dalgarno (SD) sequence located 
8–10 nucleotides (nt) upstream of the initiation site 
(Rodnina 2018). In contrast, the recruitment of eukary-
otic ribosomes is more intricate and appears to be a rate-
limiting step in translation (Hinnebusch 2014; Merrick 
and Pavitt 2018). In eukaryotes, the preinitiation complex 
is recruited to the 5’ end of mRNA by recognizing the 5’ 
 m7G cap through the eukaryotic initiation factor eIF4E. 
The preinitiation complex then scans the 5’ untranslated 
region (5’ UTR) until an initiation site is recognized. A 
commonly known scanning model suggests that the first 
AUG encountered by the initiation complex serves as the 
initiation site. However, the fidelity of initiation site selec-
tion often involves intricate interactions between initia-
tion factors and cis elements (Kozak 2005; Hinnebusch 
2011, 2017; Llácer et al. 2018; Brito Querido et al. 2020; 
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Gu et al. 2021; She et al. 2023). It is not uncommon for 
the initiation complex to bypass several AUG triplets in 
the 5’ UTR through a mechanism known as leaky scan-
ning (Kozak 1999; Dever et al. 2023). Furthermore, other 
AUG-like triplets in the 5’ UTR such as CUG, GUG, and 
UUG can also function as initiation codons in specific 
contexts, adding an additional layer of regulation to ini-
tiation site selection (Starck et al. 2012; Hinnebusch et al. 
2016).

Once the initiation site is recognized, most initiation 
factors are released, and the ribosomal large subunit joins 
the initiation complex. Interestingly, while the scanning 
is rapid, the formation of ribosomes at the initiation site 
is time-consuming, potentially serving as a checkpoint 
for monitoring the fidelity of the initiation site and trans-
lation reading frame (Wang et  al. 2019b, 2020, 2022; 
Lapointe et al. 2022; Mao et al. 2023). Upon the release 
of the initiation factor eIF5B, the initiation ribosome pro-
ceeds to the elongation cycle (Wang et  al. 2019b). Dur-
ing elongation, the ribosome decodes nucleotide triplets 
(codon) in a sequential manner (Dever and Green 2012). 
The eukaryotic elongation factor eEF1 delivers amino 
acid-charged transfer RNAs (tRNAs) to the ribosome A 
site, and eEF2 catalyzes ribosome translocation. The rate 
and fidelity of decoding appear to be influenced by codon 
usage and the surrounding context (Liu et al. 2021). For 
example, non-optimal codons are translated more slowly 
and with lower accuracy compared to optimal codons 
due to a relative shortage of cognate tRNAs (Mordret 
et  al. 2019). The resulting rhythm of translation elonga-
tion is critical for co-translational protein folding (Zhou 
et al. 2013; Yu et al. 2015) and mRNA stability (Presnyak 
et al. 2015; Hanson and Coller 2018). Interestingly, trans-
lation initiation can also be regulated by the elongation 
rate through a feedback pathway (Lyu et al. 2021).

When the ribosome reaches a stop codon, translation 
termination is triggered by termination factors (Hellen 
2018), leading to the release of newly synthesized pro-
teins and the recycling of ribosomes. Similar to initiation 
site selection, the fidelity of stop codon recognition is 
controlled by both cis elements and trans regulatory fac-
tors (Wangen and Green 2020). Intriguingly, other cog-
nate tRNAs may also occasionally enter the ribosome A 
site at the stop codon, competing with the termination 
complex eRF1-eRF3 (Lawson et al. 2021). Mischarging of 
near cognate tRNAs at the stop codon can lead to ribo-
some readthrough, resulting in a C-terminal extension of 
the protein that can significantly impact mRNA and pro-
tein stability (Müller et al. 2023).

Despite extensive research on translation regulation, 
numerous fundamental questions remain unanswered. 
For instance, the precise roles of initiation factors and 
trans regulatory factors in guiding preinitiation complex 

loading, scanning and start site selection are not fully 
understood. Moreover, there is ongoing debate regarding 
the correlation between mRNA stability and translation, 
as conflicting findings have been reported (Dave et  al. 
2023). Emerging technologies such as single-molecule 
fluorescence (Prabhakar et  al. 2019), massively parallel 
reporter assays (Jia et  al. 2020; Kesner et  al. 2023) and 
multi-omics approaches have advanced our understand-
ing of translation regulation. Ribosome profiling, also 
known as Ribo-seq, is a technology that provides a snap-
shot of global translation in cells by sequencing the RNA 
fragments protected by translating ribosomes (Ingolia 
et al. 2009; Brar and Weissman 2015). Since its first appli-
cation in yeast translation in 2009, ribosome profiling has 
been adapted to various types and widely used in numer-
ous studies (Fig. 1). Over the past 15 years, there has been 
a great effort to improve the quality of ribosome profil-
ing, however, obtaining high-quality Ribo-seq data is 
still technically challenging. In this review, we will sum-
marize the applications of ribosome profiling and related 
high-throughput sequencing technologies. Furthermore, 
we will discuss quality control of ribosome profiling and 
highlight the procedures that determine its quality.

