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Abstract
In this study, an analysis is conducted to treasure the expressions of the pulsation expansion factor, in addition to the 
standardized output, and solve the nonlinear Schrödinger equation (NLSE), reflecting the impact of XPM on third order 
dispersion. Using large effective area fiber (LEAF) and standard single-mode fiber (SSMF), the effects of transmission 
distances and varying input powers are assessed at various transmission speeds. The first and second order GVD XPM 
effects are the only factors influencing the pulse’s propagation. The second-order effects of GVD are not noticeable at 
short distances and low bit rates, but they become noticeable and impact system performance as the bit rate increases. 
The study discovered that input dominance has less of an impact on pulse width than data rate and fiber length. Methodi-
cal derivation and numerical simulation using the split-phase Fourier method at the same data rate and input power 
yield the SSMF and LEAF consequences. In comparison to LEAF fibers, XPM has a greater beneficial impact on second 
and third order dispersion in SSMF fibers.

Keywords  Fiber optic communications · Group velocity dispersion · Fiber nonlinearity · Self-phase modulation · Cross 
phase modulation

1  Introduction

Developing rapid and effectual communication systems requires the use of optical fibers, which are currently utilized in 
local area networks (LANs) and for transmitting data at very high speeds over the internet [1, 2]. For high-bandwidth long-
distance communication systems operating at gigabit speeds per second and higher, optical transport is the preferred 
method. Three primary shortcomings of optical fibers are dispersion, nonlinearity, and attenuation. For the first time, 
losses greater than 1000 dB/km were observed in optical fibers in 1966. Within the 1.55 μm wavelength range, attenuation 
of single mode fiber was just 0.2 dB/km [3]. Dispersion is the term for the imperfections that restrict a fiber’s bandwidth. 
As light pulses travel through optical fiber, they experience chromatic dispersion, which causes them to spread out.

In order to send large amounts of data rapidly, wavelength division multiplexing (WDM) systems were first made 
commercially available in the latter part of the 1990s as a high-capacity telecommunications solution. The distribution 
problem is solved by WDM, which combines multiple channels to achieve high combined data rates while maintaining the 
communication rate of each channel at a very low level (e.g., 10 Gb/s) [4]. Not all laser and LED lights have a single color. 
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Consonants are commonly audible near the elementary frequency. Group velocity dispersion (GVD) is the phenomenon 
that arises when scattered spectral components of a light pulse have marginally different group velocities. The propaga-
tion of pulses causes an overlap at the receiver, known as inter-signal interference (ISI), limiting the transmission of high 
data rates. Data loss and errors could come from this. A higher-order group velocity distribution and a first-order group 
velocity distribution make up GVD. The intrinsic GVD is one of the key elements limiting the communication length of 
high-speed optical communication systems. Fiber networks or dispersion-compensated fiber can be used to remove 
primary GVD. The higher-order (second-order) scattering effect increases with increasing driving speed. The shape, width, 
propagation, and inter-symbol interference of a pulse are all determined by the third-order dispersion [5].

Fiber networks spanning more than 100 km in length necessitate substantial transmission power for each channel, 
resulting in nonlinearities like self-phase modulation (SPM) and cross-phase modulation (XPM). Connecting networks to 
a WDM approach can be very challenging if interference occurs. The performance of arithmetic and corresponding fiber 
optic transmission approaches is limited by these nonlinear effects [6, 7]. The pursuit of continually increasing fiber rates 
faces the challenge of fiber group velocity distortion (GVD), which limits bit rates. Additionally, as the channel dimensions, 
absolute optical power, bit rate, and total number of wavelength networks increase in WDM systems, XPM becomes a 
more important nonlinear effect, limiting system performance [8–10]. Recent studies have examined changes in the 
linear and nonlinear consequences of optical fibers in optical transmission systems. Several studies have evaluated the 
impact of XPM nonlinearity on BER, cross-correlation, and network modeling without first-order GVD. In high bit rate 
and long-distance systems, secondary GVD can have a detrimental effect on the optical transmission scheme. There are 
few studies on the impact of XPM in WDM systems in terms of connectivity, considering the presence of primary and 
secondary GVD [11, 12]. Therefore, the impact of XPM and pulse width capacity in second and third-order dispersion on 
the WDM approach needs to be researched and developed using analytical and numerical methods.

