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Abstract 

The rapidly growing exploitation and utilization of marine resources by humans has sparked considerable interest 
in underwater object detection tasks. Targets captured in underwater environments differ significantly from those 
captured in general images owing to various factors, such as water turbidity, complex background conditions, 
and lighting variations. These adverse factors pose a host of challenges, such as high intensity noise, texture distor-
tion, uneven illumination, low contrast, and limited visibility in underwater images. To address the specific difficulties 
encountered in underwater environments, numerous underwater object detection methods have been developed 
in recent years in response to these challenges. Furthermore, there has been a significant effort in constructing 
diverse and comprehensive underwater datasets to facilitate the development and evaluation of these methods. This 
paper outlines 14 traditional methods used in underwater object detection based on three aspects that rely on hand-
made features. Thirty-four more advanced technologies based on deep learning were presented from eight aspects. 
Moreover, this paper conducts a comprehensive study of seven representative datasets used in underwater object 
detection missions. Subsequently, the challenges encountered in current underwater object detection tasks were 
analyzed from five directions. Based on the findings, potential research directions are expected to promote further 
progress in this field and beyond.
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1 Introduction
The twenty-first century has been widely recognized as 
the  ’century of the ocean’, representing a pivotal era in 
which humanity will extensively exploit the vast resources 
that can be derived from the ocean. According to statisti-
cal data, China’s ocean area comprises approximately 14% 
of the world’s total ocean area, while the global ocean 
area accounts for around 71% of the Earth’s total surface 

area. These figures underscore the significant presence 
of the ocean on our planet. As a vast reservoir, the ocean 
harbors abundant natural resources, making it a subject 
of great interest to humanity. The rapid advancement of 
science and technology, along with the urgent resource 
demands of our society, has driven the utilization and 
exploitation of marine resources, thus amplifying the 
importance of underwater object detection.

Over the past decade, the field of underwater object 
detection has witnessed the development of numer-
ous distinctive methods, leading to remarkable achieve-
ments. The innovative achievements of these methods 
in the field of underwater object detection continue to 
drive the development of underwater object detection. 
These methods have not only made significant contri-
butions but also continue to drive the advancement of 
underwater object detection tasks. More importantly, 
these achievements provide essential technical support 
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for scientific research, marine resource development, and 
various other fields.

However, the intricate nature of the marine environ-
ment presents considerable challenges in the detection 
and analysis of underwater objects. Underwater images 
are frequently affected by several factors, such as water 
flow, lighting variations, limited visibility, and substantial 
changes in pose and spatial position information, result-
ing in high noise and low contrast. Furthermore, the con-
struction of underwater datasets for underwater object 
detection has proven to be a challenging task-one that 
has affected the progress of underwater object detection 
work and severely limited the practical applications of 
underwater object detection and recognition.

The main structure of this paper is as follows. Section 2 
introduces the different methods for underwater object 
detection proposed in recent years, including methods 
based on traditional artificial features and those based on 
deep learning. Section 3 summarizes and introduces rep-
resentative datasets used for underwater object detection 
tasks. Section 4 provides a brief analysis of the challenges 
faced in the current development of underwater object 
detection and the prospects for future research. Finally, a 
summary of this study is provided in Section 5.

2  Overview of underwater object detection 
methods

In the field of underwater computer vision and image 
processing, the primary objective of object detection is 
to enable computers to comprehend underwater scenes. 
This capability is crucial not only for understanding the 
underwater environment but also for underlining its sig-
nificant role in the exploration and use of resources. In 
recent years, research progress in underwater object 
detection has experienced a notable transformation 
from relying on traditional manual features to embrac-
ing deep learning techniques. Initially, traditional manual 
features were predominantly used in the early stages of 
research. However, these approaches faced significant 
limitations when applied in practical underwater envi-
ronments. Furthermore, most detection algorithms for 
underwater object detection rely on manually designed 
feature extraction, which is a process requiring profes-
sional expertise and complex algorithm debugging. How-
ever, this approach has limited universality and detection 
accuracy, which hinders its development in related fields.

