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WUSCHEL-related homeobox (WOX) 
transcription factors: key regulators 
in combating abiotic stresses in plants
Faiza Shafique Khan1,2, Farhan Goher3, Chun Gen Hu1 and Jin Zhi Zhang1*   

Abstract 

The WUSCHEL-related homeobox (WOX) transcription factors (TFs) belong to the homeodomain (HD) family. WOX TFs 
are involved in various regulatory pathways related to plant growth and development. In addition to their recognized 
role in various development processes, many reports suggest that they play a key role in abiotic stress perception 
in plants. However, their underlying molecular mechanisms have rarely been studied in horticultural crops. WOXs gov-
ern the transcription of the target genes through specific binding to the cis-regulatory elements present in their pro-
moters. Additionally, they associate with other factors to form a specific pathway regulating numerous abiotic stress 
responses. Here, we review the recent advances in the multifaceted functions of WOXs in the complex, developmen-
tal, and abiotic stress-sensing networks, with particular emphasis on regulating the related genes and other TFs. In 
addition, we suggest that WOXs are essential components of the gene regulatory networks involved in the response 
of plants to abiotic stress tolerance and aim to provide a reference for future research.
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Introduction
Plants are sessile and highly sensitive to changing cli-
matic conditions. Owing to climate change and the threat 
of global warming, it has been estimated that abiotic 
stresses such as drought, salinity, freezing, and extreme 
temperature fluctuations will affect commercial agricul-
tural production by up to 50% by the end of this century 
(FAO 2015). Abiotic stresses can reduce horticultural 

crop production and cause yield losses ranging from 
50% to 70% (Francini and Sebastiani et  al. 2019). Salin-
ity affects almost 20%–30% of arable soils (Thorne et al. 
2020). Heat and drought severely impact plant growth 
and reproductivity due to reactive oxygen species (ROS) 
imbalance, cell damage, and protein degradation 
(Devireddy et al. 2021; Wang and Zhu 2022; Khan et al. 
2022a). Plants have evolved various adaptive strategies 
to cope with long-term abiotic stresses through regula-
tory mechanisms. In this scenario, producing high-yield 
horticultural crop varieties requires an improved under-
standing of gene regulatory functions involving develop-
ment and abiotic stress response.

Stress-tolerant plants display a vast network of reg-
ulatory mechanisms, including reprogramming the 
expression of various genes at the transcriptional and 
post-transcriptional levels. These regulations are essen-
tial for plants to restore cell homeostasis during recovery. 
Transcription factors (TFs) are prime players at the tran-
scriptional and post-transcriptional levels (Kumar et  al. 
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2021). Many important TFs, such as NAC, WRKY, bZIP, 
NF-Y, and ERF, have been identified through genome-
wide studies (Wu et  al. 2015; Banerjee and Roychoud-
hury 2017; Yang et al. 2018; Zhang et al. 2023). These TFs 
are involved in the responses of plants to abiotic stress 
and stress-specific transcriptional patterns linked to 
upstream signaling through TFs. Specific stresses such as 
drought, cold, and salinity can also induce common tran-
scriptional responses (Ma and Bohnert 2007). For exam-
ple, the Arabidopsis thaliana NFYA5 (nuclear factor Y) 
was strongly influenced by drought-induced stress using 
the abscisic acid (ABA)-dependent pathway. NFYA5 con-
tains a miR169 binding site (CCAAT), which targets the 
translational repression of mRNAs; miR169 was down-
regulated by drought-induced stress in an ABA-depend-
ent manner. NFYA5 regulated drought-induced stress at 
the transcriptional and post-transcriptional levels and 
induced drought tolerance (Li et al. 2008).

