
Noman et al. Crop Health            (2023) 1:15  
https://doi.org/10.1007/s44297-023-00015-8

REVIEW

Nano‑enabled crop resilience 
against pathogens: potential, mechanisms 
and strategies
Muhammad Noman1,2, Temoor Ahmed1,3, Jiaoyu Wang2, Munazza Ijaz1, Muhammad Shahid4, 
Mohammad Shafiqul Islam1,2, Azizullah1, Irfan Manzoor4, Dayong Li1 and Fengming Song1* 

Abstract 

Nanoparticles (NPs) have emerged as a revolutionary strategy in the field of agriculture, offering innovative solutions 
for enhancing plant health, disease management, and sustainable crop production. This review summarizes the mul-
tifaceted roles of NPs, synthesized chemically and biologically, in crop disease management, encompassing the NP 
modulation of plant immunity against pathogens, mechanisms of NP uptake, and potential applications in disease 
control. The integration of NPs as delivery vehicles for bioactive molecules, enabling targeted delivery of nutrients, 
hormones, RNA interference molecules, and chemical protectants for growth regulation and disease management, 
is also discussed in detail. The review also critically examines the safety and environmental considerations associ-
ated with the potential application of NPs in the agriculture sector, including environmental toxicity, fate, and risks. 
Future perspectives encompass precision agriculture, eco-friendly disease management, unraveling intricate plant-
NP interactions, and the necessity for responsible innovation. At the nexus of nanotechnology and agriculture, this 
review underscores the transformative potential of NPs in revolutionizing plant health and crop disease management, 
while highlighting the importance of responsible application to ensure sustainable and resilient agricultural systems.
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Introduction
Plant diseases caused by phytopathogens, including fungi, 
bacteria, viruses, and nematodes, have long been a major 
challenge in agriculture, posing significant threats to 

crop productivity and global food security [1]. The inter-
action between plants and phytopathogens is a compli-
cated dynamic process, involving intricate physiological, 
biochemical and molecular responses [2, 3]. Traditional 
methods of managing plant diseases often rely on chemi-
cal pesticides, which not only pose potential risks to 
human health and the environment but also contribute to 
the development of pesticide-resistant pathogens [4, 5]. 
The demand for sustainable and eco-friendly agricultural 
practices has led researchers to explore innovative strate-
gies that can boost the efficiency of the green control of 
crop diseases while minimizing the negative impacts of 
conventional disease management approaches.

In recent years, the field of nanotechnology has 
emerged as a promising avenue for revolutionizing plant 
disease management by harnessing the unique properties 
of nanoparticles (NPs) to modulate plant immunity and 
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counteract phytopathogen attacks [6–8]. In the realm of 
NP-mediated disease management in crops, NPs have 
risen to prominence due to their unique physicochemi-
cal properties and remarkable versatility [9, 10]. In recent 
years, silver NPs, copper NPs, and others have garnered 
significant attention for their remarkable antimicrobial 
properties and their ability to enhance plant defenses [11, 
12]. Recent research has highlighted the potential of NPs 
to influence and strengthen plant innate defense mecha-
nisms, thereby triggering plant immunity and reducing 
disease susceptibility. For example, manganese and cop-
per NPs, at 100 μg/mL concentration, have been shown 
to activate innate immune responses in watermelon 
plants against Fusarium wilt and bacterial fruit blotch, 
respectively [4, 13]. Similarly, chitosan-coated iron NPs 
(250  μg/mL) have been reported to boost the capacity 
of the antioxidative system and induce the expression of 
defense genes to suppress bacterial leaf blight in rice [14]. 
The capacity of NPs to penetrate plant tissues, interact 
with cell membranes, and traverse cell walls enables them 
to access and engage with plant systems, providing an 
exciting opportunity to develop innovative strategies for 
disease management that are both effective and environ-
mentally sustainable [15, 16]. However, several climatic 
factors, soil type, pH levels, and the compatibility of NPs 
with other substances can significantly impact the over-
all success of NPs-based disease management approaches 
[6, 10]. Furthermore, synthesizing NPs is a crucial aspect 
of harnessing their potential applications in the agricul-
ture sector [17, 18]. Among the most common methods 
are chemical and physical methods, which are widely 
used for their scalability and precision in controlling NP 
size and shape. However, these methods require the use 
of toxic chemicals, high cost, extended time periods, 
and high temperatures [19, 20]. Biological methods, syn-
thesizing NPs either intracellularly or extracellularly by 
employing microbes or plant extracts as reducing agents, 
offer green synthesis options [10, 21]. The choice of syn-
thesis method depends on the specific application and 
desired NP properties, highlighting the need for a tai-
lored approach in harnessing the full potential of NPs in 
diverse fields.

This review highlights the multifaceted roles, mecha-
nisms and strategies of NPs for sustainable crop disease 
management. This study aims to provide an in-depth 
understanding of the effects of NPs on different crops 
and the mechanisms underlying the NP-mediated mod-
ulation of plant immunity. Additionally, the review also 
addresses critical considerations such as NP formulation 
strategies for optimal delivery, safety concerns, and envi-
ronmental implications. By critically evaluating the state 
of research in this dynamic field, we aim to shed light on 

the future applications of NPs or their formulations in 
sustainable agriculture systems.