Recently, the development of artificial intelligence (AI) 
technology has attracted the attention of scholars from 
universities and research institutes dedicated to under-
water object detection research. Numerous methods 
have been developed in this field, which can be broadly 
categorized into two main categories: methods based 
on traditional manual features and those based on deep 

learning. For instance, Duan et  al. (2015) conducted a 
comprehensive analysis of research progress on fish size, 
shape, color, and other aspects from the perspective of 
computer vision. They covered various stages, such as 
image acquisition, contour extraction, feature calibra-
tion, and calculation, and discussed the application of 
computer vision in diagnosing, detecting, and classify-
ing aquatic animal diseases. Peng et al. (2021) examined 
deep learning methods for underwater image preproc-
essing and discussed their advantages and disadvantages. 
They also discussed enhancements made to deep learn-
ing methods and practical application challenges. Wu 
et al. (2019) studied the impact of lighting conditions on 
underwater image characteristics. They employed dif-
ferent image processing algorithms to extract invariant 
features from underwater images and conducted under-
water red ball experiments to verify the feasibility of 
underwater object detection. In addition, Yu (2020) con-
ducted a comprehensive review of studies that covered 
data collection techniques for aquatic animals, such as 
fish, shrimp, and sea cucumbers; comparison of under-
water object detection datasets; preprocessing methods 
for underwater image data; different underwater object 
detection technologies; and the application of deep learn-
ing in detection and tracking.

Therefore, based on the abovementioned information, 
the current section primarily reviews underwater object 
detection methods based on traditional artificial features 
and deep learning, incorporating the contributions of 
various researchers in the field. In addition, when select-
ing a method for inclusion, we consider its relevance to 
the topic of this paper, the clarity and accessibility of the 
method, and its contribution to the field. At the same 
time, we also consider the diversity of methods to better 
highlight the topic content of this paper.

2.1  Methods based on traditional artificial features
Traditional underwater object detection methods depend 
on manually designed feature extraction and classifica-
tion algorithms. These methods encompass various tech-
niques, such as sonar and optical imaging (Mukherjee 
et al. 2011; Tucker and Azimi-Sadjadi 2011; Ghafoor and 
Noh 2019; Gillis 2020; Jian et al. 2021). They also involve 
extracting and combining traditional artificial features, 
such as texture, shape, color, and motion of targets, which 
are then used in conjunction with classical machine 
learning algorithms to achieve underwater object detec-
tion. These methods are summarized in Table 1.

Texture features are valuable indicators of the sur-
face properties of an image. Shi et al. (2019) introduced 
a method based on grayscale co-occurrence matrix 
(GLCM) using a support vector machine (SVM) classifier 
to automatically identify underwater cage boundaries. 
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This technique extracts and computes GLCM features 
from underwater images by using rich texture informa-
tion for precise detection of underwater cage boundaries. 
Nagaraja et al. (2015) employed robust local binary pat-
tern descriptors to extract texture features from under-
water images. Similarly, Fatan et  al. (2016) proposed an 
underwater cable detection method based on texture 
information for image edge classification. They used a 
multilayer perceptron (MLP) neural network (Taud and 
Mas 2018) and a texture-based SVM to extract image 
edges. The detected edges were further refined by remov-
ing background information using morphological opera-
tors followed by Hough transform-based detection. 
Srividhya and Ramya (2017) proposed a method that 
combines learning algorithms with texture features for 
the accurate detection and recognition of underwater 
objects. In an earlier study, Beijbom et  al. (2012) devel-
oped a novel algorithm employing multiscale texture 
and color descriptors, surpassing other methods in ver-
ifying underwater coral reef data. Han and Choi (2011) 
proposed an efficient and accurate method for detecting 
and tracking texture-less objects in underwater environ-
ments. Their proposed method addresses the challenges 
posed by the absence of distinctive texture features in 
certain underwater objects.

