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Abstract 

The exponential progression in oceanic observational technology has fostered the accumulation of substantial time 
series data pivotal for predictions in ocean meteorology. Foremost among the phenomena observed is El Niño-South-
ern Oscillation (ENSO), a critical determinant in the interplay of global ocean atmosphere interactions, with its severe 
manifestations inducing extreme meteorological conditions. Therefore, precisely predicting ENSO events carries 
immense gravitas. Historically, predictions hinged primarily on dynamic models and statistical approaches; however, 
the intricate and multifaceted spatiotemporal dynamics of ENSO events have often impeded the accuracy of these 
traditional methodologies. A notable lacuna in contemporary research is the insufficient exploration of long-term 
dependencies within oceanic data and the suboptimal integration of spatial information derived from spatiotemporal 
data. To address these limitations, this study introduces a forward-thinking ENSO prediction framework synergizing 
multiscale spatial features with temporal attention mechanisms. This innovation facilitates a more profound explora-
tion of temporal and spatial domains, enhancing the retention of extensive-period data while optimizing the use 
of spatial information. Preliminary analyses executed on the global ocean data assimilation system dataset attest 
to the superior efficacy of the proposed method, underscoring a substantial improvement over established methods 
including SA-convolutional long short-term memory, particularly in facilitating long-term predictions.The source code 
and datasets are provided. The code is available at https:// github. com/ tse19 98/ ENSO- predi ction.
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1 Introduction
Many ocean phenomena have a profound connection to 
societal well-being, with El Niño-Southern Oscillation 
(ENSO) being a principal determinant of climate fluc-
tuations globally. This phenomenon garners substan-
tial attention because of its role in engendering natural 

disasters worldwide. The ENSO phenomenon manifests 
through variations in sea surface temperature (SST) in 
the tropical Pacific, elevating or reducing it beyond the 
average value, consequently affecting global rainfall pat-
terns and initiating a series of climatic issues worldwide. 
Research indicates that ENSO monumentally impacts 
the global economy. In the United States alone, extreme 
weather events attributed to ENSO have incurred losses 
amounting to billions of dollars (Adams et al. 1999). Fur-
thermore, the repercussions of ENSO are not confined to 
economic dimensions; it also considerably influences the 
trajectory of social development (Glantz 2001). Thus, the 
accurate prediction of extreme ENSO events is a crucial 
objective, the fulfillment of which could bestow wide-
spread benefits on society.
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Meteorological predictions used in oceanography pre-
dominantly adhere to two methodologies: numerical 
meteorological predictions and data-driven approaches. 
Numerical predictions rely heavily on meteorological 
dynamics, and physical models grounded in meteorologi-
cal principles are constructed to facilitate weather fore-
casts. This strategy, which has evolved to a mature state 
with sustained development, involves solving intricate 
physical models to derive forecast outcomes, thus stand-
ing as a vital tool in weather forecasting. Conversely, 
data-driven approaches employ statistical or machine 
learning algorithms to anticipate future meteorological 
trends, leveraging extensive data repositories for pre-
diction. Although numerical forecasting methodologies 
are considerably mature, they grapple with limitations 
such as high computational costs and sluggish response 
times, which are due to the complexities of synchronizing 
physical models and the labor-intensive nature of expan-
sive numerical simulations. In the context of ENSO pre-
diction, the prevailing numerical prediction paradigms 
exhibit deficiencies in effectively simulating average 
annual variations in SST, which dampens their predic-
tive efficacy (Jin et  al. 2008). The ENSO phenomenon, 
characterized by notable spatiotemporal variability and 
diversity, poses an intrinsic challenge to these traditional 
forecasting techniques, resulting in a pronounced level of 
uncertainty in predictions (Jiang et al. 2016).

Recently, advances in big data technology have facili-
tated an exponential increase in the accumulation of 
observational data in the realm of ocean science, with 
a considerable amount of this information being spati-
otemporal data amenable to meteorological predictive 
analyses. This burgeoning data reservoir has underscored 
the potential of data-driven methodologies, propelling 
them to the forefront of research avenues in this field. To 
address the shortcomings inherent in numerical mete-
orological forecasting, researchers are increasingly lev-
eraging machine learning and deep learning techniques 
synergized with ocean data to enhance meteorological 
predictions. These techniques encompass a spectrum of 
algorithms, such as support vector machines (SVMs), 
convolutional neural networks (CNNs), and convolu-
tional long short-term memory (ConvLSTM) networks 
(Aguilar-Martinez and Hsieh 2009; Ham et al. 2019; He 
et al. 2019). The focal objective underpinning the use of 
these advanced algorithms is to delineate nonlinear map-
pings of pertinent features within the oceanic data spec-
trum. However, ENSO prediction fundamentally remains 
a sequential prediction issue, necessitating the integra-
tion of historical data-including past SST data-to antici-
pate future meteorological alterations. Despite the strides 
made, the high dimensionality of spatiotemporal data 
introduces a complexity warranting further optimization 

of the existing methods to fully exploit the spatiotempo-
ral information pertinent to ENSO data for more refined 
predictive outcomes.