NPs in crop disease management
NPs have emerged as a cutting-edge and transforma-
tive tool in the realm of crop disease management. In 
an era where sustainable agriculture is imperative, NPs 
offer innovative solutions to address the complex chal-
lenges posed by diverse phytopathogens [22]. Their small 
size, high surface area-to-volume ratio, and tunable sur-
face chemistry enable precise and targeted interventions 
[10]. One of the fundamental roles of NPs in crop disease 
management is their capacity to stimulate plant defense 
responses [23]. When NPs interact with plants, they can 
trigger various defense pathways, including the induction 
of defense genes, oxidative signaling, and phytohormone-
dependent molecular events. These responses prepare 
plants to recognize and combat invading pathogens more 
effectively, providing an innate shield against diseases 
[24, 25]. For example, phytogenic silica NPs (100 μg/mL) 
have been demonstrated to activate the antioxidant sys-
tem and innate defense responses in wheat plants against 
Rhizoctonia solani [26]. Similarly, chitosan-coated iron 
NPs, synthesized by Bacillus aryabhattai RNT7, have 
been reported to trigger the expression of PR protein- 
and antioxidant enzyme-encoding genes to counter 
bacterial leaf blight disease in rice [14]. Moreover, NPs 
serve as carriers for essential nutrients, facilitating their 
uptake and efficient utilization by plants. This not only 
bolsters plant health but also strengthens their ability to 
fend off pathogens. For example, at a 30 mg/L concentra-
tion, chemogenic sulfur NPs suppressed Fusarium wilt 
in tomato plants by improving in planta sulfur accu-
mulation and plant biomass [27]. Similarly, chemogenic 
silica NPs (1500 mg/L) have been employed to enhance 
resistance in watermelon plants against the Fusarium wilt 
pathogen Fusarium oxysporum f. sp. niveum, effectively 
reducing disease severity by improving silicon concen-
tration in plant tissues [15]. Furthermore, NPs can also 
exert direct antimicrobial effects by disrupting pathogen 
structures, functions, and infection ability, making them 
effective weapons against devastating phytopathogens. 
For example, 16 μg/mL of phytogenic zinc and chitosan 
NPs, stabilized using tomato extract, displayed signifi-
cant antibacterial activity against Xanthomonas oryzae 
pv. oryzae, inhibiting pathogen growth, biofilm produc-
tion, and swarming motility [28]. Microscopic observa-
tions revealed that these NPs induced morphological and 
oxidative damage to bacterial cells, ultimately leading to 
pathogen death [28]. By offering a multifaceted approach 
to disease management, NPs contribute to sustainable 
farming practices by reducing the need for chemical 
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pesticides, promoting environment-friendly agriculture, 
and enhancing crop productivity [29, 30].

Given these facts, the introduction of NPs into crop 
disease management programs represents a remarkable 
shift in modern agriculture systems. Their importance 
is underscored by the potential to enhance food secu-
rity, promote sustainable agriculture, and reduce the 
environmental impact of conventional disease manage-
ment methods. As research continues to uncover the 
intricacies of NPs in crop disease management, their 
roles in ensuring the health and resilience of global crop 

ecosystems become increasingly prominent. Different 
NPs and their potential in crop disease management are 
provided in Table 1.

Mechanisms of NPs‑mediated crop disease 
management
NPs have emerged as versatile tools in the realm of dis-
ease management, offering novel approaches to combat 
phytopathogens and mitigate the devastating impacts of 
plant diseases (Fig.  1) [49]. The unique physicochemi-
cal properties of NPs, including small size, surface 

Table 1  Selected examples of different NPs involved in the suppression of crop diseases through different mechanisms

Nanoparticles Target pathogens Host plants Mechanisms References

Copper Rhizoctonia solani Tomato Suppressed disease progression by activating defense 
response

[31]

Acidovorax citrulli Watermelon Activated stomatal immunity for disease suppression [13]

Colletotrichum capsici Chilli Reduced disease symptoms by directly inhibiting pathogen 
growth

[32]

Iron Tobacco mosaic virus Tobacco Activated salicylic acid-dependent defense for suppressing 
viral infection

[33]

Ralstonia Solanacearum Tomato Suppressed bacterial wilt by activating antioxidant enzymes 
and modulating rhizosphere bacterial community

[34]

Magnesium Colletotrichum gloeosporioides Avocado and papaya Inhibited conidial germination and induced structural 
damage

[35]

R. solanacearum Tomato Induced systemic resistance by triggering immune 
responses

[36]

Manganese Fusarium oxysporum f. sp. niveum Watermelon Suppressed Fusarium wilt by inducing plant antioxidative 
and defense mechanisms

[4]

F. oxysporum f. sp. niveum Watermelon Reduced disease incidence by triggering the expression 
of defense-related genes

[37]

Silver Fusarium oxysporum f. sp. lycopersici Tomato Inhibited mycelial growth by inducing significant structural 
damages

[38]

Pectobacterium carotovorum Sugar beet Activated antioxidative defense for suppressing soft rot 
disease

[39]

Xanthomonas oryzae pv. oryzae Rice Inhibited disease incidence by activating plant antioxidative 
defense system

[40]

Acidovorax oryzae Rice Inhibited pathogen survival, biofilm formation, and swarm-
ing motility

[41]

Sulfur F. oxysporum f. sp. lycopersici Tomato Reduced disease incidence by activating salicylic acid-
mediated disease resistance mechanisms

[27]

Fusarium solani Tomato Disrupted pathogen cellular integrity and viability [42]

P. carotovorum Lettuce Decreased disease severity by triggering jasmonic acid- 
and salicylic acid-regulated immune responses

[43]

Titania Puccinia striiformis f. sp. tritici Wheat Activated plant antioxidative signaling for suppressing 
fungal infection

[44]