The abovementioned studies emphasize the signifi-
cance of texture features in underwater object detec-
tion and demonstrate the effectiveness of various 
texture-based algorithms in different underwater sce-
narios. Apart from texture, color and motion features 
play a crucial role in underwater image analysis, and 
these have been studied in previous works. For exam-
ple, Chen and Chen (2010) proposed a new color edge 
detection algorithm in 2010, which used the Kuwahara 
filter (Bartyzel 2016) to smoothen the original image. 
They incorporated adaptive thresholding and edge 
sparsity algorithms to enhance detection efficiency 
and performance. Gordan et  al. (2006) introduced an 

architecture specifically designed for underwater scene 
analysis using SVM classifiers. Their method detects 
and recognizes underwater objects by extracting color 
pixel features and using threshold comparison tech-
niques. Singh et  al. (2015) presented a method for the 
automatic real-time detection and tracking of moving 
objects in video frames using color and motion features. 
Susanto et al. (2018) developed a color-based detection 
system that distinguishes and detects objects based on 
selected colors. Similarly, Komari Alaie and Farsi (2018) 
designed a novel method for detecting underwater 
sonar targets using adaptive thresholds. To improve tar-
get/object detection, their approach combines detection 
points with techniques such as Bayesian classification, 
maximum likelihood estimation, and minimum mean 
square adaptive filtering.

Saliency object detection technology (Jian et al. 2014, 
2018a) has also found extensive application in under-
water image object detection. For example, Jian et  al. 
(2018b) proposed a new framework for detecting sali-
ent objects in underwater images using the quaternion 
distance Weber descriptor, mode clarity, and local con-
trast. Their proposed framework combines the qua-
ternion system and principal component analysis to 
achieve superior detection performance. Zhu et  al. 
(2016) introduced an automatic detection method using 
saliency-based region merging. To achieve more accu-
rate automatic detection of underwater objects, they 
incorporated prominent object detection, background 
prior methods, and an improved interactive image seg-
mentation method based on region merging. Similarly, 
Wang et  al. (2014) proposed a region saliency calcula-
tion model for underwater object detection that com-
bines saliency regions and prior knowledge. This model 
adopts a target/object detection method based on 
regional saliency and underwater optical priors, thereby 
reducing algorithm complexity and enhancing detection 
accuracy at the same time.

While traditional underwater object detection methods 
rely on manual feature extraction, which is time-consum-
ing and lacks robustness, the emergence of deep learning 
and convolutional neural networks has ushered in a new 
phase in underwater object detection algorithms.

2.2  Methods based on deep learning
In recent years, the field of underwater object detection 
has witnessed significant advancements thanks to the 
development of deep learning techniques. Deep learning 
methods, such as convolutional neural networks (CNNs), 
have gained widespread popularity because of their 
ability to automatically learn and extract features from 
underwater images, thus leading to improved accuracy 

Table 1 Summary of underwater object detection methods 
based on traditional artificial features

Category Reference

Texture features Han and Choi 2011; Beijbom et al. 
2012; Nagaraja et al. 2015; Fatan 
et al. 2016; Srividhya and Ramya 
2017; Shi et al. 2019

Color and motion features Gordan et al. 2006; Chen and Chen 
2010; Singh et al. 2015; Komari Alaie 
and Farsi 2018; Susanto et al. 2018

Saliency detection Wang et al. 2014; Zhu et al. 2016; 
Jian et al. 2018b
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in detection and recognition tasks. Compared with tra-
ditional methods, deep learning approaches exhibit 
enhanced robustness and performance. Table 2 summa-
rizes the methods based on deep learning that have been 
proposed in recent years.

Current research in underwater object detection 
revolves around deep learning methods and strives to 
enhance the universality and accuracy of established 
algorithms. The introduction of R-CNN (Girshick et  al. 
2014) marked a pivotal moment in the rapid progress 
of deep learning in object detection and recognition. At 
present, numerous scholars have increasingly embraced 
deep learning and applied it to underwater object 
detection, resulting in notable and innovative research 
outcomes.