2  Ribosome profiling, selective ribosome profiling 
and translation complex profiling

Ribosome profiling hinges upon the principle that ribo-
somes shield specific regions of messenger RNA (mRNA) 
from ribonuclease digestion. This methodology entails 
sequencing the residual RNA fragments following RNase 
treatment, denoted as ribosome-protected RNA frag-
ments or ribosome footprints, to precisely determine the 
positions of translating ribosomes on mRNAs (Fig.  2A 
and D). In general, the count of footprints directly indi-
cates the abundance of actively translating ribosomes 
on the mRNA. Therefore, ribosome profiling has been 
widely used to quantify translation activity, where a 
reduced footprint count indicates a decrease in transla-
tion activity and vice versa (Xiao et al. 2016). For instance, 
under environmental perturbations, such as nutrient and 
hyperosmotic stress (Darnell et al. 2018; Wu et al. 2019; 
Jobava et al. 2021), cells can rapidly respond to stress by 
suspending global translation and increasing the transla-
tion of stress response genes including ATF4, CHOP and 
GADD34. In addition, it is worth noting that footprint 
reads within CDs are affected by both initiation and elon-
gation rate. Therefore, differential changes of translation 
levels can be confounded by the accumulation of ribo-
somes within CDS such as ribosome pausing induced by 
stress. While it is possible to remove outliers of footprint 
reads from CDS, those outlier-trimmed methods remain 
to be evaluated.
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Fig. 1 Translational control and ribosome profiling. A A schematic diagram illustrating the main steps of mRNA translation 
and the high-throughput sequencing methods involved. B The relationship between ribosome profiling and other high throughput sequencing 
methods

Fig. 2 Procedures of ribosome profiling and related high throughput sequencing methods. A Ribosome profiling and Disome-seq. Cells were 
subjected to flash freezing and cell lysis. The lysates were digested by RNase (e.g. RNase I), and the digested products were fractionated by a sucrose 
gradient, separating RNA fragments into different fractions based on the number of ribosomes. The monosome fraction was collected to construct 
a ribosome profiling library, and the disome fraction was collected for disome-seq. B Translation initiation site sequencing (TIS-seq). The procedure 
is similar to standard ribosome profiling, expect for the use of lactimidomycin (LTM) and puromycin (PMY). LTM specifically binds to the initiating 
ribosome, stabilizing the ribosome at the start codon, while PMY releases the nascent chain and dissociates the elongating ribosomes. C TCP/
RCP-seq. In contrast to ribosome profiling, the ribosome subunits were immobilized on mRNAs through cross-linking. The RNase digestion products 
were separated by a sucrose gradient, and the fraction containing small subunits was collected for library construction. D Representative examples 
of aggregation plots for ribosome profiling, TIS-seq and TCP-seq. The data from GSE176058 and GSE159210 were used
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Despite the prevalent utilization of ribosome profiling 
for mRNA translation differential analysis, it is widely 
employed for discovering small open reading frames 
(smORFs). Numerous computational tools by leveraging 
ribosome profiling data have been developed to identify 
smORFs across diverse species, yielding the number of 
smORFs ranging from tens of thousands to several mil-
lion (Ingolia et  al. 2014; Calviello et  al. 2016; Olexiouk 
et al. 2016; McGillivray et al. 2018; Clauwaert et al. 2019; 
Wang et  al. 2019a; Martinez et  al. 2020; Mudge et  al. 
2021, 2022; Sandmann et  al. 2023). Recently, a study 
based on super high-quality ribosome profiling datasets 
reported a notably lower number of smORFs (~ 7,000 
smORFs) differentially expressed in different human tis-
sues (Chothani et al. 2022). Notably, smORFs identifica-
tion is sensitive to the quality of ribosome profiling (Lei 
et  al. 2023). To date, the precise number of smORFs in 
various species remains elusive (Mudge et al. 2022), pri-
marily due to the stringent requirements for smORFs 
identification, necessitating high-quality ribosome 
profiling.