Bipolaris sorokiniana Wheat Reduced disease severity by improving plant physiological 
and metabolic profile

[45]

Dickeya dadantii Sweet potato Inhibited pathogen growth, swimming motility, and biofilm 
formation

[46]

Zinc oxide X. oryzae pv. oryzae Rice Showed direct antibacterial activity against bacterial 
pathogen

[28]

F. oxysporum f. sp. melongenae Eggplant Suppressed disease severity by activating plant biochemical 
and physiological mechanisms

[47]

F. oxysporum f. sp. lycopersici Tomato Reduced disease incidence by inducing defense responses [48]
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area-to-volume ratio, and catalytic potential, enable 
them to function as potent antimicrobial agents through 
disrupting pathogen growth, multiplication, and the 
infection process, and plant immunity modulators by 
regulating key defense-related pathways to improve resil-
ience against pathogens [50]. Recent research progress 
has highlighted the multifaceted mechanisms of NPs in 
disease management and their effectiveness in counter-
ing phytopathogens (Table 1).

NPs as antimicrobial agents
NPs possess inherent antimicrobial properties that can 
be harnessed to target a wide spectrum of pathogens. 
Their small size and large surface area facilitate interac-
tions with microbial cells, leading to detrimental effects 
on their viability and function [51]. NPs, such as silver 
and copper NPs, are particularly noteworthy for their 
pronounced antimicrobial activity. These NPs can disrupt 
cell membranes, interfere with cellular processes, and 
induce oxidative stress, ultimately leading to the death of 
microbial cells [13, 40]. By functioning as antimicrobial 

agents, NPs can inhibit pathogen growth and disrupt 
the infection process, thus preventing disease onset and 
progression.

Disruption of pathogen structures and proliferation
NPs can exert inhibitory effects on the growth and prolif-
eration of phytopathogens via disrupting cellular mem-
branes and organelles, impeding their ability to establish 
infections and spread within plant tissues [14, 52]. The 
interactions between NPs and microbial pathogens can 
disrupt key physiological processes, including nutri-
ent uptake, enzymatic activities, and cell division [53]. 
This disruption can lead to reduced pathogen popula-
tions and the mitigation of disease progression [10, 53]. 
For example, iron and copper nanocomposites, at 15 μg/
mL and 32  μg/mL concentrations, respectively, have 
been shown to form a protective sheath on rice leaves, 
preventing X. oryzae pv. oryzae infection by disrupt-
ing its cellular structures and metabolic pathways [54, 
55]. Such mechanisms offer the potential to limit the 
development of drug-resistant strains and enhance the 

Fig. 1  Mechanistic roles of NPs (represented as blue-colored particles) in crop disease management. NPs interact with phytopathogens either directly 
or indirectly. In direct interactions, NPs inhibit pathogen growth, reproduction, and infection processes, ultimately causing pathogen death. 
Through indirect mechanisms, NPs influx into plant cells and activate an intricate network of immune responses, including the production 
of antimicrobial metabolites, antioxidants, phytohormones, and pathogenesis-related proteins, thus providing resistance to plants against pathogen 
infection
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durability of disease management strategies [56, 57]. 
Similarly, magnesium oxide NPs (16  μg/mL) have been 
found to interfere with cell division and inhibit spore 
germination in Phytophthora nicotianae and Thielaviop-
sis basicola, thereby curbing the proliferation of fungal 
pathogens. Furthermore, manganese and copper NPs (at 
16  μg/mL and 100  μg/mL concentrations, respectively) 
have been reported to disrupt the integrity of essential 
biomolecules, such as nucleic acids and proteins, further 
attenuating pathogen growth [58, 59]. These NP-induced 
inhibitory effects hold immense promise for protecting 
plants against pathogen attack.

Inhibition of pathogen infection process
NPs can interfere with the intricate steps involved in the 
pathogen infection process, from adhesion to host tissues 
and chemotrophic/invasive growth to the establishment 
of infection structures [16]. By targeting specific stages 
of the infection process, NPs can impede the ability of 
pathogens to colonize and cause damage to host plants. 
NPs can hinder pathogen adhesion by modifying surface 
properties and repelling microbial cells [14, 60]. Further-
more, NPs can also disrupt the formation of biofilms, 
which is central to the establishment of many chronic 
infections [53, 61]. For example, chitosan-coated iron and 
magnesium nanocomposites (at 250 μg/mL and 100 μg/
mL concentrations, respectively) have shown promise 
in preventing biofilm formation by devastating rice bac-
terial pathogens, X. oryzae pv. oryzae and Acidovorax 
oryzae, where chitosan facilitated greater influx of nano-
iron and magnesium into microbial cells, thus enhancing 
their antimicrobial potential and attenuating infection 
on plant surfaces [14, 62]. Manganese, copper, and sul-
fur NPs have been shown to alter the physicochemical 
properties of plant surfaces, making them less condu-
cive to pathogen attachment and colonization [4, 13, 27]. 
Although this disruption of the infection process holds 
potential for mitigating disease incidence and severity, 
challenges such as optimizing NP efficacy, understanding 
potential ecological impacts, and ensuring targeted deliv-
ery remain to be addressed. As research in this field con-
tinues, the application of NPs could revolutionize disease 
management practices, contributing to the development 
of resilient and sustainable agricultural systems.