The existing object detection algorithms can be cat-
egorized into two main types: two-stage and single-stage 
algorithms. On the one hand, two-stage algorithms, such 
as the R-CNN series algorithms, including Fast R-CNN 
(Girshick 2015) and Faster R-CNN (Ren et  al. 2015), 
involve generating region proposals and then perform-
ing classification and regression tasks on these proposals. 
Although these algorithms have demonstrated improved 
detection performance, they tend to have low processing 
efficiency. On the other hand, single-stage algorithms, 
such as single-shot multiBox detector (Liu et  al. 2016) 
and the you only look once (YOLO) series of algorithms 
(Bochkovskiy et al. 2020) focus on achieving high detec-
tion speed while maintaining good detection perfor-
mance. These algorithms use direct regression methods 
to predict the category and position of targets in a single 
pass. For instance, Hu et al. (2021) modified the network 
connections and replaced the feature mapping responsi-
ble for large features in YOLO-v4 with finer-grained fea-
ture maps to address the issue of high ammonia nitrogen 
levels in aquaculture caused by the nonconsumption of 
feed particles in water. Their approach eliminated redun-
dant operations and significantly improved detection 
and recognition accuracy in real breeding environments. 

Another example is the research by Ge et al. (2022a, b), 
who proposed a single-level underwater object detection 
method based on feature anchor frames and feature dou-
ble enhancement. They designed a composite connected 
backbone network to leverage the advantages of differ-
ent backbone networks, thereby improving contextual 
relevance and multiscale detection capabilities. Further-
more, Lei et al. (2022) made enhancements to the YOLO-
v5 algorithm specifically for underwater object detection. 
To enhance the algorithm’s performance in underwater 
environments, they incorporated the twin transformer as 
the backbone network and improved the multiscale fea-
ture fusion method and confidence loss function.

Due to turbidity, absorption, and scattering in the 
underwater environment, underwater images often suffer 
from challenges, including high noise and low contrast 
(Yuan et  al. 2022). Researchers have developed various 
methods to address these issues and improve the accu-
racy and performance of underwater object detection. 
For example, Chen et  al. (2017) designed a detection 
method for underwater object recognition using monoc-
ular visual sensors. Their approach focused on enhancing 
the detection accuracy of underwater scenes by remov-
ing background noise. Chen et  al. (2018) developed an 
effective model using adversarial networks for super-res-
olution generation to enhance the visual impact of under-
water images in target/object detection and recognition 
tasks. Sun et al. (2018) introduced an underwater object 
detection model based on CNNs. In particular, they were 
able to discriminate targets in low-contrast underwater 
images by incorporating a weighted probability decision 
mechanism.

Target/object state changes and occlusion also sig-
nificantly impact the target detection process. Lin et al. 
(2020) proposed a method called RoIMix, which exhib-
ited improved generalization performance, especially 
for detecting underwater images with overlap, occlu-
sion, and blur. To achieve underwater object detec-
tion, Lau and Lai (2021) focused on the selection and 

Table 2 Summary of the deep learning methods for underwater object detection

Category Reference

Single-stage algorithm Liu et al. 2016; Bochkovskiy et al. 2020; Hu et al. 2021; Ge et al. 2022a, b; Lei et al. 2022

Two-stage algorithm Girshick et al. 2014; Girshick 2015; Ren et al. 2015

High noise and low contrast Chen et al. 2017, 2018; Sun et al. 2018

State changes and occlusion Yang et al. 2019; Lin et al. 2020; Lau and Lai 2021; Zhang et al. 2021

Shadows and uneven illumination Song et al. 2014; Cao et al. 2016; Li et al. 2016a; Ding et al. 2017; Yu et al. 2019; Fan et al. 
2020; Wei et al. 2021; Chen et al. 2023

Weak lighting and low quality Rashwan et al. 2019; Chen et al. 2020a; Han et al. 2020; Ge et al. 2022a, b; Liu et al. 2022

Low data volume Zurowietz and Nattkemper 2020; Zeng et al. 2021

Saliency detection Li et al. 2016b; Mou et al. 2017; Zhou et al. 2019; Chen et al. 2020c
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enhancement of the basic network architecture in 
Faster R-CNN. They performed preprocessing on the 
obtained images and tested the performance of differ-
ent network architectures to identify the most suitable 
one for training object detection in turbid media. Yang 
et al. (2019) combined a deep short-term memory net-
work (DLSTM) with a deep autoencoder neural net-
work to effectively identify targets at different depths 
and reduce radiated noise. They used a pretrained 
DLSTM model and a SoftMax classifier to detect 
and classify ship-radiated noise. Zhang et  al. (2021) 
developed a lightweight underwater object detection 
method based on MobileNet v2, YOLO-v4 algorithms, 
and attention feature fusion. Their proposed method 
reduces the number of parameters, resulting in a lighter 
model that significantly improves the speed and accu-
racy of detection.