In contrast to capturing all translating ribosomes on 
mRNAs, standard ribosome profiling has been adapted 
to selectively enrich ribosomes bound by co-translational 
factors, referred to as selective ribosome profiling. As an 
example, co-translational folding of nascent peptides, a 
pivotal process for maintaining protein homeostasis, is 
facilitated by the ribosome associated complex (RAC) 
(Zhang et  al. 2020; Kišonaitė et  al. 2023). The Hsp70 
family member HSP70 (HSPA1A/B in human and Ssb1/
Ssb2 in yeast) targets ribosomes through the RAC com-
plex, thus aiding the co-translational folding of nascent 
peptides (Hanebuth et  al. 2016; Chen et  al. 2022). To 
investigate the function of the Ssb protein, previous stud-
ies performed ribosome profiling combined with a pro-
cedure to selectively isolate Ssb-associated ribosomes 
(Oh et  al. 2011; Döring et  al. 2017; Shiber et  al. 2018; 
Stein et al. 2019). This approach revealed that Ssb shields 
hydrophobic patches within interaction domains, thus 
safeguarding nascent peptides against non-productive 
interactions and misfolding. Another example comes 
from the study on neuromuscular disease spinal mus-
cular atrophy (SMA), a neuromuscular disease associ-
ated with the depletion of the survival motor neuron 
(SMN) protein. Employing selective ribosome profiling 
to enrich SMN-bound ribosomes, a previous study found 
that the SMN protein preferentially associates with ribo-
somes positioned within the first five codons of a subset 
of mRNAs linked to SMA pathogenesis, thereby playing 
a pivotal role in the pathogenic cascade of SMA (Lauria 
et  al. 2020). In a previous study on the Huntington dis-
ease (Eshraghi et al. 2021), a debilitative autosomal-dom-
inant brain disorder characterized by the loss of language 

and behavioral abilities, the Huntingtin protein (mHTT) 
can promote ribosome pausing on specific mRNAs, 
subsequently impeding ribosome translocating during 
elongation.

Notably, selective ribosome profiling can also be per-
formed by focusing on specific subsets of ribosomes on 
mRNAs. Examples of these specialized methodologies 
include MitoRiboSeq for the enrichment of mitochon-
drial ribosomes (Morscher et  al. 2018; Li et  al. 2021), 
TIS-seq for the specific capture of initiation ribosomes 
at translation start sites (Lee et al. 2012; Gao et al. 2015; 
Zhang et  al. 2017; Eisenberg et  al. 2020) (Fig.  2B and 
D), di-/mono-ribosome profiling for the analysis of di-/
mono- ribosomes on mRNAs (Biever et  al. 2020; Mey-
dan and Guydosh 2020; Zhao et al. 2021; Ferguson et al. 
2023). As an example, strong ribosomal pausing can lead 
to the formation of di-ribosomes on mRNAs, which can 
inhibit translation elongation and trigger the ribosome-
associated protein quality control pathway (Ikeuchi et al. 
2019). Because di-ribosomes are resistant to RNase I 
digestion, they are often excluded from the standard 
ribosome profiling when a sucrose cushion is used for the 
isolation the monosome generated by RNase I digestion. 
Therefore, di-ribosome profiling, using polysome profil-
ing to separate di-ribosome from mono-ribosome after 
RNase I digestion, can largely enrich di-ribosomes, which 
revealed a distinct ribosome pausing during elongation 
and in the region before the stop codon (Meydan and 
Guydosh 2020; Zhao et al. 2021). In addition, the selec-
tive ribosome profiling can be performed in  vivo (Gon-
zalez et  al. 2014; Doroudgar et  al. 2019). For instance, 
the ribosomal large subunit RPL22 was genetically 
fused with a hemagglutinin (HA) tag (Doroudgar et  al. 
2019). The expression of tagged RPL22 was specifically 
induced in the mouse heart using a heart specific Cre 
recombinase-expressing system, resulting in the synthe-
sis of HA-RPL22-tagged ribosomes. By purifying tagged 
ribosome-associated mRNAs and performing ribosome 
profiling, a previous study revealed a potential role of the 
upstream open reading frame (uORF) in cardiac metab-
olism through the regulation of the main open reading 
frame (mORF) translation.