NPs as modulators of plant immunity
Plants have evolved an intricate innate immune system to 
defend against phytopathogenic invaders, underscoring 
the significance of plant autoimmunity in safeguarding 
their health [63, 64]. The use of NPs as immune modu-
lators offers a novel approach to bolster plant immune 
responses, potentially leading to enhanced broad-spec-
trum resistance against a wide range of pathogens. NPs 

can effectively trigger and amplify various aspects of 
plant defenses, encompassing both early and late immune 
signaling and defense responses [65]. Recent studies have 
highlighted different mechanisms by which NPs modu-
late plant immune responses to suppress diseases in 
crops (Table 1).

Reinforcement of physical barriers
The application of NPs to enhance physical barriers in 
crops represents a cutting-edge strategy in improving 
plant defenses against pathogens. Physical barriers serve 
as the first line of defense, preventing pathogen invasion 
by inhibiting attachment, penetration, and colonization. 
NPs have emerged as promising agents to reinforce these 
barriers, providing an additional layer of protection.

One of the primary mechanisms through which NPs 
reinforce physical barriers is by modifying plant surfaces 
to make them less suitable for pathogen attachment [66]. 
For example, manganese NPs (100  μg/mL concentra-
tion) have demonstrated the ability to alter watermelon 
root surfaces to restrict F. oxysporum f. sp. niveum entry. 
These NPs formed a nanotextured layer on the root sur-
face, effectively reducing pathogen penetration and infec-
tion in watermelon plants [4]. Furthermore, NPs can 
enhance the structural integrity of plant cell walls and 
cuticles, fortifying physical barriers against pathogen 
penetration [67]. Cell walls act as a formidable physical 
barrier, and silica NPs have been reported to act as a cell 
wall reinforcing agent, reducing Pseudomonas syringae 
pv. tomato (Pst) DC3000 growth in Arabidopsis thaliana 
[68]. Furthermore, this reinforcement impedes the pro-
gress of invading pathogens, reducing infection severity 
[69]. NPs also play a role in the modification of plant tri-
chomes, specialized epidermal structures that can serve 
as physical barriers against devastating pathogens [16, 
70]. Silica and copper NPs, at 25  mg/L and 100  μg/mL 
concentrations, respectively, have been shown to main-
tain the integrity of trichomes in soybean and water-
melon plants, providing enhanced protection against 
Fusarium virguliforme and Acidovorax citrulli infections, 
respectively [13, 16].

The importance of NPs in reinforcing physical barriers 
lies in their ability to enhance crop resilience. By mini-
mizing pathogen attachment, penetration, and subse-
quent colonization, NPs help reduce disease incidence 
and severity. This not only leads to increased crop yield 
but also lowers the need for chemical pesticides, aligning 
with sustainable and environmentally friendly agricul-
tural practices [49, 71, 72]. However, challenges remain, 
particularly in fine-tuning the application of NPs to 
achieve optimal barrier reinforcement without negative 
side effects on plant growth and development. Addition-
ally, understanding the long-term implications of NPs on 
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the overall health of crops and ecosystems is a vital area 
of future research.

Elicitation of phytohormone signaling
The manipulation of phytohormone signaling pathways 
through the use of NPs has emerged as a pioneering 
strategy to fortify crops against pathogenic threats [73]. 
Phytohormones, such as salicylic acid (SA) and jasmonic 
acid (JA), play pivotal roles in orchestrating plant defense 
mechanisms [74–76]. NPs have been demonstrated to 
activate plant immune responses by modulating the lev-
els and signaling pathways of phytohormones [7, 73, 77, 
78].

Although the intricate network of NPs and phytohor-
mone signaling is unexplored, studies have demonstrated 
that NPs and hormonal signaling synergistically regulate 
defense mechanisms in plants under pathogen attack 
[79, 80]. For example, copper NPs at 50 mg/L have been 
shown to enhance SA- and JA-mediated defenses, result-
ing in increased resistance in rice against the bakanae dis-
ease-causing fungal pathogen Gibberella fujikuroi [81]. 
Similarly, silver NPs at 50 μg/mL have been reported to 
induce SA-mediated defense responses in wheat plants, 
providing protection against the yellow rust pathogen 
Puccinia striiformis f. sp. tritici [82].

This innovative approach of NPs-mediated elicita-
tion of phytohormone signaling pathways offers several 
advantages in crop protection. First, it enables plants to 
fine-tune their responses according to the type of patho-
gen encountered. Second, it facilitates rapid and robust 
defense responses, reducing the severity of disease symp-
toms. Third, it allows for a fine-tuned balance between 
growth and defense, ensuring minimal impact on plant 
development [73, 83, 84]. However, the use of NPs to 
modulate phytohormone signaling is not without its chal-
lenges. Achieving precise control over the desired hor-
monal responses and minimizing potential side effects 
are ongoing areas of research [73]. It is believed that as 
the understanding of NP-phytohormone interaction net-
works deepens, their potential to bolster crop resilience 
and secure global food production becomes increasingly 
evident.

Production of antimicrobial compounds
Harnessing the potential of NPs to facilitate the produc-
tion of antimicrobial compounds, such as pathogen-
fighting molecules and enzymes, within crops represents 
a pioneering approach to fortify plant defenses against 
pathogens [85]. Antimicrobial compounds are key com-
ponents of a plant arsenal against invading microbes, as 
they can directly inhibit pathogen growth and multiplica-
tion [86, 87]. NPs offer a remarkable means to stimulate 

the biosynthesis of these compounds, equipping plants 
with enhanced resistance.