WUSCHEL-related homeobox (WOX) TFs also play an 
essential role in the transcriptional and post-transcrip-
tional regulation of genes involved in the developmental 
processes in plants. In rice, OsWOX3B and OsSPL10 reg-
ulated the expression pattern of HEARY LEAF6 (HL6); 
OsWOX3B and OsSPL10 interact and subsequently 
impact the transcription of HL6, which is essential for 
developing trichomes (Liao et  al. 2023). Trichomes play 
a positive role in providing resistance against biotic and 
abiotic stresses (Liao et al. 2023). Additionally, OsWOX3B 
and HL6 modulated the expression of various genes 
involved in auxin (indole acetic acid; IAA) biosynthesis 
and signaling, including  AUXIN RESPONSE FACTOR 
4  (OsARF4),  PIN-FORMED1a (OsPIN1a), and  Trypto-
phan aminotransferases 5 (OsYUCCA5). HL6 binds to 
the promoter of  OsYUCCA5 and the  OsWOX3B-HL6 
interaction enhances the binding  property (Sun et  al. 
2017). Current research on plant WOX TFs has focused 
on developmental regulation.

WOXs are differentially expressed under abiotic 
stresses in horticultural crops such as tomato (Solanum 
lycopersicum), citrus (Citrus sinensis), apple (Malus 
domestica), and banana (Musa acuminata) (Li et al. 2021; 
Khan et al. 2021; Chaudhary et al. 2022; Lv et al. 2023). 
For example, tomato SlWOXs showed robust, differen-
tial expression patterns under cold, NaCl, and drought 
predicting a significant role in abiotic stress response (Li 
et al. 2021). Overexpression of MdWOX13-1 in apple calli 
increased ROS scavenging and weight (Lv et  al. 2023). 
MdWOX13-1 directly bound to the promoter of MdSOD 
and enhanced ROS scavenging in response to drought 
(Lv et al. 2023). Various gene regulatory mechanisms are 
involved in the fight for survival and play a significant 
role in the changes in horticultural plants during abiotic 
stresses.

Previous reviews have illustrated the responses of 
plants for survival under abiotic stresses (Estravis-Bar-
cala et  al. 2020; Saijo and Loo 2020; Khan et  al. 2023a, 
b). Some abiotic stress-responsive families of TFs, such 
as WRKY, NAC, AP2/ERF, and MYB, are ideal candi-
dates for genome editing and genetic improvement to 
enhance resistance against abiotic stresses (Wang et  al. 
2016). Thus, understanding the underlying molecular 
mechanisms in horticultural crop production is essen-
tial. The mechanism through which WOXs perform their 
functional roles, including interaction with partners to 
target promoters, is still not precise. Hence, this review 
focuses on the regulatory pathways behind the associa-
tion of the WOX family and resistance abiotic stresses 
and development in horticultural plants. This can further 
demonstrate the functional identification of gene regula-
tory mechanisms to customize the genetic improvement 
in crops, providing a central platform for future research.