Despite concerted efforts from the global research 
community to advance marine hydrometeorological fore-
casting, and notwithstanding the progress achieved in 
ocean data prediction, existing methodologies continue 
to grapple with two central unresolved challenges:

(1) Suboptimal exploration of long-term dependencies: 
The prevailing focus of contemporary research pre-
dominantly revolves around modeling short-term 
relationships within sequential data, neglecting to 
unearth and leverage the potential insights deriv-
able from long-term dependencies in the data.

(2) Limited exploitation of spatial information: Marine 
phenomena unfold through intricate spatiotempo-
ral processes encompassing fluctuations across time 
and complex interactions in the spatial dimension. 
However, current methodologies only superficially 
tap into the rich tapestry of spatial information, 
forfeiting the depth of analysis that could enhance 
forecasting accuracy and insight.

To address the aforementioned challenges, the main 
contributions of this study are as follows:

(1) The introduction of a temporal attention module 
into the seq2seq framework marks a pivotal devel-
opment. This module facilitates the intricate mod-
eling of time series data along the temporal axis, 
enabling the discernment of evolving patterns and 
trends pertinent to ENSO phenomena. Further-
more, it leverages an attention mechanism in the 
time series prediction, fostering adaptive learn-
ing and precise identification of critical temporal 
nodes, thereby augmenting the accuracy of ENSO 
predictions over extended timeframes.

(2) The inception of a feature extraction module 
grounded in multi-scale convolution represents 
an important step. This initiative heralds the inte-
gration of multi-scale convolution techniques into 
spatiotemporal data processing, which is pivotal for 
assimilating spatial information from ocean mete-
orology. Consequently, it engenders a rich tapes-
try of spatial features discerned at various scales, 
enriching the repository of spatial dimension infor-
mation and enhancing analytical depth.

(3) The proposition of an ENSO prediction model 
orchestrated around multi-scale spatial features 
and temporal attention is a cornerstone contribu-
tion. The judicious combination of the multi-scale 
convolution and temporal attention module fosters 
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a holistic exploration of the input sequence data 
across temporal and spatial dimensions. This inte-
grated approach, consequently, holds substantial 
promise in augmenting the predictive accuracy and 
performance of ENSO forecasting models.

This study introduces an ENSO prediction model 
grounded in multi-scale spatial features and temporal 
attention mechanisms. Leveraging the temporal attention 
framework facilitates a more robust extraction of long-
term dependencies within ocean data, enhancing the 
model’s ability to simulate dynamics over extended peri-
ods. Concurrently, multi-scale convolution techniques 
are adopted to amplify the extraction of spatial informa-
tion and multi-scale features from spatiotemporal data, 
overcoming the existing limitations in spatial data use. To 
substantiate the efficacy of the developed model, a series 
of tests were executed using the global ocean data assimi-
lation system (GODAS) dataset as a benchmark. The pre-
liminary results indicate a superior performance of the 
proposed model relative to established machine learning 
and deep learning approaches, demonstrating enhanced 
predictive accuracy over a 24-month forecast horizon.

2  Related work
Research into the prediction of ENSO primarily relies 
on two preeminent methodologies: numerical weather 
prediction and data-driven approaches. The former 
methodology leverages the foundational principles of 
ocean-atmosphere dynamics inherent in marine science 
to craft physical models that delineate the interrelations 
between atmospheric and oceanic variables, constitut-
ing a pivotal tool in ENSO forecasting. Conversely, data-
driven strategies employ statistical analyses coupled with 
machine learning or deep learning techniques to exploit 
extant data pools to anticipate forthcoming meteoro-
logical shifts. These methodologies offer a heightened 
level of accuracy and applicability in short- to medium-
term forecasts when juxtaposed with their model-based 
counterparts. This superiority stems from the intrinsic 
capacity of data-driven approaches to thoroughly eluci-
date patterns and trajectories within expansive historical 
datasets, facilitating adaptive learning and predictions of 
emergent data (Barnston et al. 2012). Meanwhile, model-
based techniques remain constrained by the confines of 
model precision and the depth of understanding of the 
ocean-atmosphere system, which frequently hampers the 
attainment of accurate prognostications regarding future 
meteorological alterations. In contemporary meteoro-
logical and oceanographic research spheres, data-driven 
methods are consequently witnessing escalating adop-
tion for their prowess in forecasting meteorological and 

oceanic phenomena, solidifying their role as indispensa-
ble tools in the modern predictive landscape.