In this work, we use standard single mode fiber (SSMF) to assess the validity of the results at various data rates and 
input powers across the propagation space compared to the large effective area fiber (LEAF). When it comes to pulse 
amplification, the strength of the XPM and second and third-order dispersion are crucial factors. Even at small distances 
and depleted values, the consequence of secondary GVD is not large, but while the speed upsurges, this consequence 
increases and affects the scheme execution. Data speed and fiber span appear to have a greater influence on pulse width 
than input impact. Consequences were calculated using analytical differentiation of SSMF, LEAF, and Fourier numerical 
simulations by dividing through measurements of the same data and input energy. The effect of XPM and GVD was found 
to be more effective on SSMF fibers than on LEAF fibers.

2 � Literature review

Extensive research has been conducted on the profound influence of nonlinearity and linearity of fibers in optical trans-
mission networks. XPM and GVD are the key factors affecting system performance and bit rates in WDM optical trans-
mission systems. Plansinis et al. [13] exhibit a complementary panorama of XPM involves the pump pulse generating a 
travelling refractive-index margin within a dispersive nonlinear medium. This action causes the probe pulse to separate 
into two individual fragments, each with its optical continuums.

Jiang et al. [14] demonstrate how to adjust the light spectrum, make it broader, and compress it in the ultraviolet range 
by utilizing the cross-phase modulation between a strong near-infrared pulse and its third harmonic, both traveling 
together in a gas-filled hollow-core fiber. The ultraviolet pulses with negative chirp lead to self-density through to 6 fs 
during dissemination in air and have an energy of more than 10 µJ.

Lassagni et al. [15], present a general expression for the cross-arrangement territory of the XPM variance with an 
arbitrary mode dispersion degree in order to expand the ergodic Gaussian noise model.

Bouhadda et al. [16] created a two-frequency mutual coherence function (MCF) on-axis for disseminative pulses trave-
ling through uncertain atmospheric disorder, highlights the significance of having BER brought on by pulse broadening 
as the propagation distance is increased.

Schelte et al. [17] conducted both theoretical and experimental research on the effects of third-order dispersion (TOD) 
in a coordination of paired optical microcavities. Asymmetrically emerging scattering-encouraged beat outposts disrupt 
the mode-locking regime.

Liao et al. [18] clarifies the TOD and free carrier spreading in a wideband silicon photonic crystal waveguide with 
minimally atypical dispersion are used to pretend high-order sequential soliton firmness.
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Kassegne et al. [19] explores the effects of nonlinear trends, namely the XPM while considering input power. Simula-
tion results for the studied power range show that system performance increases with input power when nonlinear 
effects are removed.

Chakkour et al. [20] developed an optical mode to amend the efficacy of WDM optical transmission systems. Increases 
in the transmitted signal amplitudes were accompanied by notable decreases in nonlinear effects and chromatic disper-
sion compensation.

Singh et al. [21] utilized the coupled and Schrödinger equations to compare the non-linear crosstalk caused by XPM 
in the subcarrier WDM transmission system due to the TOD parameter.

After analyzing the information and conducting a thorough literature assessment, we discovered that most research 
studies have examined the affect of nonlinearity XPM on bit error rate (BER), crosstalk, and eye diagrams. These studies 
have considered the presence or absence of first-order GVD in their evaluations. Conversely, second-order GVD may 
affect long-haul and elevated bit-rate optical transmission approaches. There has been only one published study on 
the influence of XPM in a WDM system when both first- and second-order GVD are present simultaneously. Therefore, it 
is crucial to investigate and develop how the performance of the analytical and numerical pulse broadening factors in 
WDM systems is affected by XPM with first- and second-order GVD.

3 � Methods

The XPM effect is demonstrated in Fig. 1 and is caused when an optical wave’s optical intensity modulates the phase 
of other co-propagating optical signals while it is propagating through a fiber. As a result, interference may arise from 
multiple channels interacting with one another as they travel down an optical fiber. The spreading of signal pulses dur-
ing their descent through the fiber is called dispersion. The receiver’s capacity to discern between discrete signal pulses 
can be impacted by dispersion.