Identification and classification of WOX TFs
WOXs belong to the homeodomain (HD) family of 
TFs (Xu et  al. 2019). They are divided into 14 subfami-
lies, including PINTOX, NDX (NODULIN homeobox), 
KNOX (KNOTTED like homeobox), BELL (BELL like 
homeodomain), WOX (WUSCHEL related homeobox), 
SAWADEE homeodomain, HD-ZIP I-IV (homeodomain 
leucine zipper), ZF-HD (zinc finger homeodomain), DDT 
(homeodomain-DDT), LD (luminidependens homeo-
domain), and PHD (plant homeodomain with a finger 
domain) (Jain et al. 2008; Mukherjee et al. 2009; Bürglin 
and Affolter 2016; Xu et al. 2019). HDs bind with DNA 
as monomers with high affinity mediated via interac-
tions through the helix-turn-helix  (HTH) structure. The 
HD in the N-terminal of WOXs is conserved in plants 
(Sun et al. 2023; Zhang et al. 2023; Galibina et al. 2023; 
Xu et  al. 2023; Yang et  al. 2023; Tang et  al. 2023; Ric-
cucci et al. 2023). The other regions of WOXs are highly 
divergent in their sequences. The C-termini of WOXs 
comprise a distinct WUS box motif “TLXLFP”, where X 
can be any amino acid that locates the C-terminal to the 
HDs and ERF-linked  amphiphilic repression (EAR)-like 
motif “SLELRLN” (Park et al. 2005; van der Graaff et al. 
2009; Zhang et  al. 2010; Chen et  al. 2023; Youngstrom 
et al. 2022). The WUS-box is specific to the WUS clade 
members and functions as an activator and contains a 
C-terminal EAR domain that involves transcriptional 
repression (van der Graaff et  al. 2009; Mukherjee et  al. 
2009; Lin et  al. 2013). EAR-motif interacts with TOP-
LESS (TPL)/TPL-related (TPR) corepressor to repress 
the transcription of auxin-responsive genes (Szemenyei 
et  al. 2008). This family was identified in various horti-
cultural plants and fruit-bearing trees (Table  1) (Khan 
et al. 2021; Xu et al. 2022; Chaudhary et al. 2022). Using 
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phylogenetic analysis and evolutionary relationships, 
the WOX family is grouped into three clades: ancient, 
WUS/modern, and intermediate (Rahman et  al. 2017; 
Alvarez et  al. 2018; Chang et  al. 2019; Tang et  al. 2020; 
Daude et al. 2020; Khan et al. 2021; Feng et al. 2021; XU 
et al. 2022; Galibina et al. 2023; Xu et al. 2023; Yang et al. 
2023; Tang et al. 2023; Riccucci et al. 2023) (Fig. 1). The 
ancient clade represents conserved WOXs found in the 
genomes of algae to angiosperms which includes three 
genes, WOX10, 13, and 14 in Arabidopsis. WOX8/WOX9 
and WOX11/12 from the intermediate clade are involved 
in developmental processes such as embryogenesis and 
regeneration into Arabidopsis. The WOXs in the modern 
clade contain HD and WUS motifs, which are essential 
for normal functioning. They include WUS, WOX5, and 
WOX7, which contain the EAR-motif domain with spe-
cific repressor activity (Feng et  al. 2021; Li et  al. 2022; 
Yang et al. 2022; Sun et al. 2023; Zhang et al. 2023).

In Arabidopsis, 15 WOXs that synergistically partici-
pate in the regulatory mechanisms of various develop-
mental processes, such as stem cell proliferation and 
maintenance, shoot apical meristem (SAM), and root api-
cal meristem (RAM) development, and organ formation 
(Haecker et al. 2004; van der Graaff et al. 2009). Recently, 
127 WOXs have been identified in eleven cucurbit crops 
such as snake gourd (Trichosanthes anguina), monk 
fruit (Siraitia grosvenorii), chayote (Sechium edule), wax 
gourd (Benincasa hispida), sponge gourd (Luffa cylin-
drica), bottle gourd (Lagenaria siceraria), bitter gourd 

(Momordica charantia), pumpkin (Cucurbita maxima), 
melon (Cucumis melo), watermelon (Citrullus lanatus), 
and cucumber (Cucumis sativus) (Li et al. 2023). WOXs 
have also been identified in the genomes of other horti-
cultural plants and woody perennials (Table 1). An over-
view of WOXs involved in plant growth and development 
in model plants is presented in Fig. 2.

WOX TFs are crucial for plant development
Classically, developmental biology studies have mainly 
focused on Arabidopsis as a model plant. However, much 
progress has been made in analyzing the functions of var-
ious WOXs in different horticultural plants and woody 
perennials (Table 2). Generally, the WOX family plays a 
crucial role in shoot apical meristem (SAM) development, 
floral meristem identity, stem cell maintenance, flower 
organ formation, lateral root (LR) formation, cell differ-
entiation, somatic embryogenesis, and somatic embryo 
development (Klimaszewska et al. 2011; Tvorogova et al. 
2021; Willoughby and Nimchuk 2021). The WOX fam-
ily regulates developmental processes-related regulatory 
mechanisms and is well-documented in model plants 
(Fig. 2). The combined activities of WOXs regulated tis-
sue proliferation and embryogenic development in Arabi-
dopsis (Wu et al. 2007). AtWUS was involved in stem cell 
and floral meristem identities and regulated SAM main-
tenance (Laux et al. 1996; Mayer et al. 1998). The AtWUS 
homolog in pineapple (Ananas comosus L.) AcoWUS is 
highly conserved functionally and significantly regulates 

Table 1 The number of WOXs identified in plants and fruit trees

Common names Latin names No. of WOXs identified References

Sweet orange Citrus sinensis 11 (Khan et al. 2021)