In addition to standard and selective ribosome profil-
ing, another prevalent approach involves the capture of 
ribosome subunits rather than intact 80S ribosomes on 
mRNAs (Archer et  al. 2016; Giess et  al. 2020; Wagner 
et  al. 2020). The ribosomal subunits are often immobi-
lized through crosslinking methods, which are subse-
quently separated using a sucrose gradient (Fig.  2C and 
D). The RNA fragments covered by ribosomal subunits 
are then extracted and subjected to high-throughput 
sequencing. The method is generally referred to as trans-
lation complex profiling (TCP-seq) or ribosome complex 
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profiling (RCP-seq). Unlike standard ribosome profiling, 
TCP/RCP-seq monitors ribosomal subunits, providing 
a unique opportunity to investigate regulations during 
translation initiation. Notably, TCP/RCP-seq can also be 
adapted to selectively enrich ribosomal subunits associ-
ated with initiation factors, a variant termed selective 
TCP/RCP-seq (Wagner et al. 2020, 2022). Through selec-
tive TCP-seq, previous studies have revealed molecular 
details of the assembly of ribosome subunits and associ-
ated initiation factors including eIF2 and eIF3, at various 
stages of translation initiation (Wagner et al. 2020).

3  Quality control of ribosome profiling
Quality control is a crucial aspect of assessing the reli-
ability of a ribosome profiling dataset, due to the suscep-
tibility of this method to issues such as low quality and 
sequence bias. Several steps can be employed to evaluate 
a ribosome profiling experiment.

3.1  Footprint length
The typical length of ribosome footprints in most species 
is approximately 30 nucleotides (nt), representing the 
region covered by a translating ribosome (Ingolia et  al. 
2009). However, the footprint length can vary, ranging 
from 20 to 31 nt. By analyzing various ribosome profil-
ing datasets, we found that the 5’ end of footprints, the 
left boundary protected by ribosomes, is relatively fixed, 
whereas the 3’ end exhibits flexibility, leading to a vari-
ation in footprint length (Mao et  al. 2023). Footprint 
length is notably influenced by RNase digestion (Fig. 3A) 
(Gerashchenko and Gladyshev 2017; Douka et al. 2021). 
Inefficient digestion tends to yield longer footprints, 
which compromises the quality of ribosome profiling. 
However, variation in footprint length could indicate 
ribosome heterogeneity. For example, during amino acid 
starvation, an increase in short footprints of approxi-
mately 21 nt indicates paused ribosomes with empty A 
sites due to the absence of cognate charged tRNAs (Wu 
et al. 2019).

3.2  Reads in coding region
A vast majority (> 80%) of footprint reads aligned to 
mRNAs are typically found within the coding region 
(CDS) (Fig. 3B). A notably lower percentage of CDS reads 
usually indicates a higher level of contamination and 
lower data quality. In addition, it is worth investigating 
whether reads aligned to non-coding regions or non-cod-
ing RNAs represent active translation or are background 
noise (Couso and Patraquim 2017; Wright et  al. 2022; 
Mao and Qian 2023). For instance, a typical ribosome 
profiling dataset in human HEK293 cells exhibits 5–10% 
footprint reads in the 5’ UTR, implying potential active 
translation in the 5’ UTR of certain mRNAs (Fig.  3B). 

Indeed, it has been well accepted that alternative trans-
lation initiation can occur in the 5’ UTR when an ini-
tiation complex scans along the 5’ UTR and encounters 
an optimal initiation context upstream of the annotated 
start codon (Medenbach et  al. 2011; Dever et  al. 2020; 
Orr et al. 2020). In addition, footprint reads in the 3’ UTR 
may indicate stop codon readthrough (Dunn et al. 2013; 
Arribere et  al. 2016) or reinitiation (Young et  al. 2015a, 
2015b; Shu et  al. 2022) after translation termination. 
However, given that readthrough and reinitiation are 
relatively rare on most mRNAs and that there are many 
RNA binding proteins in the 3’ UTR, most sequencing 
reads in the 3’ UTR are likely contaminated by back-
ground noise and should be carefully evaluated. Iden-
tifying non-canonical translation events in non-coding 
regions and non-coding RNAs is of special interest (Chen 
et  al. 2020; Prensner et  al. 2021). For example, alterna-
tive initiation is common in stressed cells (Hinnebusch 
et al. 2016; Young and Wek 2016) and in many types of 
cancer cells (Wang et  al. 1996; Sendoel et  al. 2017; Xu 
et al. 2019; Huang et al. 2021), which implies an impor-
tant role for alternative initiation in stress responses and 
tumorigenesis.