(1) Numerical weather forecasting

The symbiotic relationship between atmospheric and 
oceanic phenomena plays a pivotal role in steering long-
term global climate transitions, with ENSO epitomizing 
a crucial aspect of this complex interplay. Predicated on 
a coupled oscillation involving the tropical Pacific Ocean 
and the atmosphere, the ENSO system stands as a bea-
con in understanding the synergistic ocean-atmosphere 
dynamics. In delving into ENSO forecasting, researchers 
have traversed a gamut of approaches grounded in ocean 
dynamics (Chen et  al. 2004), ranging from rudimentary 
tropical ocean-atmosphere coupling models to intricately 
designed models (Zhang 2015; Zheng and Zhu 2016) 
and multifaceted global models encapsulating a broader 
spectrum of ocean-atmosphere interactions (Luo et  al. 
2008). These endeavors seek a foundation in a plethora 
of theories, such as the equatorial wind stress hypothe-
sis, coupled ocean-atmosphere wave theory in the trop-
ics, and the delayed oscillator mechanism, each offering 
a distinct lens for comprehending the underlying physi-
cal processes. Despite these sustained efforts in dynami-
cally modeled predictive methodologies, the scientific 
community has yet to conceive a comprehensive theoret-
ical framework encapsulating the complete El Niño sys-
tem. This shortfall underscores the prevalent challenges 
and perhaps limitations in leveraging atmospheric and 
marine dynamics theories for ENSO prediction, indicat-
ing a substantial scope for further refinement and explo-
ration in this field.

(2) Data-driven methods

Data-driven approaches involve applying statistical 
and computational learning techniques to delineate the 
intricate relationships between predictive elements and 
the ENSO index. The methodologies within this realm 
span a diverse range, including persistence forecast-
ing, similarity analyses, and a spectrum of linear mod-
els such as multivariate regression and Markov chains, 
along with canonical correlation analyses. These meth-
ods manifest in three distinct categories. The inaugural 
category embraces statistical theory-grounded models 
such as autoregressive integrated moving average and 
kernel function statistical models, offering a mathemati-
cal framework for prediction. Following this strategy, 
traditional machine learning algorithms and their deriv-
atives form the second category, encompassing tech-
niques such as Bayesian neural networks, support vector 
regression, and SVM that facilitate nuanced analyses. 
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The final category represents the frontier of deep learn-
ing techniques, leveraging architectures such as LSTM 
networks, ConvLSTM, and transformers, which have 
heralded promising results in identifying complex data 
patterns unrecognizable through conventional statistical 
paradigms (Mu et  al. 2019). These avant-garde method-
ologies have not only advanced ENSO predictive mode-
ling but also found pivotal applications in diverse sectors, 
including meteorological forecasting, natural disaster 
anticipatory models, and the financial analytics domain, 
showcasing their extensive utility and potent efficacy in 
data analysis.

3  Method
3.1  seq2seq framework
In the ever-evolving field of time series forecasting, 
methods such as recurrent neural networks, LSTM, and 
ConvLSTM have generally outperformed traditional 
approaches, particularly in the context of sequence pre-
dictions. These techniques have shown superior capa-
bilities in uncovering underlying patterns or trends in 
the input sequence data. Nevertheless, current pre-
dictive models predominantly focus on analyzing data 
through the temporal dimension, leaving considerable 
room for enhancing the depth of exploration into the 
complex trends in data sequences. This situation under-
scores the imperative for improved accuracy and the 
development of methodologies capable of long-term 
predictions, which are essential in ENSO forecasting. 