Pear Pyrus bretschneideri 9 (Cao et al. 2017)

Walnut Juglans regia L 12 (Chang et al. 2019)

Apple Malus domestica Borkh 18 (Xu et al. 2022)

Tea plant Camellia sinensis 18 (Wang et al. 2019)

Loquat Eriobotrya japonica 18 (Yu et al. 2022)

Grapes Vitis vinifera 11 (Li et al. 2017)

Peach Prunus persica 10 (Cao et al. 2017)

Chinese plum Prunus mume 10 (Cao et al. 2017)

Kiwi Actinidia chinensis 17 (Feng et al. 2021)

Kiwi Actinidia eriantha 11 (Feng et al. 2021)

Coffee Coffee arabica L 7 (Daude et al. 2020)

Passion flower Passiflora organensis 19 (da Silva et al. 2018)

Strawberry Fragaria vesca 16 (Yang et al. 2022)

Banana Musa acuminata 13 (Chaudhary et al. 2022)

Mulberry Broussonetia kazinoki × B. papyrifera 10 (Tang et al. 2017)

Pineapple Ananas comosus L 10 (Rahman et al. 2017)

Tomato Solanum lycopersicum 10 (Li et al. 2021)

Blueberry Vaccinium corymbosum L 29 (Gao et al. 2021)
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female gametophyte development. Moreover, WUS posi-
tively regulated somatic embryogenesis in coffee (Coffee 
canephora) (Arroyo-Herrera et al. 2008) and dedifferen-
tiation during somatic embryogenesis in coconut (Cocos 
nucifera) (Khan et al. 2023a, b). C.sinensis CsWUS stimu-
lates stem cell proliferation in Carrizo citrange, whereas 
it regulates floral organ development in tobacco (Zhang 
et  al. 2020; Khan et  al. 2021). CsWUS-silencing in lem-
ons induced thorn development and upregulated the 
expression of thorn identity-related genes (Khan et  al. 
2021). A recent study revealed that radish (Raphanus 
sativus) RsWUS plays an important role in shoot devel-
opment. The RESPONSE REGULATOR 18–1 (RsRR18-
1) encoded protein binds to the RsWUSb promoter and 

activates its expression. RsRR18-1-WUSb modulated 
shoot development in radish through the cytokinin (CK) 
signaling pathway (Hu et al. 2024). The Loquat (Eriobot-
rya japonica) EjWUSa when overexpressed in Arabidop-
sis promoted early flowering (Yu et  al. 2022). AtWOX1 
regulated meristem and leaf blade development via the 
modulation of CLAVATA3 (CLV3)  expression (Vanden-
bussche 2021). Loss of function wox1 mutation reduced 
leaf blade in Petunia and Arabidopsis (Vandenbussche 
et al. 2009). PpWOX1 controlled cell division during the 
early stage of fruit development in pears (Pyrus pyrifolia) 
(Jiang et  al. 2018). CsWOX1 regulated early reproduc-
tive development in cucumber and directly interacted 
with SPOROCYTELESS (CsSPL). CsWOX1 stimulated 

Fig. 1 A midrooted phylogenetic tree of the WUSCHEL-related homeobox (WOX) transcription factor family using various classified plant species 
such as Arabidopsis, strawberry (Fragaria vesca), sweet orange (Citrus sinensis), rice (Oryza sativa L.), and wheat (Triticum aestivum L.) (Khan et al. 2021; 
Yang et al. 2022; Li et al. 2020) was constructed using Clustal Omega (www. ebi. ac. uk/ Tools/ msa/ clust alo/). The tree was drawn using Interactive Tree 
of Life (IToL) v. 6 (https:// itol. embl. de/). Scale bars correspond to 0.1 substitutions