During the detection and recognition of underwater 
objects, the intensity of underwater light decreases with 
depth, thereby leading to challenges such as shadows 
and uneven illumination. Thus, to address these issues 
and improve the accuracy of target/object detection 
and recognition in underwater environments, research-
ers have proposed several approaches. For example, 
Song et  al. (2014) used underwater vehicles equipped 
with visual imaging devices to compensate for targets 
with varying light intensities. The algorithm reduces the 
impact of uneven lighting on target/object detection 
by extracting image and color features from the target 
image. Li et al. (2016a) introduced an effective defogging 
model to restore visibility, color, and natural appearance 
in underwater images. This model improves the qual-
ity of underwater images and enhances the detection 
and recognition accuracy of underwater objects. Ding 
et  al. (2017) designed an underwater image enhance-
ment strategy that combines model-based defogging and 
adaptive color correction. Their proposed strategy helps 
reveal more features by enhancing the original under-
water image, thus effectively improving the quality of 
images and increasing the accuracy of target detection 
and recognition.

Yu et  al. (2019) proposed a redesigned framework for 
underwater generative adversarial network (GAN) image 
restoration. This framework uses GAN classifiers to learn 
structural losses and generates more realistic images 
through simulation via the underwater image generation 
model. Their proposed approach improves target/object 
recognition accuracy by reducing the impact of abnormal 
image contrast. Chen et al. (2023) invented a comprehen-
sive object detection algorithm based on a lightweight 
transformer that incorporates cross-scale feature fusion 
and enhanced multiscale feature fusion. This algorithm 
improves feature fusion, reduces model parameters, 

and enhances local feature correlation, thus leading to 
improved detection accuracy.

Wei et  al. (2021) proposed an object detection algo-
rithm that integrates attention mechanisms and scale 
enhancement. Furthermore, to enhance feature extrac-
tion capabilities, they added compression and excitation 
modules after the deep convolutional layer. Combining 
shallow and deep features with more positional infor-
mation helped improve the detection performance of 
small target models. Cao et al. (2016) devised an under-
water object recognition and classification framework 
that combines stacked automatic encoders and Softmax. 
In particular, this framework learns invariant features 
and extracts advanced features from the spectral data 
of underwater objects by employing sparse and stacked 
autoencoders. Fan et al. (2020) proposed a framework for 
underwater object detection based on feature enhance-
ment and anchor refinement. This framework incor-
porates a composite connection backbone to enhance 
feature representation and introduces a receptive field 
enhancement module to exploit multiscale contextual 
features.

In addition, given the low lighting and quality issues 
in underwater environments, researchers have proposed 
various methods and architectures to enhance the origi-
nal underwater images and improve their visual percep-
tion and applicability. Han et  al. (2020) combined the 
max-RGB and grayscale methods to improve under-
water vision. Then, by training mapping relationships 
to obtain illumination maps, they further introduced a 
CNN method to address the issue of weak illumination 
in underwater images. Chen et  al. (2020a) developed a 
neural network structure called sample weighted hyper-
network (SWIPENet) for the specific purpose of detect-
ing small underwater objects. This architecture aims to 
overcome image blur and improve the accuracy of target/
object detection. Rashwan et al. (2019) introduced a deep 
architecture called a matrix network for object detection. 
This architecture incorporates a scaling and aspect ratio 
sensing mechanism to enhance keypoint-based object 
detection.