NPs can stimulate the synthesis of antimicrobial com-
pounds, such as pathogenesis-related (PR) proteins, 
phenolic compounds, and hydrolytic enzymes, contrib-
uting to plant defense [85, 88]. These compounds exhibit 
inhibitory effects on pathogens, impeding their growth 
and infection process [89, 90]. Sulfur NPs (30  mg/L) 
have been found to induce the expression of PR and 
antioxidant enzyme-encoding genes in tomato, result-
ing in increased resistance to Fusarium wilt pathogen 
Fusarium oxysporum f. sp. lycopersici [27]. Additionally, 
silica NPs at 650  mg/L have been shown to elevate the 
production of antimicrobial hydrolytic enzymes, such 
as β-1,3-glucanase, pectinase, and chitinase, in tomato 
plants against the bacterial wilt pathogen Ralstonia sola-
nacearum [91].

The significance of NPs in promoting the production 
of antimicrobial compounds lies in their potential to pro-
vide crops with a proactive and self-sustaining defense 
system. By stimulating the biosynthesis of antimicrobial 
compounds, NPs empower plants to produce their own 
arsenal of weapons to combat pathogens. This not only 
reduces disease incidence but also decreases the need 
for external chemical interventions, contributing to eco-
friendly and sustainable agriculture [85, 88]. However, 
the use of NPs to induce antimicrobial compound pro-
duction in crops is a promising approach, with considera-
tions related to optimal dosage, application timing, and 
potential side effects on plant growth and development. 
Moreover, understanding the long-term effects of NPs 
on crop health and ecosystem dynamics is essential for 
responsible applications.

Activation of systemic acquired resistance
Harnessing NPs to activate systemic acquired resistance 
(SAR) in crops marks a revolutionary approach to bolster 
plant immunity against a spectrum of pathogens. SAR is 
a sophisticated defense mechanism in plants that primes 
their entire structure for enhanced resistance to subse-
quent pathogen attacks [92, 93]. NPs have emerged as 
promising agents to induce SAR, providing crops with a 
durable and comprehensive shield against pathogens.

The fundamental mechanism underlying NPs-mediated 
SAR induction is the modulation of signaling pathways 
within the plant [94]. When NPs interact with crops, they 
can trigger the production of signaling molecules, such 
as SA, which play pivotal roles in orchestrating plant 
defense responses [95]. For instance, 10 mg/L nitrogen-
doped carbon NPs have been reported to trigger SA- and 
JA-dependent SAR responses in tomato plants, suppress-
ing bacterial wilt disease by reducing in planta pathogen 
growth [96]. Moreover, silver-silica nanocomposites at 
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10  μg/mL triggered the expression of the defense genes 
PR1, PR2, and PR5 in Pst DC3000-challenged Arabidop-
sis plants [97], suggesting that NPs can induce SAR in 
plants via regulating defense signaling pathways.

By priming plants for SAR, NPs equip them with an 
enduring defense mechanism, allowing for rapid and 
effective responses to subsequent pathogen encoun-
ters [98]. This not only reduces disease incidence but 
also lowers the need for chemical pesticides, promot-
ing sustainable and environmentally friendly agricul-
tural practices. However, it is essential to consider the 
complexities of NP-plant interactions, including dose-
dependent effects and potential crosstalk between 
defense pathways, to optimize the elicitation of plant 
defense responses. As NP-mediated plant immune mod-
ulation continues to be explored, a deeper understanding 
of the underlying mechanisms will undoubtedly contrib-
ute to the advancement of innovative approaches in plant 
disease management.

Mechanisms of NP uptake by plants
Understanding NP uptake by plants provides crucial 
insights into how NPs interact with plant cells and acti-
vate immune responses [99]. Several pathways have been 
proposed to elucidate how NPs are internalized by plants 
(Fig.  2), facilitating their interaction with key immune 

signaling components [6, 43, 92]. Accumulating evidence 
has revealed different NP uptake mechanisms that are 
commonly used by plants.

Passive uptake of NPs
NPs can be passively taken up by plants through pro-
cesses such as diffusion and adsorption [100]. These 
mechanisms primarily depend on the physicochemical 
properties of NPs, including size, surface charge, and 
hydrophobicity [101]. Once NPs come into contact with 
the plant surface, they may diffuse through the cuticle 
or stomata and accumulate in various plant tissues [102, 
103]. The hydrophobic nature of many metallic NP sur-
faces enables them to traverse the lipophilic cuticle, 
especially when in contact with water. Additionally, NPs 
can enter the plant through stomatal openings, which 
serve as entry points for various materials, including 
NPs [104, 105]. For example, polyvinylpyrrolidone- and 
citrate-coated gold NPs are passively taken up by wheat 
leaves via the cuticular pathway [103]. The small size and 
unique surface properties of gold NPs enable their diffu-
sion through plant surfaces, leading to their internaliza-
tion. However, further research is required to understand 
the downstream translocation mechanisms of foliar NPs 
through phloem.