http://www.ebi.ac.uk/Tools/msa/clustalo/
https://itol.embl.de/
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sporogenesis through the CsSPL-based signaling path-
way and modulated IAA signaling in cucumber (Niu 
et  al. 2018). AtWOX2 marked the apical cell line dur-
ing embryo development and is highly expressed in the 
egg cell and zygote (Haecker et  al. 2004). AtWOX4 reg-
ulated cell division in vascular tissues, and OsWOX4 
regulated early leaf development in rice (Etchells et  al. 
2013; Yasui et  al. 2018). In grapevine (Vitis vinifera), 
VvWOX4 regulated stem cells (Ru et  al. 2011). In blue-
berry (Vaccinium corymbosum  L.), the expression of 
VcWOX4b was enhanced in the shoots and roots com-
pared to other VcWOXs. Further, VcWOX4b-overexpres-
sion in tobacco inhibited adventitious root formation 
by modifying vascular cell division and differentiation. 
VcWOX4b regulated CK- and IAA- stimulated primary 
xylem cell differentiation by inhibiting adventitious 
root (AR) formation (Gao et al. 2021). JrWOX5, 9, and 11 
play an essential role in AR formation and determining 

root architecture in walnut (Juglans regia L.) (Chang 
et  al. 2019; Chang et  al. 2022). Apple (M. domestica) 
MdWOX4 and MdWOX4-2 are essential for AR and 
shoot development (Xu et  al. 2022; Dong et  al. 2022). 
AtWOX5 is involved in RAM development; wox5 muta-
tion is involved in the reduction of LR development, 
enlargement and differentiation of columella cells, and 
the quiescent center (QC) (Sarkar et al. 2007). AtWOX6 
regulated the differentiation of megaspore mother cells 
and proliferation of internal integument and floral pri-
mordial cells (Park et  al. 2005). AtWOX7 is involved in 
initiating LR growth (Kong et al. 2016). AtWOX8 and 9 
are involved in embryogenic development and maintain 
the basal and apical embryo lineages (Wu et  al. 2007). 
Loss of function in AtWOX8 and 9 causes abnormal 
cell division in the apical and basal domains of Arabi-
dopsis plants (Breuninger et  al. 2008). Similarly, grape-
vine VvWOX9, VvWOX2, and VvWUS are also involved 

Fig. 2 A graphic representation of the role of the WUSCHEL-related homeobox (WOX) transcription factor family in plant development
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in somatic embryogenesis (Gambino et  al. 2011). The 
cucumber CsWOX9 regulated the formation of branches, 
rosette leaves, and shorter siliques in Arabidopsis (Gu 
et  al. 2020). In Lily (Lilium lancifolium), overexpres-
sion of LlWOX9 and 11 in stem segments promoted, 
whereas silencing them inhibited bulbil formation; CK-
type B-response regulators bound to the promoters of 
LlWOX9 and 11 and upregulated their expression (He 
et  al. 2022). In MdWOX11-overexpressing (OE) trans-
genic plants, AR formation was inhibited; further analy-
sis revealed that the endogenous levels of CK, IAA, and 
ABA were upregulated in MdWOX11-RNAi than in 
MdWOX11-OE transgenic plants (Mao et al. 2022).

In Arabidopsis, AtWOX11 and 12 induced de novo 
root organogenesis and LR formation (Baesso et al. 2018; 
Liu et  al. 2014), while AtWOX13 was involved in fruit 
development and regulated replum (Romera‐Branchat 
et al. 2013). However, OsWOX13 in rice was involved in 
abiotic stress tolerance and early flowering (Minh-Thu 
et  al. 2018). AtWOX14 stimulated the development of 
conductive tissues and regulated flowering. Loss of func-
tion wox14 mutation led to dwarfism and delayed flow-
ering. AtWOX14/4 regulated the proliferation of cells 
in the vascular tissue (Denis et al. 2017), demonstrating 
that WOX TFs had species-specific functional and devel-
opmental roles. This reason strongly favors the idea that 

plant development biology in common would be benefi-
cial by acting on multimodal approaches.