To address this gap, we introduce an advanced ENSO 
predictive model grounded in the temporal attention 
mechanism and using the seq2seq framework. This 
structured approach facilitates a more thorough analy-
sis of the input sequence data, effectively navigating the 
challenges presented by long-term dependencies. Dis-
tinctively, the devised generative model can accommo-
date variable-length sequence alignments, capitalizing 
on the correlations between output labels to undertake 
multistep forward predictions. As depicted in Fig.  1, 
this strategy offers a comprehensive solution, promising 
enhanced precision and extended foresight in sequence 
predictions, thus meeting the complex requirements of 
ENSO forecasting.

The seq2seq framework leverages the LSTM architec-
ture as its foundation. This architecture is structured into 
two primary components: an encoder and a decoder. The 
encoder accepts sequence data in increments of a 12-step 
size as input, covering a geographical expanse from a 
southern latitude of 55◦ to a northern latitude of 60◦ and 
an eastern longitude scope from 0 ◦ to 360◦ . These data 
encompass variables such as SST and ocean heat con-
tent anomaly data, represented at each time step t with 
a dimensional scope denoted by C × H × W. Within the 
encoder, a tri-layer LSTM infrastructure operates, where 
each time increment is distilled into a one-dimensional 
vector before being channeled into the LSTM. Here, the 
innovative gating mechanism of the LSTM comes into 
play, diligently learning and adapting to the input data.

Fig. 1 Schematic of the temporal attention mechanism: the encoder-decoder and the temporal attention mechanism are parts of the model 
framework, with a three-layer LSTM architecture on the encoder side and a one-layer LSTM architecture on the decoder side. In this figure, h 
is the state vector of all encoders, yt  is the output of the decoder, Yt is the prediction result of the current model and is used as the input data 
for the next moment, and C is the output of the encoder, representing the entire input time series data, which go into the decoder for processing
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The decisive role of the forget gate in this structure 
cannot be overstated, as it judiciously determines the 
volume of information to be retained from the preced-
ing time step t−1, ensuring a responsive and intelligent 
analysis grounded in pertinent historical data.

The input gate determines which information should 
be retained at time t.

Subsequently, the output gate discerns the data to be 
transmitted to the output stream ht and the data destined 
for the memory stream Ct.

Finally, the memory stream output Ct serves as the 
encoder’s output, encapsulating the full spectrum of 
the input time series data, which are then fed into the 
decoder for further processing. The decoder is assembled 
using LSTM cells, integrating the memory flow data ht as 
the input while initializing with blank input data xt , facil-
itating the prediction of the Nino3.4 SST anomaly index 
at subsequent time point t+1. Next, the foreseen Nino3.4 
SST anomaly index at t+1 is employed as the fresh input 
data xt+1 for the succeeding LSTM timeframe, t+2, fos-
tering a continual process to meticulously generate a 
multistep forecast of the Nino3.4 SST anomaly index 
spanning the forthcoming two years. This operation is 
fundamental to the ENSO forecast model grounded in 
the seq2seq framework. To enhance this structure, a tem-
poral attention mechanism is introduced to delve deeper 
into the time-dimensional information inherent in the 
time series data.

3.2  Temporal attention
Within the encoder-decoder framework, the act of con-
densing all relevant details from the input series into the 
encoder can invariably lead to information loss. Conse-
quently, the decoder has access only to the data in the 
static representation vector Ct derived from the encoder 
side, hindering thorough use of all pertinent information 
initially available. This limitation can foster a sequen-
tial increase in prediction errors as the multistep fore-
cast progresses, culminating in suboptimal outcomes. 

(1)ft = σ(Wf · [ht−1, xt ] + bf ).

(2)it = σ(Wi · [ht−1, xt ] + bi),

(3)C̃t = tanh(WC · [ht−1, xt ] + bC),

(4)Ct = ft · Ct−1 + it · C̃t .

(5)
Ct = ft · Ct−1 + it · C̃tot = σ(Wo · [ht−1, xt ] + bo),

(6)ht = ot · tanh(Ct).

Moreover, the importance of various data pieces can 
fluctuate across different time steps during the predic-
tion process. To counteract this fluctuation and enrich 
the pool of information accessible to the decoder, a tem-
poral attention mechanism has been integrated into the 
seq2seq framework. This adaptation is envisioned to 
enhance the decoder’s comprehension of the full tempo-
ral sequence data, facilitating more accurate predictions.