3.3  In‑frame rate
The in-frame rate (IFR) denotes the fraction of foot-
print reads aligned to the correct reading frame of the 
CDS. IFR is a critical quality control metric for ribo-
some profiling, particularly in studies focusing on ribo-
some occupancy at individual codons to investigate 
ribosome pausing or frameshifting. A lower IFR in a 
ribosome profiling dataset indicates lower data quality 
and potential contamination from non-specific mRNA 
fragments during library preparation. Such contami-
nants can significantly affect the estimation of transla-
tion activity, typically calculated based on all footprint 
reads on mRNAs. In addition, IFR is vital for identify-
ing new ORFs, as most computational tools use IFR to 
discriminate ORFs from non-coding regions (Bazzini 
et  al. 2014; Mackowiak et  al. 2015; Calviello et  al. 
2016). Currently, most ribosome profiling experiments 
yield datasets with an IFR of approximately 60–70%. 
Recently, we developed a novel library construction 
method for ribosome profiling, achieving an IFR up to 
90% in HEK293 cells (Mao et al. 2023). This high-reso-
lution dataset revealed prevalent ribosome frameshift-
ing during the early stage of elongation. Interestingly, 
the frameshifting rate on individual codons seems to 
be associated with codon optimality, with non-optimal 
codons (lacking cognate tRNAs) showing a significantly 
higher frameshifting rate than optimal codons. It is 
important to note that IFR in most ribosome profiling 
datasets is length-dependent. Generally, footprint reads 
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with length of approximately 28 nt have the highest 
IFR, often reaching 80% or higher. IFR decreases dra-
matically for reads shorter than 28 nt, which should be 
carefully evaluated when calculating ribosome occu-
pancy using short reads. Notably, the IFR is mainly 
affected by the accuracy of the 5’ end of footprint reads, 
which is also influenced by library construction meth-
ods (Fig. 3C and D, discussed later).

3.4  Aggregation plot
An aggregation plot displays an averaged ribosome 
density along the CDS, which is commonly used to 
examine ribosome pausing at specific codons. However, 

an abnormal increase in ribosome density near the start 
codon can indicate potential concerns with data qual-
ity, probably resulting from ribosome movement during 
cell harvesting (Sharma et al. 2021).

4  Challenges in ribosome profiling 
and methodology

Ribosome profiling, although widely embraced, poses 
technical challenges in generating high-quality data-
sets. This complexity arises from the intricate nature of 
the ribosome profiling procedure, which encompasses 
numerous critical steps, each harboring distinct techni-
cal intricacies that can adversely affect the integrity of 
the data.

Fig. 3 Quality control of ribosome profiling. A Line plots show the distribution of footprint length using cell lysates treated with different RNase 
I concentrations (AM2295, 100 U versus 300 U), suggesting that a lower RNase I concentration may reduce RNA digestion efficiency. B Quality 
check of RNase I digestion. After RNase I digestion, RNA fragments were separated on a 15% denatured PAGE gel, which was then stained 
with SYBR Gold. The RNA ladder (left) or marker (30 nt) is shown in lane 1 of each panel. Compared to the left panel (100 U RNase I, AM2295), 
the fragments at approximately 30 nt were relatively weak when an extremely low concentration of RNase I (10 U RNase I, AM2295) was used. 
When RNAs are efficiently digested, the majority of fragments approximately 30 nt are aligned to CDS, whereas the fragments are contaminated 
with RNA fragments from the 3’ UTR when the digestion is inefficient (right pie chart). C Bar plots show the accuracy of the 5’ end of the footprint 
when different library construction methods were used. Circularization-based methods have ~ 50% of reads showing additional non-templated 
nucleotides at the 5’ end of footprint reads (mismatches > 0, left panel, data from SRR7241912 were used). Compared to circularization-based 
methods, dual-ligation methods significantly improve 5’ end accuracy, with < 5% footprint reads having mismatches > 0 (data from SRR14824510 
were used). Template-switch-based methods add a variable number of non-templated nucleotides to the 5’ end of cDNA (right panel, unpublished 
data). D The G preference of template-switch methods. Position refers to the positions from the 5’ end of footprint reads
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4.1  Cell harvesting and lysis
The initial step involves stabilizing ribosomes on mRNA 
molecules before cell lysis. To this end, cells are subjected 
to flash freezing to arrest translation activity (McGlincy 
and Ingolia 2017). However, a potential concern arises 
during cell harvesting and lysis in cold conditions, as 
mRNA translation is sensitive to stress including cold 
(Knight et  al. 2015). Low temperature before cell har-
vesting may alter the translation landscape (Zhang et al. 
2018). Therefore, harvesting cells as soon as possible may 
improve the quality of ribosome profiling. Another com-
mon method to arrest translation is pre-incubating cells 
with cycloheximide. Cycloheximide blocks translation 
elongation by binding to ribosomes and inhibiting eEF2-
mediated translocation (Ennis and Lubin 1964; Baliga 
et  al. 1969; Schneider-Poetsch et  al. 2010). Intriguingly, 
previous studies have reported that cycloheximide allows 
one complete translocation cycle before halting further 
elongation (Schneider-Poetsch et al. 2010), raising ques-
tions about its ability to immobilize ribosomes in  situ 
and thus complicating ribosome occupancy at individual 
codons. Systematic analysis of ribosome profiling data-
sets in yeast with and without cycloheximide has indeed 
revealed biases in ribosome occupancy introduced by 
cycloheximide (Lareau et al. 2014; Hussmann et al. 2015). 
In addition, cycloheximide-induced translation elonga-
tion inhibition can induce stress responses, which may 
perturb the global translation landscape (Santos et  al. 
2019). Although the use of cycloheximide in mammalian 
cells remains controversial (Sharma et  al. 2021), it war-
rants particular attention when pre-incubating cells with 
cycloheximide.