Regulatory mechanisms of WOX TFs in response to abiotic 
stresses
Abiotic stresses impede the development and growth 
of plants. As WOXs are involved in multiple aspects of 
plant development and stress responses, an in-depth 
research is necessary. Moreover, numerous hormones 
responsive motifs, ABRE abscisic acid-responsive motif, 
CGTCA-methyl jasmonate responsive motif, ERE-ethyl-
ene responsive motif, gibberellic acid responsive motifs 
(P-box, GARE-motif, and TATC-box) were identified 
in the promoters of WOXs. Auxin-responsive factors 
(ARFs) and the AUX/IAA-ARF pathway controlled the 
expression of WOXs by binding to Auxin Response Ele-
ments (AuxREs) in  the WOX promoters (Ulmasov et al. 
1997; Tiwari et al. 2003; Guan et al. 2017). CK triggered 
WUS expression via binding to the type-B ARABIDOP-
SIS RESPONSE REGULATORs (B-ARRs) to the B-ARR 
element in the WUS promoters (Wang et  al. 2017). 
WOX1 is involved in IAA signaling, biosynthesis, and 
transport. WOX1 positively regulated AUX1 and PIN1, 
whereas it negatively regulated  TRYPTOPHAN AMI-
NOTRANSFERASE OF ARABIDOPSIS (TAA )/YUC 
CA5  (YUC5) and Tryptophan aminotransferase related 

Table 2 The substantial role of the WOX genes in woody perennials and fruiting trees

Common 
names

Latin names Genes Gene functions References

Citrus Citrus sinensis CsWUS Regulate growth and development in citrus (Khan et al. 2021)

Carrizo citrange CsWUS Regulate stem cell proliferation (Zhang et al. 2020)

CaWOX11-like May be involved in the embryogenic process (Daude et al. 2020)

Grapes Vitis vinifera VvWOX4 Involved in stem cell regulation (Ru et al. 2011)

VvWOX2, VvWOx9, VvWUS Involved in somatic embryogenesis (Gambino et al. 2011)

VvWOX It may be regulated ovule development (Li et al. 2017)

Apple Malus domestica MdWOX4 Adventitious root development (Xu et al. 2022)

MdWOX4-2 Involved in leaf-regenerated adventitious shoots (Dong et al. 2022)

MdWOX11 Involved in micro-shoot growth (Tahir et al. 2022)

MdWOX11 Regulates adventitious root formation (Mao et al. 2023)

MdWOX13-1 Increased callus weight (Lv et al. 2023)

MdWOX3, MdWOX13 Involved in floral transition (Li et al. 2019)

Pear Pyrus pyrifolia PpWOX1 May be involved in cell division during the early stage 
of fruit development

(Jiang et al. 2018)

Pear Pyrus betulaefolia PbWoxT1 Involved in long-distance transport via phloem in scions (Duan et al. 2016)

Pineapple Ananas comosus L AcoWUS Female gametophyte development (Rahman et al. 2017)

Walnut Juglans regia L JrWOX5, JrWOX9, JrWOX11 May be related to adventitious root formation (Chang et al. 2019)

JrWOX11 Regulate root architecture system (Chang et al. 2022)

Jasmine Jasminum sambac JaWOX1 Involved in root differentiation in callus tissues (Lu et al. 2019)

Rose Rosa canina RcWOX1 Promote lateral root density and rhizoid formation (Gao et al. 2014)

Coconut Cocos nucifera CnWUS Involved in dedifferentiation during somatic embryogenesis (Khan et al. 2023a, b)
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2 (TAR2) (Nakata et  al. 2018). B-ARRs (ARR10) bound 
to the B-ARR motif in the promoters of WOX11 and 12 
(Zubo et  al. 2017). Abiotic/biotic stress-responsive cis-
regulatory elements (TC-rich repeats, LTR, and MBS) 
were also found in the WOX promoters (Chaudhary et al. 
2022; Wang et  al. 2019; Li et  al. 2021; Khan et  al. 2021; 
Akbulut et al. 2022). Thus, WOXs TFs are active in abi-
otic stress response in plants.

Expression and regulatory role of WOX TFs in response 
to salinity
The differential expression pattern of WOXs in response 
to abiotic stresses has been reported in many plants 
(Wang et al. 2019; Li et al. 2020, 2022; Khan et al. 2021; 
Chaudhary et  al. 2022). Banana (M. acuminata) is a 
highly salt-sensitive crop, and MaWOXs are essential in 
the development and abiotic stress response. MaWOX11 
induced tolerance against drought in transgenic rice 
plants (Cheng et al. 2016). The expression of MaWOX1, 
3, and 9a was markedly enhanced under drought. Fur-
thermore, those of MaWOX3, 8a, and 11b were higher 
under 12 h of salinity treatment, while those of MaWOX 
were lower under cold-induced stress (Chaudhary et  al. 
2022). Expression patterns of SlWOX3a, 3b, 4, 5, and 13 
significantly changed under 1 h of treatment with NaCl, 
indicating that they may mediate NaCl-induced stress in 
tomato plants (Li et al. 2021).