Fig. 2  Modes for the application and uptake of NPs (represented as blue-colored particles) in plants. When applied through foliar application, plants 
uptake NPs passively through stomatal openings and then internalize them into cells actively through endocytosis. Plants uptake NPs through their 
roots following soil-based application and then translocate NPs into xylem and phloem tissues from where they are transported to aerial parts
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Active uptake of NPs
Active uptake mechanisms enable plants to selectively 
internalize NPs, ensuring precise targeting and con-
trolled responses [106]. NPs can be taken up actively by 
plant cells through endocytosis, a process in which the 
cell membrane engulfs the NPs to form vesicles [107]. 
This process is common in plants and allows them to 
internalize NPs enclosed within vesicles. Endocytosis 
provides a means for plants to regulate the uptake of NPs 
and respond to environmental cues [108]. Although the 
mechanism of NP internalization by plants is not well 
understood, previous studies have shown that clathrin-
mediated or caveolin-mediated endocytosis pathways 
actively facilitate the uptake of NPs into plant cells. For 
example, gold NPs are actively taken up by tobacco pro-
toplasts through clathrin-dependent pathways [109]. The 
superficial properties of NPs play crucial roles in their 
uptake by plant cells through endocytosis. For example, 
tobacco mesophyll protoplasts internalized triethylene 
glycol-functionalized silica NPs, while bare un-func-
tionalized silica NPs did not enter the plant cells [110]. 
Despite these facts, direct evidence regarding endocytic 
NP uptake by plant cells is still lacking. Thus, future 
studies should be focused on investigating integrated 
mechanisms of NP uptake and translocation, which will 
enlighten our understanding regarding how NP uptake 
and translocation occur within the plant system.

Root uptake and translocation of NPs
Soil-applied NPs primarily enter plants through the 
roots, where they encounter root hairs and epidermal 
cells [111, 112]. NPs that are positively charged or exhibit 
specific chemical interactions with root cell walls tend to 
adhere to and enter plant roots more readily [113, 114]. 
Once inside the root, NPs can be translocated to other 
plant parts through the xylem and phloem [6, 115]. It has 
been shown that the transpiration rate positively influ-
ences NP uptake by plant roots. For example, transmis-
sion electron microscopy and energy dispersive analysis 
of xylem revealed that copper NPs travelled along with 
the water in the xylem, facilitating their translocation 
from roots to aerial parts of maize [116].

The versatility of NP uptake pathways offers avenues 
for targeted delivery and controlled release of bioactive 
compounds, thereby enhancing their potential as effec-
tive plant immune modulators [117]. However, various 
factors, including the physicochemical properties of NPs, 
their intended purpose, targeted crops, and the desired 
mode of interaction with the plant system, are crucial in 
governing the selection of their application methods and 
performance in the agriculture sector [6]. As research in 
this area continues to advance, a deeper understanding of 

NP uptake mechanisms holds the key to unlocking their 
full potential in sustainable plant disease management.

NPs as delivery vehicles for bioactive molecules
NPs, with their unique physicochemical properties and 
tunable surfaces, have emerged as promising carriers 
for a variety of bioactive compounds [118], e.g., essen-
tial nutrients, plant hormones, RNA interference (RNAi) 
molecules, and chemical protectants. This feature of NPs 
sheds light on their potential to revolutionize nutrient 
management, growth regulation, and genetic manipula-
tion in plants.

Delivery of essential nutrients
NPs have garnered significant attention as carriers for 
delivering essential nutrients to plants, ensuring their 
optimal uptake and utilization. By encapsulating nutri-
ents within NPs, their solubility, stability, and bioavaila-
bility can be enhanced, overcoming challenges associated 
with conventional nutrient delivery methods [119, 120]. 
For example, iron, manganese, copper, and zinc defi-
ciencies are prevalent in many crops, leading to reduced 
yield and nutritional quality [121]. Nanofertilizers have 
been designed to enhance nutrient absorption by plants 
[122]. These NPs protect nutrients from degradation 
and release them in a controlled manner, facilitating effi-
cient uptake by plant tissues [123, 124]. The use of NPs 
as nutrient carriers holds promise for alleviating nutri-
ent deficiencies and enhancing crop productivity, thus 
addressing global food security challenges [125]. For 
example, zinc-based nanofertilizers have been shown 
to promote seed germination and growth in a variety of 
crops, such as wheat, onions, peanuts, and soybean [126]. 
Furthermore, copper oxide NPs have been reported to 
efficiently deliver copper to tomato and eggplant seed-
lings, suppressing Fusarium wilt while improving nutri-
tional quality and crop yields [127]. Similarly, copper 
NPs suppressed Fusarium wilt and bacterial fruit blotch 
in watermelon plants via improving copper accumula-
tion in plant tissues [13, 128]. Although nanofertilizers 
have shown promising roles in improving plant growth 
and health under greenhouse conditions, field-scale trials 
need to be conducted to assess their plant growth-pro-
moting potential under real environmental conditions.

Delivery of plant hormones
Plant hormones play a pivotal role in regulating various 
physiological processes, including growth, development, 
and defense responses [129]. NPs offer a sophisticated 
platform for the targeted delivery of plant hormones, 
enabling precise manipulation of plant behavior against 
infection or disease [130, 131]. For instance, abscisic 
acid (ABA) is a hormone involved in stress responses 



Page 9 of 16Noman et al. Crop Health            (2023) 1:15 	

and water regulation. Mesoporous silica NPs have been 
designed for the delivery of ABA to Arabidopsis [132]. 
In a recent study, biogenic iron NPs were employed for 
therapeutic delivery of SA into watermelon plants, pro-
viding enhanced resistance against Fusarium wilt disease 
via activating SA-mediated immune responses [7]. The 
nano-enabled smart delivery system ensures that plants 
receive hormone signals exactly when needed, optimiz-
ing their stress tolerance and resource utilization [133]. 
Similarly, chitosan-based nanocomposites can be engi-
neered to deliver growth-promoting hormones, including 
auxins and gibberellic acid, promoting root development, 
shoot growth, and flowering in agronomically important 
plants [134]. Harnessing NPs for hormone delivery repre-
sents opportunities to fine-tune plant growth and stress 
responses, contributing to enhanced crop performance 
and resilience.