Recently, Ge et  al. (2022a, b) proposed a GAN-based 
underwater image enhancement method to tackle the 
problem of underwater image degradation. They suc-
cessfully created an underwater style dataset and made 
lightweight improvements to the model by combining 
the multiscale retinex with color restoration and Deha-
zeNet (Cai et al. 2016), resulting in significant improve-
ments in detection accuracy. Liu et al. (2022) redesigned 
an underwater enhancement method based on object-
guided dual adversarial contrastive learning, and their 
approach achieved both visual friendliness and task-
oriented enhancement. They employed comparative 
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prompts during the training phase and embedded a task 
perception feedback module in the enhancement process 
to make the restored image more realistic.

In underwater object detection tasks, the limited 
amount of underwater image data poses a significant 
challenge. In response, researchers have proposed sev-
eral approaches to address this problem and improve 
the detection capability of underwater object detection 
algorithms. For example, Zeng et al. (2021) proposed an 
underwater object detection algorithm based on Faster 
R-CNN and adversarial networks. By incorporating 
adversarial networks into the standard Faster R-CNN 
detection network for joint training, they increased the 
number of training samples and improved the network’s 
detection capability. Zurowietz and Nattkemper (2020) 
introduced unsupervised knowledge transfer (UnKnoT) 
as a more effective method for training with limited 
data. This approach uses a data augmentation technique 
called  ’scale transfer’ to reuse existing training data and 
detect the same object classes in a new image dataset.

Inspired by saliency detection, Chen et  al. (2020c) 
designed an underwater saliency object detection model 
that considers both two-dimensional (2D) and three-
dimensional (3D) depth cues. Their proposed model 
improves the detection of underwater objects by leverag-
ing saliency detection principles. Meanwhile, to address 
the issues of low contrast and low-quality images, Li et al. 
(2016b) proposed a foreground extraction-based under-
water image saliency detection framework. This frame-
work focuses on extracting salient foreground regions 
and enhancing the detection of underwater objects. Mou 
et al. (2017) used the Harris angle detection operator to 
locate geometric centers and designed a simple linear 
iterative clustering method. Their approach achieves the 
effective detection of underwater objects by highlighting 
foreground targets while attenuating background areas. 
Zhou et al. (2019) introduced a composite convolutional 

neural network based on shared latent sparse features 
(SLS) and deep belief networks (DBN), thereby overcom-
ing the lack of CNN training data by using texture images 
and optimizing and interfering with textures using SLS 
and DBN. Their proposed method enhances the perfor-
mance of underwater object detection and classification.

3  Datasets for underwater object/target detection
In recent years, underwater object detection has emerged 
as a prominent area of research with the rapid advance-
ment of AI technology. However, the complexity and 
extensive demands of underwater environments have 
presented significant challenges in constructing under-
water datasets. To overcome this obstacle and offer more 
comprehensive data support for advancements in under-
water image processing, numerous research teams have 
successfully developed unique underwater datasets using 
methods such as underwater robots and simulation labs 
(Chen et al. 2020b). In this section, we provide a concise 
overview of noteworthy datasets in the field of underwa-
ter object detection. These datasets encompass several 
underwater imageries, thereby providing researchers 
with valuable data for algorithm validation and perfor-
mance evaluation. Table 3 summarizes some representa-
tive underwater datasets used for underwater object 
detection tasks in recent years.

The Brackish dataset was first proposed and made 
publicly available by Pedersen et  al. (2019). This dataset 
consists of 14518 frames of images, with the original data 
being video data. The Brackish dataset contains 25613 
annotations belonging to six categories: big fish, small 
fish, crab, jellyfish, shrimp, and starfish. Figure  1 shows 
the sample frame image for each category in the Brackish 
dataset.

Saliency is typically generated by  ’contrast’, usually 
due to the contrast between an item and its adjacent 
items. The detection of underwater saliency targets is 

Table 3 Representative datasets for underwater object detection tasks

Dataset Number Application Challenge Year

Brackish 14518 Object/target detection Poor image quality, too blurry, contains few underwater targets and categories 2019

MUED 8600 Object/target detection
Saliency detection

Large dataset is not conducive to model training and validation, and the overall background 
is too uniform

2019

RUIE 4230 Target detection
Target enhancement
Target classification

The amount of data is small, and each subset has strong specificity, resulting in poor generaliza-
tion