4.2  Polysome profiling
Polysome profiling is a technique that segregates trans-
lated mRNAs on a sucrose gradient based on the num-
ber of bound ribosomes (Chassé et al. 2017; Pringle et al. 
2019). Following ultracentrifugation of the cell lysate on 
a 15–40% sucrose gradient, actively translated mRNAs 
can be separated into different fractions according to 
ribosome count. These mRNA fractions are subsequently 
collected using spectrophotometric analysis at A254. 
Polysome profiling effectively enriches ribosome-bound 
mRNAs, resulting in a significant reduction in non-cod-
ing RNA content, improved RNase digestion efficiency, 
and, consequently, enhanced ribosome profiling data 
quality. However, polysome profiling requires a substan-
tial amount of RNA and may not be suitable for low-
input samples (Liang et al. 2018). In addition, a fraction 
analyzer is needed for polysome profiling, which may not 
be available to all research groups (Sobhany and Stanley 
2021). Consequently, many ribosome profiling experi-
ments opt to omit this step. In an alternative approach, 

chemical labeling techniques such as puromycin labe-
ling have been developed to enrich ribosome-bound 
mRNAs (Schmidt et al. 2009; Kandala et al. 2019; Hadidi 
et  al. 2023). Puromycin, an aminonucleoside antibiotic, 
binds to ribosomes and nascent peptide chains, offering 
a means to quantify protein synthesis (Semenkov et  al. 
1992; Starck and Roberts 2002). Previous studies have 
introduced methods such as RiboLace, which utilize 
puromycin-containing molecules to isolate active ribo-
somes. (Clamer et al. 2018).

4.3  RNA digestion
Efficient RNA digestion plays a pivotal role in achieving 
high-quality ribosome profiling (Li et  al. 2023). RNase I 
is the most commonly used RNase for ribosome profil-
ing. Digestion is usually completed at room tempera-
ture (McGlincy and Ingolia 2017). However, a recent 
study suggested that overnight digestion on ice could 
enhance digestion efficiency (Douka et  al. 2021). It is 
important to note that RNase I digests ribosomal RNAs 
(rRNA), resulting in significant rRNA contamination in 
ribosome profiling libraries (Meador et  al. 1990). rRNA 
contamination consumes a vast majority of sequenc-
ing reads, significantly reducing the number of reads 
aligned to mRNAs (low to 5% of total reads). It is chal-
lenging to remove rRNA contamination from ribosome 
profiling libraries (Thompson et al. 2020; Zinshteyn et al. 
2020), therefore, other RNases have been explored to 
mitigate rRNA contamination (Gerashchenko and Gla-
dyshev 2017; Hwang and Buskirk 2017), including mic-
rococcal nuclease (MNase) (VanInsberghe et  al. 2021), 
RNase A (Simsek et  al. 2017), and RNase T1 (Liu et  al. 
2018; Gerashchenko 2021). However, these RNases often 
exhibit RNA sequence preferences in digestion, introduc-
ing additional biases to the calculation of ribosome occu-
pancy at individual codons (VanInsberghe et  al. 2021). 
Recently, a study indicated that the nuclease P1 may be a 
promising alternative with the potential to digest mRNAs 
without obvious sequence bias (Ferguson et al. 2023). In 
addition, nuclease P1 appears to have a preference for 
mRNA over rRNA compared to RNase I, resulting in a 
reduction of the rRNA fraction to less than 50% (Fergu-
son et al. 2023).