3.1 � Pulse expanding factor caused by the XPM consequence of first‑order GVD

Second and third-order dispersion consequences preserve be implicated by including second- and third-order deriva-
tive provisions to the leftward of the nonlinear Schrödinger equation (NLSE). The NLSE that takes linearity and variance 
into account is expressed as [22–25].

where the complex amplitudes of the fields are A1(z, t) and A2(z, t) that vary slowly over time, and the propagation direc-
tion z, time t, attenuation coefficient α, the first order GVD �2 , second order GVD �3 . �1

(
=
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)
 is a nonlinear constraint, 

n2 is the nonlinear index, �0 is the frequency, C is the light velocity and Aeff  is the effective area of the fiber. The fiber 
nonlinearity is the cause of the final twofold on the right side of Eq. (1). SPM is the result of the first term, and XPM is the 
result of the second. The two pulses are coupled by the XPM term.
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Fig. 1   Demonstration of XPM 
consequence in WDM fiber 
optic communication system



Vol:.(1234567890)

Research	 Discover Electronics             (2024) 1:1  | https://doi.org/10.1007/s44291-024-00002-5

Both GVD and XPM significantly contribute to an optical pulse width T
0
 , the walk of length LW , dispersion length LD , and 

fiber length L if LW ≤ L and LD ≤ L , with XPM affecting the spectrum and the pulse shape. Now considering L << LD LW ≤ L , 
if the attenuation constant and dispersion terms are ignored, the Eq. (1) becomes

The precise retort is contained in the NLSE.

where both fields are launched, A1(0, t) = A01(0, t)f1(t) , A2(0, t) = A02(0, t)f2(t) , A01 and A02 represent the pulse amplitude, 
f1(t) and f2(t) represent the pulse shape, �1m = i�1A

2

01
Leff  , �2m = i�1A

2

02
Leff  and Leff =

1−exp(�z)

z
 is the effective distance of the 

fiber and � attenuation constant. The modified pulsate therefore makes two collisions. XPM is to blame for the second 
term, while SPM is to blame for the first. Because of the group velocity mismatch, XPM’s contribution varies with fiber 
length. The Fourier transform can produce the field equivalency in the frequency sphere at a distance z for the XPM-
based first order GVD.

As input for both fields, the Gaussian pulse has been taken into consideration so that the field equation becomes

Let spectral width,

So, the field equation can be written A1(z,�) = �(�)exp
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Thus, the frequency domain solution of the field equation is as

By inverse Fourier transform the time domain can be obtained from Eq. (2)
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Thus, Eq. (3) can be transmuted as,

The root mean square (RMS) value of the pulse width can therefore be found using the following equation:

Pulse broadening factor for the initial RMS value becomes,

Equation (6) determines the first Gaussian pulse propagation coefficient to satisfy the first-order effects of XPM and 
SPM on the GVD while propagating through the WDM optical fiber transmission system at the same time.

3.2 � Pulse expanding factor caused by XPM effects of second order GVD

It is required to complement the first- and second-order GVD ( �A1∕�z = −i�3�
3A1∕6 ) in the pulse expanding factor as of 

XPM-based first- and second-order GVD. As a result, the field equivalency for the first- and second-order consequences 
of XPM appears in the time domain as follows.
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The XPM-induced first- and second-order GVD pulse broadening coefficients are acquired by numerically resolv-
ing the NLSE utilizing the stepwise Fourier organization in MATLAB. The split-step Fourier method (SSFM) is a 
pseudo-spectral numerical scheme for calculating NLSE caused by XPM, based on first- and second-order GVD. To 
estimate the actual pulse propagation, one must separately apply the effects of fiber propagation and nonlinear-
ity over a small portion of the transmission distance, and then combine the two effects [26, 27]. This is the key to 
SSFM. NLSE has been described as,
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 . Figure 2 shows the proportionate SSFM 

in action.
Table 1 lists various system attributes for LEAF and SSMF fibers [28]. The MATLAB (R2023a) simulation software 

is used for simulation.
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Fig. 2   Demonstration of 
balanced split step Fourier 
method

Table 1   values of the 
theoretically computed 
parameters

Parameters (unit) Values

Non-linear refractive index, n2 (m2∕w)   0.35 × 10−20

Bit rate, B (Gb∕s)   10−40  
Wavelength, � (nm)   1550

Attenuation coefficient, � (dB∕km)   0.25

Power, P1 (mW)   10−90  
Power, P2 (mW)   10−90  

Effective area, A (m2)   0.5 × 10−11  

Dispersion parameter, �2 (ps2∕km)   −20.39

Fiber length, (km)   Varied
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4 � Results

4.1 � Impact of XPM‑based second order GVD on SSMF fiber pulse broadening

To calculate the pulse broadening factor for SSMF owing to XPM with second-order GVD in MATLAB, the NLSE is numeri-
cally solved using the SSFM. The second-order GVD-induced pulse expansion for input powers of 30 mW and 90 mW and 
data rates of 10 Gbps and 40 Gbps is shown in Fig. 3 as a function of fiber length.