Delivery of small‑interfering RNAs
The advent of RNAi technology has revolutionized 
genetic manipulation and crop improvement [135]. NPs 
offer a versatile platform for delivering small-interfering 
RNAs (siRNAs), which mediate RNAi responses, directly 
into plant cells, providing resistance against pests or 
pathogens [136]. This capability enables targeted gene 
silencing, allowing researchers to modulate the expres-
sion of specific genes associated with disease susceptibil-
ity, insect resistance, or other agronomically important 
traits [137]. NPs protect siRNAs from degradation in 
the harsh extracellular environment and facilitate their 
cellular uptake, enhancing the efficiency of gene silenc-
ing [22]. Previously, pathogen-specific double-stranded 
(ds)RNA delivered through layered double hydroxide 
nanosheets showed stability for up to 30  days and pro-
vided long-term protection to tobacco plants against 
viral infections compared with naked dsRNA [138]. Thus, 
this approach has shown promise in conferring resist-
ance against pathogens and pests, reducing the need for 
chemical interventions. The use of NPs as siRNA carri-
ers provides a powerful tool for precision agriculture and 
the development of sustainable crop protection strategies 
[139].

Delivery of chemical protectants
The utilization of NPs as delivery vehicles for chemical 
protectants in crops heralds a revolution in precision 
agriculture and disease management [140]. Chemical 
protectants, such as fungicides, bactericides, and other 
antimicrobial agents, are vital tools in safeguarding crops 
from the devastating impact of phytopathogens [141]. 
However, their efficient and targeted delivery has long 
been a challenge. In this regard, NPs have emerged as a 
game-changing solution. By encapsulating or binding 

these chemical protectants, NPs offer a precise and con-
trolled means of delivering them to specific plant tissues 
and pathogens [140]. Previously, mesoporous silica NPs 
have been employed as a delivery carrier for prochloraz, 
providing longer and better protection against rice blast 
disease [142]. Similarly, azoxystrobin-loaded silica NPs 
exhibited better fungicidal activity against the tomoto 
late blight pathogen Phytophthora infestans than the 
regular form of fungicide [143]. Nanoscale fungicides, 
fenhexamid and polyhexamethylene biguanide, showed 
better antimicrobial activity against devastating crop 
pathogens, Pseudomonas syringae pv. lachrymans, Bot-
rytis cinerea, and Sclerotinia sclerotiorum than their bulk 
forms [144].

Furthermore, NPs can be engineered to release their 
cargo in response to specific triggers or environmental 
conditions [145]. For instance, pH-sensitive carbenda-
zim-loaded mesoporous selenium NPs have been syn-
thesized against S. sclerotiorum, ensuring target-specific 
fungicide delivery under acidic conditions [146]. This 
targeted delivery minimizes off-target effects and reduces 
the overall amount of fungicides needed, promoting eco-
friendly and sustainable agricultural practices. Although 
the delivery of chemical protectants via NPs represents a 
transformative approach to disease management in agri-
culture, several challenges and considerations, including 
safety concerns and non-target effects on organisms or 
the environment, need to be assessed.

Overall, NPs have emerged as versatile delivery vehi-
cles for bioactive molecules in plants, offering a novel 
means of addressing agricultural challenges. By encap-
sulating essential nutrients, plant hormones, siRNAs, 
and chemical protectants, NPs enable targeted and con-
trolled release, enhancing nutrient availability, growth 
regulation, and genetic manipulation. As research in 
nanotechnology advances, the potential applications of 
NP-mediated smart delivery systems continue to expand, 
offering innovative solutions to improve crop produc-
tivity, nutritional value, and sustainability. However, 
challenges such as NP biocompatibility, environmental 
impact, and regulatory considerations need to be care-
fully addressed as this technology evolves toward practi-
cal implementation in agriculture.

Safety and environmental considerations of NP 
application
NPs have gained significant interest for their potential 
applications in various fields, including agriculture. While 
their unique properties offer exciting possibilities, the 
safety and environmental implications of NP use must be 
thoroughly examined to ensure responsible and sustain-
able deployment [147]. In this context, the safety issues 
described below, such as ecotoxicity, environmental fate, 
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and regulatory aspects, associated with NP use in agri-
culture must be taken into consideration.

Toxicity and ecotoxicity
The potential toxicity of NPs is a central concern that 
warrants rigorous evaluation. NPs can interact with bio-
logical systems, and their small size and high surface 
area-to-volume ratio may lead to unique interactions 
with living organisms [148]. Understanding the potential 
adverse effects of NPs on plants, non-target organisms, 
and ecosystems is paramount. Studies have shown that 
NPs, when present in excessive concentrations, can dis-
rupt cellular processes, impair plant growth, and affect 
soil microbial communities [149–151]. For example, zinc 
oxide and cerium oxide NPs have been shown to induce 
genotoxicity in soybean, inhibiting plant growth and 
development [152]. Furthermore, iron oxide and carbon 
NPs have been reported to negatively impact soil bac-
terial abundance and shift community composition by 
reducing soil dissolved organic carbon contents [149, 
150]. Efforts to assess nanotoxicity involve examining 
cellular responses, physiological changes, and long-term 
effects on plant health. Furthermore, investigating the 
bioaccumulation and biomagnification potential of NPs 
within food chains is essential to predict their impact on 
higher trophic levels [153].