4.4  Library construction
Selecting an appropriate methodology for construct-
ing ribosome profiling libraries is crucial. Initially, cir-
cularization-based methods were employed, involving 
RNA ligation and DNA circularization (Ingolia et  al. 
2009; McGlincy and Ingolia 2017). RNA fragments 
were first ligated to a 3’ adaptor, which served as 
priming sites for reverse transcription. After reverse 
transcription, the complementary DNA (cDNA) was 
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circularized and then subjected to PCR amplifica-
tion using the priming sites in the 3’ adaptor (Fig. 4A). 
The circularization-based method is time-consuming 
and inefficient, rendering it unsuitable for low-input 
RNA samples. Furthermore, reverse transcription 
introduces non-templated nucleotides at the 5’ end of 
cDNA, due to the non-templated addition of reverse 
transcriptase. Although non-templated nucleotides can 
be removed using computational methods, it is impos-
sible to discriminate additional nucleotides if they can 
be aligned to the genome, which significantly reduces 
the 5’ end accuracy of footprint reads (Fig.  3C). To 
improve the efficiency of library construction, other 
methods such as the dual-ligation method have been 
employed (VanInsberghe et  al. 2021). Dual-ligation 
methods, which ligate fragments to both 3’ and 5’ adap-
tors, offer higher efficiency and are suitable for single-
cell ribosome profiling (Fig.  4B). The major concern 
of dual-ligation is the sequence preference of ligation, 
which potentially alter the relative ribosome densities 
at individual codons. To mitigate ligation bias, random 
barcodes have been introduced into the ligation prim-
ers (Lecanda et  al. 2016; McGlincy and Ingolia 2017; 
Lama et  al. 2019). Notably, random barcodes can also 
serve as unique molecular identifiers (UMI) to correct 
PCR amplification biases. In addition, dual-ligation 
methods are also prone to formation of dimers, a self-
ligation between 5’ and 3’ adaptors. Dimmers consume 
a substantial fraction of adaptors and sequencing depth 
and thus must be eliminated from libraries through gel 
electrophoresis. Recently, another method based on the 

template-switch mechanism has been utilized for ribo-
some profiling library construction (Li et al. 2022, 2023; 
Xiong et al. 2022; Zhang et al. 2022; Zou et al. 2022). In 
this approach, RNA fragments are tagged with polyad-
enine tails and subjected to reverse transcription using 
Moloney murine leukemia virus (MMLV)-type reverse 
transcriptase with a switching property (Wulf et  al. 
2019). When reverse transcription reaches the 5’ end of 
RNA fragments, the reverse transcriptase tends to add 
three additional non-templated nucleotides (+ CCC) to 
the 3’ end of nascent cDNAs, which allows the reverse 
transcriptase to switch templates to the templated 
switched oligo (TSO) sequence (Fig.  4C). Because the 
amount of input RNAs for the template-switch method 
can be extremely low, this method has been widely used 
in single-cell RNA-seq library construction (Picelli 
et  al. 2013, 2014). However, a few concerns should be 
considered when it is used for single-cell ribosome pro-
filing. First, non-templated nucleotides at the 3’ end of 
cDNAs are generally variable, with a median value of 3 
nucleotides (Fig. 3C). The variable 3’ end makes it chal-
lenging to infer the accurate 5’ end of footprints and 
thus the positions of ribosomes. Therefore, mathemati-
cal models such as random forest have been trained to 
predict ribosome positions, based on footprint reads 
around the stop codon, where ribosome positions are 
assumed to be accurate due to ribosome pausing at 
the stop codon (VanInsberghe et  al. 2021). Addition-
ally, template-switch methods exhibit a bias toward 
guanine, potentially enriching footprint reads with G 
at the 5’ ends and introducing biases that may impact 

Fig. 4 Library construction method for ribosome profiling. A Circularization-based, B Dual-ligation-based, and C Template-switch-based. RT: reverse 
transcription
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ribosome occupancies at individual codons (Fig.  3D) 
(Tang et al. 2013; Meistertzheim et al. 2019).

5  Advancements in ribosome profiling: 
transitioning from bulk to low‑input 
and single‑cell ribosome profiling

Ribosome profiling-based methodologies have signifi-
cantly improved our capacity to monitor protein syn-
thesis in  vivo. Similar to RNA-seq, conventional bulk 
ribosome profiling falls short in detecting translation 
controls within specific cell populations. To scrutinize 
translation heterogeneity at the single-cell level, single-
cell ribosome profiling based on the dual-ligation method 
was introduced (VanInsberghe et  al. 2021). Single-cell 
ribosome profiling revealed distinct responses in trans-
lation activity and ribosome pausing throughout the cell 
cycle. Remarkably, ribosome pausing at codons encod-
ing specific amino acids was evident only in certain cells, 
dependent on their cell cycle state. It is believed that 
depletion of single amino acids or cognate tRNAs leads 
to ribosome pausing at specific codons. However, most 
bulk ribosome profiling data in mammals have failed to 
establish a clear correlation between ribosome pausing 
and the corresponding tRNA or amino acid abundance. 
The heterogeneity of ribosome pausing revealed by sin-
gle-cell ribosome profiling may elucidate the absence of 
such a correlation.