The temporal attention mechanism can determine the 
relevance of information at different time steps for a spe-
cific prediction within the temporal dimension. Lever-
aging this mechanism, the decoder is endowed with the 
ability to source data from the comprehensive input time 
series, supplementing the input ht . The methodology for 
computing the temporal attention encompasses the sub-
sequent steps. Initially, the temporal attention calculation 
at time step t incorporates the decoder state yt along with 
the full array of encoder-side state vectors h1, h2, . . . , h12 . 
Next, attention scores are determined for each individual 
encoder state hk . This step entails employing the atten-
tion method to gage the correlation score between hk and 
the decoder state yt , as shown in Eq. (7):

Subsequently, the softmax function is used to calculate 
the attention weights.

The attention output context vector c(t) is derived as 
follows:

Temporal attention facilitates the autonomous selec-
tion of the most pertinent time steps from the informa-
tional pool for predictive tasks, ensuring a consistent 
provision of comprehensive input sequence data for each 
subsequent forecast in a multistep projection. Several 
approaches are available for deriving attention scores, 
notably Luong attention and Bahdanau attention (Bah-
danau et al. 2014; Luong et al. 2015); the former approach 
employs a bilinear function for score computation, while 
the latter approach leverages a multilayer perceptron. 
In this study, the dot-product strategy is harnessed to 
compute these crucial scores. Subsequently, the synthe-
sized context vector Ct, bearing important information 
from the entire input sequence, is fused with the encoder 
LSTM output yt, followed by channeling these combined 
data through a fully connected layer on the encoder end, 
culminating in the final predictive output.

(7)score(yt , hk).

(8)a
(t)
k =

exp(score(yt , hk))
m
i=1 exp(score(yt , hi))

, k = 1, · · ·,m.

(9)

c(t) = a
(t)
1 h1 + a

(t)
2 h2 + · · · + a(t)m hm =

m
∑

k=1

a
(t)
k hk .
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3.3  ENSO prediction module based on multiscale spatial 
features

The ENSO phenomenon operates as a hallmark spati-
otemporal process characterized by pronounced spatial 
correlations governing its genesis, evolution, and sub-
sequent phases. Despite the absence of a unified theory 
within marine science to fully elucidate the physical 
mechanisms underpinning ENSO phenomena, con-
siderable strides have been made in fostering initial 
understandings through various lenses, including ocean-
atmosphere coupling models, atmospheric oscillations, 
and oceanic conveyance dynamics. The spatial energy 
transfer paradigm is central to these endeavors. Conse-
quently, the critical role of spatial information in enhanc-
ing the precision of ENSO prognostications becomes 
evident.

The ENSO prediction model, grounded in the seq2seq 
framework, engenders a sequence model adept at pro-
cessing ocean observation datasets, similar to the config-
urations of two-dimensional gridded data encompassing 
SST and HC parameters sourced from oceanic and ter-
restrial regions. Given its intrinsic limitation in handling 
image data, LSTM requires the direct transformation 
of two-dimensional data into a one-dimensional vector 
before integration into the model.

To circumvent this bottleneck, a convolution module, 
predicated on multi-scale spatial features, is introduced 
for the adept extraction of spatial characteristics inherent 
in ocean observation datasets (Szegedy et  al. 2015). As 
depicted in Fig. 2, this module leverages three convolu-
tion kernels of distinct dimensions to process the mesh 
data derived from individual time steps within the input 
sequence. The ensuing spatial attributes captured at vari-
able scales are concatenated to describe a definitive com-
posite spatial feature set. The 1 × 1 convolutional kernel 
serves to reduce dimensionality and computational 
complexity. This enhanced feature set is subsequently 
integrated into the ENSO seq2seq prediction model, 
facilitating enriched training processes.

This innovative multiscale convolution module facili-
tates diverse receptive fields and has the potential 
to assimilate a richer tapestry of information across 

differentiated spatial scales, augmenting the spatial delin-
eation of ocean data. This enhancement, in turn, fortifies 
the predictive prowess of the ENSO forecasting model. 
The architecture of this module is shown in Fig. 3.

4  Experiment and analysis
4.1  Experimental platform and data
The proposed model was developed using Python version 
3.7.10 and executed on a Tesla K80 GPU. The structural 
framework of the model was constructed using Tensor-
Flow. This research employed three prominent meteoro-
logical datasets: climate model intercomparison project 
(CMIP), simple ocean data assimilation (SODA), and 
GODAS, all presented in the prevalent netCDF format. 
The CMIP and SODA datasets served as the foundation 
for training the model, while the GODAS dataset was 
reserved for testing purposes.