As illustrated in Fig. 3, XPM and second-order GVD cooperate to cause the pulse to broaden. After 12 km, oscillations 
and ripples appear, and the broadening factor rises with fiber length. Asymmetric spectral broadening is caused by these 
effects, which also limit the transmission distance. When second-order GVD is evident, the XPM-induced chirp causes 
the probe pulse to rapidly oscillate close to the trailing edge, producing an asymmetric shape. The non-linear features 
of the fused chirp causes distinct parts of the pulse to broadcast at various rates. Since XPM and second-order GVD work 
together, changes in data rates have a major impact on the pulse expansion. For example, when the data rate is 40 Gbps, 
the pulse extending is 530 at a fiber length of 0.2 km, and 40 at the same fiber length when the bit rate is 10 Gbps. This 
demonstrates that the pulse broadening factor increases with data tariffs.

The pulse expansion for a SSMF with input powers of P1 = 10 mW, P2 = 10 mW, and P1 = 300 mW, P2 = 300 mW at the 
same 40 Gbps data rate is displayed on the graph in Fig. 4. It shows that in a WDM transmission system with XPM and 
second-order GVD, changes in input powers have negligible effects on pulse broadening.

Fig. 3   Pulse broadening factor 
for the constant powers but 
changed data rates

Fig. 4   Pulse broadening 
factor for different input 
powers with the same data 
rate = 40 Gbps in SSMF
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4.2 � Impact of XPM‑based second order GVD on LEAF fiber pulse broadening

In LEAF fiber, the pulse broadening factor resulting from XPM with second-order GVD increases in tandem with an 
increase in data rate. When XPM with second-order GVD is present, the pulse expansion in LEAF fiber is less affected 
by changes in input power.

Table 2 lists various system attributes for LEAF and SSMF fibers [29].
Figure 5 displays the pulse expansion component against fiber length in the circumstance of the XPM appearance. 

In SSMF the curve oscillates after 10 km to produce multiple waves, while in LEAF fiber it oscillates after 12 km to 
produce multiple waves. Representing the similar data rate of 40 Gbps with response power P1 and P2 are 10 mW 
and 30 mW respectively. The quantity of pulse enlargement for dual diverse optical fibers is dissimilar since they 
have altered dispersion identities.

4.3 � Pulse broadening facto in SSMF in comparison to GVD first order and GVD second order with XPM

In Fig. 6, the pulse expanding owed to the appearance of XPM with second-order GVD and the consequence of XPM 
with first-order GVD are shown and compared for the same data rate and input powers.

The two curves are compared, and it is found that the pulse expanding affected by XPM with second-order GVD 
upsurges significantly in the length from 9 to 10 km, while the pulse increases with XPM from GVD. The first degree 
occurs. little by little When using XPM with a second-order GVD over a 10 km fiber, the pulse broadening factor is 
600, while XPM causes a first-order GVD of up to 1. After the fiber length reaches 10 km, the pull factor begins. to 
fluctuate owed to the interaction of the second-order GVD and the XPM and to form multiple waves, while the XPM 
causes a disproportionate increase to the original GVD. Consequently, the pulse expansion feature of the XPM with 
second-order GVD is greater than that of the XPM with first-order GVD. Asymmetric pulse expansion results from 
vibrational waves produced by the interaction of XPM with the second order of GVD.

Table 2   Key parameters of 
LEAF and SSMF

Parameters (unit) LEAF SSMF

Refractive index, n 1.4693 1.4679
Dispersion coefficient, D ps/(nm·km) 4 18
Nonlinear coefficient, γ (W·km) 1.535 1.063/(W·km)
Effective mode area, (Aeff (μm2)) 72 84 μm2

Attenuation coefficient, α (dB/km) 0.19 0.20 dB/km
β2 (ps2/km) − 5.1 − 23

Fig. 5   Output pulsation of 
XPM with third-order disper-
sion for SSMF and LEAF
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4.4 � Impact of XPM‑based first‑ and second‑order GVD on output pulse

A Gaussian pulse is introduced into the fiber to initiate transmission, as shown in Fig. 7. The transmitting pulse caused 
by the combination of second-order GVD and XPM is shown in Figs. 8, 9 and 10.