In contrast to the ligation-based library used in pre-
vious studies (VanInsberghe et  al. 2021; Froberg et  al. 
2023), several recent studies have employed the tem-
plate-switch method to construct low-input ribosome 
profiling libraries using only a few hundred cells (Li et al. 
2022; Xiong et al. 2022; Zhang et al. 2022; Ozadam et al. 
2023). By applying low-input ribosome profiling to cells 
during the early development of embryos, a stage charac-
terized by more active mRNA translation than transcrip-
tion, previous studies (Zhang et  al. 2022; Ozadam et  al. 
2023)have revealed a remarkable alteration in the trans-
lation landscape within mammalian oocytes or embryos.

While both low-input and single-cell ribosome profil-
ing offer insights into translation control at the single-
cell level, cell subpopulations often need to be separated 
before ribosome profiling. However, cell sorting can 
introduce stress responses due to the sensitivity of trans-
lation, leading to rapid changes in the global transla-
tion landscape. Recently, a spatially resolved single-cell 
translatomics method termed RIBOMap was developed 
(Zeng et al. 2023). Using a tri-probe system that includes 
probes targeting rRNA and specific groups of mRNAs, 
and probe functions for DNA amplification, RIBOMap 
can detect and quantify ribosome-bound mRNA in situ. 
By applying RIBOMap in the mouse brain in paral-
lel with spatial transcription analysis, a previous study 

(Zeng et  al. 2023) revealed significantly differential 
translation regulation during oligodendrocyte matura-
tion. Notably, RIBOMap is also able to monitor transla-
tion activity at the subcellular level, revealing translation 
control in specific localization within cells.

6  Perspective
Over the past 15  years, ribosome profiling has evolved 
significantly, emerging as a versatile method for moni-
toring translation activity at various stages of protein 
synthesis and in diverse cell types, tissues and numerous 
human diseases (Lee et al. 2021; Ouspenskaia et al. 2022; 
Passarelli et  al. 2022). Moreover, the ribosome profiling 
procedure has been streamlined, leading to the genera-
tion of high-quality datasets (Ferguson et al. 2023). Nev-
ertheless, there persists a need for further refinement in 
ribosome profiling quality to address fundamental ques-
tions in translation control. For instance, only a small 
fraction of sequencing reads generated in most ribo-
some profiling experiments can be successfully aligned 
to mRNAs, typically ranging from 10 to 30%. Regardless 
of rRNA contamination, a significant proportion of reads 
are mapped to non-coding RNAs or non-coding regions 
of mRNAs, suggesting pervasive translation in certain 
non-coding regions (Orr et  al. 2020; Wright et  al. 2022; 
Mao and Qian 2023). Identifying such non-canonical 
translation within non-coding regions poses challenges, 
primarily owing to their typically lower translation levels 
than mRNAs. While computational tools play a crucial 
role in unveiling non-canonical translation events (Lei 
et al. 2023), improving the quality of ribosome profiling 
can substantially reduce background noise, thus increas-
ing the sensitivity and specificity of the identification of 
non-canonical translation events.

Another intriguing question pertains to single-cell and 
spatial ribosome profiling. Emerging evidence indicates 
significant variations in ribosome composition among 
different tissues and cell types (an example showing 
Fig. 5A) (Genuth and Barna 2018; Gay et al. 2022). Ribo-
somal heterogeneity plays a pivotal role in the specialized 
translation of specific groups of mRNAs which can be 
mediated by the diversity in ribosomes. Single-cell ribo-
some profile together with single-cell RNA-seq offers a 
powerful approach to investigate the regulation and func-
tion of specialized translation (Fig. 5B). Although single-
cell ribosome profiling techniques are available, many 
of them suffer low efficiency. First, only a small fraction 
of mRNAs is captured, limiting the ability to detect the 
translation landscape in cell populations. Second, the 
unique reads in each cell are rather scarce. The extreme 
sparsity of footprint reads makes it challenging to calcu-
late ribosome occupancy at individual codons. Theoreti-
cally, techniques such as RIBOMap have the potential to 
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capture a higher number of mRNAs by increasing the 
number of probes. However, they lack information about 
ribosome positions, which limits their ability to detect 
the heterogeneity of ribosome occupancy in tissues. For 
example, uORF translation plays critical roles in transla-
tion regulation of downstream main ORFs (Dever et  al. 
2023). Whether there is heterogeneity in uORF transla-
tion in a cell-specific manner remains unclear. The devel-
opment of high-quality single-cell ribosome profiling 
may enhance our comprehension of the heterogeneity of 
uORF translation.
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