Despite variations in the data processing techniques 
applied to them, all three ocean datasets conform to a 
uniform final data structure. Each data entry encom-
passes several meteorological and spatiotemporal param-
eters, namely, SST and ocean HC, structured with the 
following dimensions: (year, month, latitude, and lon-
gitude). In addition, each monthly data entry in the 
training set is accompanied by a pertinent label of the 
Nino3.4 SST anomaly index. In this structured dataset, 
the initial dimension, representing the ’year’, marks the 
start year of the dataset. The CMIP dataset is extensive, 
covering a span of 3024 years, incorporating 144 years 
of historical simulation derived from 21 different cou-
pled model configurations under CMIP. In contrast, the 
SODA and GODAS datasets contain real observational 
data, accounting for each year distinctly, spanning 103 
years for SODA and 38 years for GODA. To foster a har-
monious balance between training and testing data and 
mitigate potential biases, portions of the initial years in 
the CMIP and SODA datasets were excluded from the 
training set. Further elucidating the structure, the second 
dimension signifies the ’month’, with a magnitude of 36. 
This dimension encapsulates data projected for a three-
year period starting from the designated start year.

Fig. 2 Multi-scale convolution process: three convolution kernels of different sizes are used to convolve the input and then the resulting spatial 
features of different scales are sewn together to yield the final hybrid spatial features
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The final two dimensions in each sample delineate 
the longitude and latitude values, uniformly spanning 
from 55◦ southern latitude to 60◦ northern latitude 
and from 0 ◦ to 360◦ eastern longitude across all data-
sets. This span equates to a 24 × 72 grid. Concurrently, 
the label is aligned with the structure of the initial two 
dimensions of the training dataset, clarifying the vari-
ables associated with the Nino3.4 SST anomaly index 
and defining them within the (year, month) parameters. 
The data used in this study diverge substantially from 
conventional image and sequential data commonly seen 
in other studies. To facilitate the training process, the 
data must be transformed into a format amenable to 
time series analysis, which is characterized by the (sam-
ples, time steps, and features) structure. Initial process-
ing entails truncating the second-dimensional segment 
(month) within each sample, retaining only the data 
points corresponding to the first 12 months of the rel-
evant year. Subsequently, SST and HC data arrays are 
harbored within the channel dimension, culminating 
in the conversion of the terminal three dimensions-lat-
itude, longitude, and channel-into a singular dimen-
sional vector. In parallel, while manipulating the label 
data, a careful selection of data points within the sec-
ond dimension (month) is executed, preserving the data 
spanning the initial 24 months to mirror the predictive 
output timeline set for a two-year period.

4.2  Experimental design
This study delineates the architecture and hyperparam-
eters of a pioneering ENSO prediction model predicated 
on a temporal attention mechanism and integrated into 
a seq2seq framework. This framework leverages two-
dimensional SST anomaly and ocean HC datasets, using 
a sequential span of 12 months encapsulated within the 
schema (samples, encoder time steps, features). Model 
optimization is facilitated by employing an Adam opti-
mizer, with the mean square error delineated as the loss 
function, guided by a learning rate of 0.01 and a batch 

size of 64. Preliminary training phases are conducted on 
the CMIP dataset, subsequently advancing to a transfer-
ence learning stage on the SODA dataset and culminat-
ing in evaluative testing on the GODAS dataset.

The encoder component operates with a temporal 
bandwidth of 12 steps, accommodating encoder tokens 
configured at dimensions of 24 × 72 × 2. This segment 
of the model is constructed using a dual-layer LSTM 
framework, housing 1024 hidden units. Conversely, the 
decoder module is characterized by a 24-step temporal 
range and a singular LSTM layer sustaining 1024 hidden 
units, albeit with a singular decoder token. The hyperpa-
rameter configuration for the model is shown in Table 1.

A crucial augmentation in this model is the incorpora-
tion of multiscale spatial feature delineation through a 
convolution kernel module equipped with three diverse 
kernel dimensions: 5 × 5, 9 × 9, and 17 × 17. This approach 
necessitates maintaining the original data configuration, 
which is similar to a two-dimensional graphical represen-
tation dictated by (longitude, latitude, channel) param-
eters. The requisite input data configuration for this 
experimental framework demands a structure delineated 
as (samples, time steps, latitude, longitude, channel).