2020

UWD 10000 Target detection Few data categories and uneven sample size 2020

TrashCan 7212 Target detection
Target segmentation

The types of underwater targets are complex and difficult to distinguish 2020

UDD 2227 Target detection Insufficient data volume and uneven distribution of categories, resulting in poor generalization 
ability due to insufficient samples in certain categories

2021

DUO 7782 Target detection There are few underwater target categories, and the sample size of each category is uneven 2021
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often difficult due to the diversity of the underwater 
environment and the lack of underwater datasets. To 
address this challenge, the marine underwater environ-
ment database (MUED; Jian et al. 2019) provides 8600 
underwater images with 430 different categories of sali-
ent objects. These images have complex backgrounds 
and multiple prominent objects and show complex 
changes in posture, spatial position, lighting, and other 
aspects. Figure 2 shows six examples, including—from 
left to right—posture changes, spatial position changes, 
lighting changes, water turbidity changes, background 
changes, and target/object number changes.

Unlike most datasets, the real-time underwater 
image enhancement (RUIE; Liu et al. 2020) dataset con-
sists of three subsets: underwater image quality set, 
underwater color cast set, and underwater high-level 
task-driven set (UHTS). They each target three chal-
lenging underwater tasks: visibility reduction, color 
deviation, and higher-level detection/classification. Of 
these, UHTS is most commonly used for underwater 

object detection, and this subset contains 300 underwa-
ter images. Figure  3 shows an example of underwater 
images from three subsets of the RUIE dataset.

To better validate the generalization of the underwa-
ter object detection framework, Fan et  al.  (2020) col-
lected and integrated relevant underwater images from 
the Internet, after which they constructed an underwa-
ter dataset (UWD) for object detection through man-
ual annotation. UWD contains 10000 training and test 
images classified into four categories: sea cucumber, 
octopus, scallop, and starfish. Notably, despite the large 
number of images in the UWD, this dataset does not spe-
cifically divide the number of images in the training and 
testing sets. Figure 4 is an example image of UWD.

Currently, most datasets used for underwater object 
detection tasks focus on marine organisms. The Trash-
Can (Hong et  al. 2020) dataset consists mainly of 

Fig. 1 Diagram of an example frame from the Brackish dataset category (Pedersen et al. 2019)

Fig. 2 Six types of sample images from the MUED dataset (Jian et al. 
2019)

Fig. 3 Image samples of three subsets in the RUIE dataset (Liu et al. 
2020)
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underwater garbage, with annotations in the form of 
instance-segmented annotations containing bitmaps with 
masks. TrashCan consists of 7212 annotated images, 
including images of underwater debris, underwater 
robots, and various underwater animals and plants. This 
dataset uses bounding boxes and segmentation labels 
for annotation, which can be used for underwater object 
detection and segmentation tasks. Figure  5 shows the 
original image of the TrashCan dataset.

In deep water environments, various factors, such as 
water current strength, water turbidity levels, and ben-
thic organism activity, can significantly impact the clarity 
of underwater images and consequently affect their qual-
ity. Among these factors, water turbidity is a crucial ele-
ment. In particular, existing underwater image datasets 
often suffer from the influence of water turbidity, which 
leads to subpar image quality within the datasets. Liu 
et al. (2021a) tackled this challenge by collecting and con-
structing a high-resolution underwater detection dataset 
(UDD) for open-sea farm objects in the seafloor environ-
ment. The UDD comprises a total of 2227 underwater 
images, with 1827 images dedicated to training and 400 
images for testing. The dataset encompasses three dis-
tinct categories: sea cucumbers, sea urchins, and scallops, 

encompassing 15022 categorized objects, including 1148 
sea cucumbers, 13592 sea urchins, and 282 scallops. As 
a complement to the UDD, the research team also con-
structed an augmented underwater farm object detection 
dataset (AUDD), a large-scale dataset consisting of 18661 
images based on the UDD. Figure 6 presents examples of 
raw images from the UDD.