Environmental fate and transport
NPs released into the environment may undergo trans-
formations that influence their behavior, mobility, and 
potential impact [154]. Factors such as particle size, 
surface chemistry, and environmental conditions can 
affect NP fate and transport [155, 156]. Understanding 
the mechanisms governing NP interactions with soil, 
water, and air is crucial for predicting their distribution 
and potential migration to water bodies or uptake by 
plants. NPs may also adsorb onto soil particles, altering 
soil properties and influencing nutrient availability [157]. 
Although NPs-based disease management approaches 
have shown tremendous potential, it is crucial to devise 
a pathway for their safe disposal after use. Recently, it has 
been shown that certain NPs can undergo biodegrada-
tion or transformation into simpler less-reactive forms 
[158]. For example, NADPH oxidase-mediated biodeg-
radation of gold NPs has recently been reported [159]. 
Given that next-generation nanopesticides with inherent 
biodegradation ability or advanced filtration techniques 
need to be designed to enhance the removal of residual 
NPs from the environment. Furthermore, comprehensive 
studies on the environmental fate of NPs are pivotal to 
assess their long-term persistence, potential for disper-
sion, and likelihood of unintended accumulation.

Risk assessment and mitigation
Robust risk assessment frameworks are essential to guide 
the safe implementation of NP-based technologies in 
agriculture [160]. Integrated approaches, combining lab-
oratory studies, field trials, and modeling, are necessary 
to comprehensively evaluate potential risks. The develop-
ment of standardized protocols for NP characterization, 
toxicity testing, and environmental monitoring is crucial 
for generating reliable data for risk assessments [161]. In 
cases where NPs exhibit adverse effects, mitigation strat-
egies can be explored, such as modifying NP properties 
to reduce toxicity or enhancing NP retention within the 
target plant tissues [162, 163].

Regulatory considerations
The introduction of NP-based products into agriculture 
necessitates a robust regulatory framework that ensures 
both innovation and safety [164, 165]. Regulatory agen-
cies must work collaboratively with researchers, indus-
tries, and stakeholders to establish guidelines for NP use 
in agriculture. Transparent reporting of NP properties, 
toxicity data, and environmental impact assessments is 
crucial for informed decision-making [148, 157]. Interna-
tional cooperation and harmonization of regulations will 
facilitate the responsible integration of NPs into agricul-
tural practices while minimizing potential risks.

Future perspectives and concluding remarks
NPs have emerged as a transformative force in reshap-
ing the landscape of plant science and agriculture. As our 
understanding of their interactions with plants and phy-
topathogens deepens and as technological advancements 
continue to accelerate, the future holds immense prom-
ise for the integration of NPs into sustainable agricul-
tural practices. The future perspectives and overarching 
themes for the application of NPs in crop disease man-
agement will be focused on the following aspects.

Precision agriculture revolution
The integration of NPs into precision agriculture holds 
the potential to revolutionize crop management [120]. 
By precisely targeting specific plant responses, such 
as immune modulation, nutrient delivery, and growth 
regulation, NPs enable a level of precision that was pre-
viously unthinkable [166, 167]. This precision-driven 
approach could lead to optimized resource utilization, 
reduced environmental impact, and improved crop yields 
[106]. Furthermore, the development of “smart”  nanoa-
grochemicals that respond to environmental cues could 
usher in an era of dynamic and adaptable crop manage-
ment strategies tailored to the unique needs of each plant 
and field.
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Eco‑friendly disease management
NPs have the potential to significantly reduce the reliance 
on conventional chemical pesticides, offering a more sus-
tainable approach to disease management [168]. As NPs 
demonstrate efficacy in inhibiting pathogen growth, dis-
rupting infection processes, and enhancing plant defense 
responses, they can be harnessed to develop eco-friendly 
alternatives [169]. The reduction in chemical pesticide 
use not only benefits the environment but also addresses 
concerns related to pesticide resistance and food safety 
[6]. The future may witness NP-based formulations 
replacing or complementing traditional crop disease 
management practices, leading to more resilient and 
healthier crop ecosystems.

Unraveling plant‑NP interactions
Advancements in nanotechnology are poised to provide 
deeper insights into the intricate interactions between 
NPs and plants. As our understanding of NP uptake, 
transport, and mechanisms of action expands [5, 112, 
170–172], we can anticipate the discovery of new path-
ways for enhancing plant health and resilience. Cutting-
edge techniques such as high-resolution imaging, omics 
analyses, and computational modeling will enable us 
to decipher the molecular and physiological changes 
induced by NPs. This knowledge will guide the design of 
NPs with tailored properties optimized for specific plant‒
microbe interactions, unlocking their full potential for 
sustainable disease management and crop improvement.

Balancing innovation with responsibility
Although the potential of NPs is vast, responsible innova-
tion is paramount. Addressing safety, environmental, and 
regulatory concerns will be essential to ensure that NP 
applications do not inadvertently introduce unintended 
consequences [6, 173]. A multidisciplinary approach 
involving researchers, regulators, policymakers, and 
stakeholders will be crucial to strike a balance between 
technological advancement and the preservation of eco-
systems. Open dialogue and collaborative efforts will 
guide the development of guidelines and frameworks for 
the safe and sustainable use of NPs in agriculture.

In conclusion, the integration of NPs into the crop 
disease management system represents a paradigm 
shift with transformative implications for agriculture. 
By harnessing the unique properties of NPs, we stand 
poised to enhance plant immunity, nutrient uptake, and 
growth regulation in an environmentally friendly man-
ner. As we navigate the exciting prospects that lie ahead, 
it is imperative to approach NP research and application 
with a holistic and responsible perspective. By doing so, 
we can pave the way for a future where NPs contribute 

to sustainable, resilient, and productive agricultural sys-
tems, fostering a brighter and more secure future for 
global food production.
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