The appearance of a change in the input powers on the output pulse can be examined and illustrated by contrasting 
Figs. 8 and 9. Normalized output pulses for a settled data rate are found to remain relatively similar when P1 (input power) 
is changed from 30 to 60 mW and P2 (10 mW to 30 mW). For XPM and TOD, this means that with WDM transmission 
systems, variations in input powers have less of an effect on transmitting pulses. The second-order GVD can significantly 
change the transmitting pulse’s behavior in the presence of XPM, transforming the Gaussian pulse into multiple-shaped 
pulses at an extreme data rate of 40 Gbps, as shown in Fig. 10. The distorted spines are the result of the output pulse.

5 � Discussion

The combined effects of GVD and XPM, which affect high data rates, channel capacity, and final optical power, severely 
limit the performance of WDM systems. Thus, this study’s main goal was to look into how XPM affected system perfor-
mance as primary and secondary GVD were being developed. The pulse expansion coefficients of primary and second-
ary GVD pulses affected by XPM in WDM optical communication systems are studied through a thorough analysis and 
numerical research.

Fig. 6   Pulse broadening factor 
due to XPM-based first- and 
second-order GVD in SSMF

Fig. 7   Conception of an input 
Gaussian pulse
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Fig. 8   Conception of output 
pulse in XPM-base second-
order GVD at input powers 
of 30 mW and data rates of 
10 Gbps

Fig. 9   Conception of output 
pulse in XPM-base second-
order GVD at input powers 
of 60 mW and data rates of 
10 Gbps

Fig. 10   Conception of output 
pulse in XPM-base second-
order GVD at 40 Gbps
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The spectral pulse broadening seen in WDM systems is primarily caused by the interaction between first-order XPM 
and GVD. The expansion factor is found to increase with data rate, input power, and fiber length. Nonetheless, the input 
power has less of an consequence on the pulse broadening factor than the data rate and fiber length. System perfor-
mance is significantly affected by second-order GVD at very high data rates. Asymmetric pulse broadening and multiple 
ripples are the results of combining XPM with second-order GVD. Data rate and fiber length have an increasing impact 
on the pulse expansion due to GVD and second-order XPM. When second-order GVD is used instead of first-order GVD, 
XPM behaves differently and has a better pulse broadening factor.

5.1 � Limitation

This work uses the SSFM to resolve the NLSE. Because the dispersal of computational grid points along the fiber has a 
significant impact on the practical efficiency of the SSFM, an effective adaptive step-size control strategy is obligatory, 
for completing the SSFM for NSLE solution with all the mathematical precision necessary to guarantee a thorough com-
prehension of the subject.

We hope that our findings will also have a qualitative effect on other scenarios, like optical pulses and interactions 
between light waves traveling at different frequencies and modes, even though our research has only looked at how 
nonlinearities affect homochromous light roaming in a single mode. This implies that accurate modeling and design of 
these components require second-order nonlinear approaches and that a wide variety of nonlinear slow-light devices 
can be significantly impacted by second-order terms.

6 � Conclusions and future works

In the WDM regime, the pulse spectral broadening is based on first-order GVD and the XPM effect. It is believed that as 
input power, fiber length, and data rate increase, so does the supplementary factor. However, the pulse width factor 
is more affected by data rate and fiber length than by power. At high bit rates, second-order GVD effects are critical to 
system performance. Second GVD is caused by multi-channel asymmetric pulse amplification arising from XPM. The 
impact of second-order GVD-based XPM on pulse gain increases with both data rate and fiber length. According to the 
pulse enhancement factor, second-order GVD is more proficient and exhibits distinct behavior when paired with XPM 
and first-order GVD. The effect of XPM with first- and second-order GVD on the pulse propagation factor is similar to that 
of XPM with third-order dispersion, since the effect of second-order GVD domination is different from XPM at better data 
levels. Whereas the amplified output pulse of XPM only has first-order GVD, the second-order GVD of XPM causes the 
output pulse to be amplified and form multiple waveforms. The presence of second-order GVD asymmetric behavior in 
the XPM is indicated by the increased pulsation. Third-order dispersion and XPM in SSMF fibers are more effective than 
in LEAF fibers. In terms of pulse broadening, SPM with CD is not as effective as XPM with first-order GVD.

We have examined inter-channel XPM in a two-channel WDM system. Subsequent investigations could examine the 
intra-channel XPM effect across a vast array of channels (> 16) with diverse channel spacing, extending as low as 0.1 nm. 
Investigating the strategies and tactics for making up for the XPM impairment is also crucial. The performance limita-
tions resulting from nonlinear phenomena could be accurately represented by considering additional nonlinear effects.
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