The methodology adopted for training the model lever-
ages the teacher forcing technique, a strategy instituted 
to mitigate error propagation throughout the sequence 
generation process. During the training phase, the input 
furnished to the decoder at each time instance t is predi-
cated on the actual ground truth label corresponding to 
the preceding time step t−1, whereas in the model test-
ing phase, the input received by the decoder at time t 
corresponds to the (predicted value) output value of the 
decoder at time t−1. In contrast, in the testing phase, 
the input to the decoder at time t is derived from the 
model’s predicted output from the previous time step 
t−1. To empirically substantiate the efficacy of the pro-
posed model, we employed a widely recognized metric 
in oceanography, the correlation coefficient. This metric 
serves as the benchmark for evaluating the predictive 
prowess of the model, adhering to the computational for-
mula delineated subsequently:

Fig. 3 Multi-scale convolution module: using multiple parallel 
branches to extract information about features at various scales, this 
module allows the network to obtain different fields of perception 
and enrich the spatial features of ocean data

Table 1 Model hyperparameter settings for model experimentation

Parameter name Parameter value

Encoder time steps 12

Encoder tokens 24 × 72 × 2

Encoder LSTM layers 2

Decoder time steps 24

Decoder tokens 1

Decoder LSTM layers 1

Latent dim 1024
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In this equation, Cov represents the covariance 
between X and Y and VAR[x] and VAR[y] represent the 
variances of X and Y, respectively. The magnitude of the 
correlation coefficient delineates a quantitative measure 
conveying the extent of the linear relationship between 
the variables under consideration. A high absolute value 
signifies a substantial degree of correlation between 
variables X and Y, indicating a potent linear association. 
Conversely, a diminutive absolute value indicates a frail 
correlation and weaker linear interdependence between 
X and Y.

4.3  Prediction results and analysis
In the experimental section of this study, the efficacy 
of the proposed method was assessed in comparison to 
several prevalent time series prediction strategies, such 
as LSTM, CNN+LSTM, ConvLSTM, and SA-ConvL-
STM (Shi et al. 2015; Lin et al. 2020). The LSTM model 
operates using a framework of three integrated LSTM 
modules. The CNN+LSTM structure integrates three 
convolutional layers linked to a series of three LSTM 
layers. Next, the ConvLSTM model incorporates con-
volution operations directly into the LSTM network, 
facilitating the simultaneous extraction of spatial and 
temporal features. Finally, SA-ConvLSTM integrates a 
self-attention mechanism within the foundational Con-
vLSTM blueprint to capture extensive spatial dependen-
cies more efficiently.

Figure  4 delineates a comparative analysis of the cor-
relation coefficients obtained from six distinct mod-
els: LSTM, CNN+LSTM, ConvLSTM, SA-ConvLSTM, 
seq2seq attention, and multi-scale convolution seq2seq 
attention. The data illustrate that the contemporary 
models considerably enhance the precision in long-term 
forecasting, as substantiated through an analysis of cor-
relation coefficients with the real and predicted values of 
the Nino3.4 SST anomaly index spanning a subsequent 
two-year period. A nuanced assessment of Fig. 4 reveals 
a converging performance trend among all six models 
in the initial six-month forecast duration, underscoring 
their proficiency in encapsulating pertinent short-term 
ENSO phenomenon indicators. Nonetheless, a discern-
ible decline in forecast accuracy manifests as the time-
frame extends, except in the proposed model, which 
consistently exhibits superior and stabilized performance 
metrics, underlining its adeptness in negotiating the 
challenges of long-term time series predictions and effec-
tively harnessing relevant data from the input sequences.

(10)r(X ,Y ) =
Cov(X ,Y )

√

VAR[x] · VAR[y]
.

Moreover, the introduction of multiscale spatial attrib-
utes considerably bolsters the model’s six-month predic-
tive accuracy, transcending the results of its counterparts. 
This enhancement not only refines short-term forecasts 
but also notably sustains a higher caliber of long-term 
predictive prowess. In conclusion, the integration of a 
multiscale convolution module substantively elevates the 
holistic performance of the predictive model over a two-
year prognostic span.

4.4  Transfer learning experiments
The CMIP dataset exhibits substantial biases in data 
distribution compared with the SODA and GODAS 
datasets. Although SODA and GODAS use different 
assimilation algorithms, both datasets are grounded on 
the assimilation of actual observational data, render-
ing their data distributions more congruent. The large 
volume of data available in the CMIP dataset could be 
considered an advantage; however, exclusive reliance on 
this dataset for model training may lead to subpar perfor-
mance when tested on datasets with disparate distribu-
tions. To address this limitation, a smaller SODA dataset 
was employed for transfer learning to enhance the mod-
el’s alignment with the characteristics of the test data, 
aiming to improve predictive accuracy. Figure 5 visually 
contrasts the experimental outcomes before and after 
applying transfer learning, depicting notable improve-
ment in model efficacy through this strategy.