The detection of underwater objects (DUO) data-
set (Liu et  al. 2021b) underwent a reorganization that 
involved collecting and reannotating various existing 
underwater datasets, including URPC2017, URPC2018, 
URPC2019, and other datasets previously published in 
underwater robot competitions. After eliminating exces-
sively similar images, the resulting dataset consists of 
7782 underwater images, comprising 6671 images for 
training and 1111 images for testing. The DUO dataset 
specifically focuses on four categories of marine organ-
isms: sea cucumbers, thorns, scallops, and starfish. The 
annotations have been refined to improve the accuracy 
of underwater object detection. A selection of original 
images from the DUO dataset’s training and testing sets 
can be found in Fig.  7. As shown in the figure, (a) rep-
resents an original image from the training set, and (b) 
represents an original image from the testing set.

Fig. 4 UWD sample images (Fan et al. 2020)

Fig. 5 Original images from the TrashCan dataset (Hong et al. 2020)
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4  Challenges and future prospects
In this study, we provide a comprehensive over-
view of recent research advancements in the field of 
underwater object detection. Rapid progress in AI 
technology has facilitated the emergence of numer-
ous effective methods for underwater object detec-
tion, leading to significant achievements in this field. 
Undoubtedly, underwater object detection remains 
a highly active area of research that has attracted the 
attention of many scholars. However, in recent years, 
this field of study has continued to confront substantial 
challenges. In this section, we briefly analyze the exist-
ing challenges and outline potential research directions 
for future research. Our aim is to draw the atten-
tion of relevant researchers and foster the continued 
growth and advancement of underwater object detec-
tion. Overall, we summarize the existing challenges as 
follows:

First, although numerous models for underwater 
object detection have been proposed, traditional arti-
ficial feature-based methods and deep learning-based 

methods often concentrate on a single perspective. In 
the future, it will be crucial to emphasize the diverse 
characteristics exhibited by underwater objects. In 
particular, researchers can achieve a more holistic 
understanding of underwater scenes by incorporat-
ing different perspectives, thus leading to improved 
detection performance across diverse underwater 
environments.

Second, the detection of small underwater objects 
poses a significant challenge for deep learning-based 
models because these targets are often characterized by 
small size and high levels of camouflaging properties. 
Existing deep learning models generally exhibit limited 
robustness in accurately detecting small targets. In the 
future, there should be a heightened focus on intensi-
fying research efforts dedicated to small underwater 
object detection.

Third, in underwater environments, the degree of 
turbidity and refraction in the water are still key factors 
affecting the quality of underwater images. To reduce 
their adverse effects and improve the quality of under-
water images, researchers should maximize the devel-
opment and progress of related technologies and use as 
much advanced equipment and technologies as possi-
ble in the future.

Fourth, owing to the complexity of underwater 
environments, underwater images often suffer from 
problems such as low contrast, texture loss, and color 
distortion, making underwater recognition tasks more 
difficult. Therefore, to minimize the impact of back-
ground information and improve the accuracy of 
underwater object detection, the issue of similarities 
between the foreground and background of underwater 
images should also be considered in future works.

Fifth, a major bottleneck in current underwater 
object detection research is data. At present, exist-
ing underwater datasets are not sufficient to meet 
research needs. While scientists have begun to build 
their own datasets to better validate the effectiveness 
of underwater object detection methods, these data-
sets tend to focus on a particular research direction, 

Fig. 6 Examples of raw images from UDD (Liu et al. 2021a)

Fig. 7 Original images from the DUO training and testing sets (Liu 
et al. 2021b)
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have poor generalizability, and have significant limita-
tions. Thus, in the future, it will be necessary to develop 
large underwater datasets with greater diversity and 
complexity to support research in underwater object 
detection.

5  Conclusions
In this paper, we begin with a comprehensive review of 
the recent research and methodologies of underwater 
object detection tasks. We highlight the strengths and 
limitations of each approach and provide insights into 
their respective contributions to the field. Next, we sum-
marize and present representative datasets that have 
been used for underwater object detection in recent 
years. Moreover, we delve into the current challenges 
faced in underwater object detection. To conclude this 
work, we outline future research directions in the field 
of underwater object detection. These directions address 
challenges and promote advancements in the field. Over-
all, this paper provides a comprehensive overview of 
recent research achievements, datasets, challenges, and 
future directions in underwater object detection.
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