JrWOX11 expression was unexpectedly induced after 
NaCl, ABA, and PEG treatments, indicating that it was 
highly responsive to salt- and osmotic-state-related stress. 
Overexpression of JrWOX11 enhanced AR formation in 
walnuts (J. regia L.) and abiotic stress tolerance in 84 K 
poplar (Chang et al. 2022). OsWOX11 bound to the cis-
regulatory “TTA ATG G/C” motif and directly activated 
the transcription of OsLOB16, OsASR3, and OsFRDL1. 
WOX11 functioned intricately with stress-related genes, 
such as OsWRKY24, OsTCP21, OsMTN3, OsERF922, and 
OsPP2C8 (Jiang et  al. 2017). Moreover, the AP2/ERF-
type gene  ETHYLENE RESPONSE FACTOR 3 (ERF3) 
was expressed during crown root development and 
interacted with WOX11. Both  ERF3 and WOX11 tar-
get the CK signaling-related type type-A ARABIDOPSIS 
RESPONSE REGULATORS (A-RR2) gene. CK and IAA 
regulated WOX11 expression, and ERF3 regulated the 
expression of CK- and auxin-related genes. ERF3 directly 
targeted RR2 through the ERF binding site “GCC GCC 
” in its promoter and positively regulated its expression 
during root development (Zhao et  al. 2015; Jiang et  al. 
2017). Moreover, WOX11 was induced upon exogenous 
treatment with CK and directly inhibited the expression 
of RR2. The expression of CK-responsive genes elevated 
in the crown root tips of wox11 mutants and WOX11 

played an essential role in modulating the CK-based sign-
aling and stress response (Jiang et al. 2017).

PagWOX11/12a regulated the genes involved in redox 
processes; PagWOX11/12a binds to the promoter of 
PagCYP736A12 and regulates its expression (Fig.  3). 
PagWOX11/12a-overexpression lines of poplar showed 
increased salt tolerance via ROS scavenging by directly 
regulating PagCYP736A12 (Wang et  al. 2021). SMALL 
AUXIN UP RNA36 (SAUR36) related to the early auxin-
inducible gene family encodes an auxin-responsive 
protein involved in AR formation in poplar via auxin 
signaling under salt stress. Moreover, PagWOX11/12a 
bound to the WOX-binding motif “TTA ATG G” located 
in the promoter of SAUR36, regulating its transcription, 
which increased during salt-induced stress (Liu et  al. 
2022). Overexpression or RNAi of PagWOX11/12a-
PagSAUR36 revealed that this module was essential for 
AR development during salt-induced stress via the IAA 
pathway (Liu et al. 2022). Further, identifying the regula-
tory mechanisms and target genes of the abiotic stress-
responsive WOXs may unravel novel signaling pathways 
and help better understand the molecular mechanisms 
involved in response to abiotic stress.

Expression and regulatory role of WOX TFs in response 
to drought
During floral inductive water deficit conditions in 
sweet orange (Citrus. sinensis), CsWUS, CsWOX6, and 
CsWOX11 were not expressed; CsWOX1, 3, 4, and 5 were 
slightly expressed at the beginning of water deficit (Khan 
et  al. 2021); and CsWOX13 was upregulated (Khan et  al. 
2022a). In tomato, SlWOX1, 3a, 3b, 4, 5, and 9 were upreg-
ulated under drought treatment for 3 h (Li et al. 2021).