The experimental outcomes indicate a heightened effi-
cacy in the model’s long-term predictive capacity after 
incorporating SODA reanalysis data into the training 
regimen. This enhancement substantiates the hypothesis 
that leveraging a smaller yet more representative dataset 
for transfer learning can be a potent strategy for mitigat-
ing the discrepancy between training and testing data 
distributions, thereby reducing the bias issue.

Fig. 4 Nino3.4 index predictions: the correlation coefficients 
between the predicted and true values of the Nino3.4 SST anomaly 
index within the next two years show that the multiscale convolution 
seq2seq attention prediction performs best
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4.5  Ablation experiments
To substantiate the efficacy of the temporal attention 
mechanism, a comparative analysis was conducted on the 
correlation coefficients of the seq2seq model with and 
without this mechanism. Figure 6 delineates a substantial 
enhancement in the predictive accuracy for future time 
series when the temporal attention mechanism is incor-
porated. This finding affirms that the temporal attention 
framework adeptly discerns the intricate interrelation-
ships existing between features within a time series. To 
showcase the potency of multiscale convolution in 
enhancing the predictive accuracy of the model, an ana-
lytical comparison was performed between the seq2seq 
prediction model using the temporal attention mecha-
nism and an analogous model enriched with a multiscale 
convolution module. Figure 6 illustrates the outcomes of 
this empirical examination. A discernible escalation in 
the correlation coefficient of the predictions delineated in 
Fig. 6 postulates a marked improvement after integrating 

the multiscale convolution module, underscoring its 
substantial efficacy in optimizing the prediction results. 
Table 2 shows the average correlation coefficients for the 
different models. Table  3 shows the average correlation 
coefficients for different models with different lead times.

5  Conclusions

(1) This study introduces a novel ENSO prediction 
model grounded on a seq2seq framework fortified 
with a temporal attention mechanism. The archi-
tecture is conceived to analyze time series data 
harnessed from oceanographic observations, focus-
ing keenly on discerning patterns and tendencies 
pertinent to ENSO phenomena contained within 
these data. The overarching ambition is to predict 
impending trajectories in ENSO alterations over 
a substantial temporal stretch, thereby enhanc-
ing predictive acumen on the SST anomaly index 
Nino3.4 for subsequent years. The deployment 
of attention mechanisms in time series forecast-
ing empowers the model to dynamically recognize 
and prioritize pivotal temporal nodes, thereby fine-
tuning the accuracy of ENSO predictions. Through 
meticulous experimentation, this study corrobo-
rates the potency of a seq2seq framework bolstered 
by temporal attention mechanisms.

(2) Furthermore, this study delineates the advent of a 
multiscale convolution-centric feature extraction 
module, marking an innovative stride in the realm 
of oceanic data processing. This endeavor seeks 
to decipher the spatial information embedded in 
ocean meteorological data, fostering a rich reposi-
tory of spatial characteristics at varying scales. The 
nucleus of this module is to mine spatial attributes 
from oceanic observational datasets by deploy-
ing convolution kernels of divergent magnitudes, 
facilitating the extraction of spatial features across 
diverse scales and enhancing the spatial intel on the 
features in play. Subsequently, this study unveils an 
ENSO forecast model leveraging multiscale spatial 
characteristics and temporal attention mechanisms, 

Fig. 5 Transfer learning experiments. The experimental results 
show that the model’s long-term forecasting ability is stronger 
after migration learning

Fig. 6 Ablation experiment. With the addition of the temporal 
attention mechanism, we see a substantial improvement 
in the model’s ability to predict the future. The addition 
of the multi-scale convolution module substantially improved 
the correlation coefficient of the model prediction results

Table 2 Model performance evaluation. Using the average 
correlation coefficients as the indicator, the performance of the 
different strategies is shown in table

seq2seq +Multi-scale conv +Attention +Attention +Multi-
scale conv

Cor 0.52 0.55 0.58 0.63



Page 10 of 11Tao et al. Intelligent Marine Technology and Systems             (2024) 2:7 

granting it the dexterity to meticulously analyze 
input sequences across spatial and temporal spec-
trums, thus opening avenues for markedly improv-
ing ENSO forecast model output. The empirical 
framework designed in this research distinctly 
showcases the feasibility and ensuing performance 
enhancement when using spatial information 
intrinsic to oceanic data through a multiscale con-
volution-based ENSO predictive module.
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