In tea plants, CsWOX13, 14, and 15 were positively 
upregulated under drought- and cold-induced stress 
(Wang et  al. 2019). The AP2/ERF family member, 
CsRAP2.12 (Cs1g16690), encodes a TF that binds to the 
“GGC GGC C” cis-element in the promoter of CsWUS 
to regulate its expression. CsRAP2.12 was also upregu-
lated in sweet oranges under floral inductive water deficit 
conditions (Khan et al. 2021). WOX12, a close homolog 
of WOX11, is the primary regulator of AR formation in 
plants (Tvorogova et al. 2021). Very little is known about 
the identity of the downstream target genes of WOX TFs, 
as only a few studies have addressed the issue. For exam-
ple, in Poplar, PagWOX11/12a was involved in drought 
tolerance by regulating root development; PagERF35 
bound to the drosophila DNA replication-related ele-
ment  (DRE) motif (TAT CGA TA)  in the promoter of 
PagWOX11/12a and regulated its expression; and 
drought induced a higher expression of PagWOX11/12a 
and PagERF35 (Wang et  al. 2020). Identifying the 
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downstream targets of WOXs would be highly useful as 
it would help reveal the specific role of WOXs in the gene 
regulatory mechanism involved in abiotic stress tolerance 
in plants.

The WOXs overlap in abiotic stress responses and plant 
development markedly. Thus, overexpression in plants 
may offer various benefits. MdWOX13-1-encoded protein 
directly binds with the “TTA ATG G” element in the MdMn-
SOD promoter, increasing drought tolerance by scavenging 
ROS. The activities of the antioxidant enzymes SOD, POD, 

and CAT enhanced in transgenic apple calli than in the 
wild type (WT). Overexpression of MdWOX13-1 increased 
calli weight and promoted ROS scavenging, providing 
resistance against drought-induced stress (Lv et  al. 2023). 
OsWOX13 improved drought tolerance and promoted 
early flowering in rice (Minh-Thu et  al. 2018). OsWOX13 
directly bound to the cis-regulatory “ATT GAT TG” motif. 
The promoters of drought-responsive-TF encoding genes, 
such as OsDREB1A and 1F, contained the “ATT GAT TG” 
motif. In rice, the relative expression of OsDREB1A and 

Fig. 3 Effect of WUSCHEL-related homeobox (WOX) transcription factors in abiotic stress tolerance in trees. OsWOX11, Oryza sativa L. WOX; 
PagERF, Populus alba × P. glandulosa ETHYLENE RESPONSE FACTOR 3; MdWOX, Malus domestica WOX; CsRAP2.12 (Cs1g16690),  Citrus sinensis AP2/ERF; 
CLV, CLAVATA3; OsLOB16, Os LATERAL ORGAN BOUNDRY 16; OsASR3, abiotic stress responsive rice 3; OsFRDL1, Os FERRIC REDUCTASE DEFECTIVE 
LIKE 1; PagCY736A12, cytochrome P450 CYP736A12; SAUR36, SMALL AUXIN UP RNA 36; OsDREB1A, dehydration-responsive element-binding protein 
1A; MdMnSOD, Malus domestica manganese superoxide dismutase; CsWUS, WUSCHEL; CK, cytokinin
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OsDREB1F was positively upregulated during drought 
in OsWOX13-overexpressing plants, thereby enhancing 
drought tolerance. OsWOX13 also promoted early flower-
ing by activating OsMADS16 and Hd3a. The promoters of 
these genes consisted of the “ATT GAT TG” motif, indicat-
ing that OsWOX13 is involved in drought tolerance and flo-
ral induction (Minh-Thu et al. 2018).

Expression and regulatory role of WOX TFs in response 
to freezing and heat‑induced stress
WOXs also regulate the response of plants to tempera-
ture fluctuations. WOXs were upregulated under heat-
induced stress in pineapple (A. comosus L.). AcoWOX13 
was highly expressed at 24 h of heat treatment (Rahman 
et  al. 2017). High expression of osmotically responsive 
genes 9  (HOS9) encodes an HD-TF and shares a highly 
similar motif with Arabidopsis WUS and PRESSED 
FLOWER  (PRS). Arabidopsis hos9-1 mutants revealed 
an improved expression of cold-responsive genes. Cold 
susceptibility of hos9-1 mutants revealed a disruption of 
functions in those genes post-transcriptionally targeted 
by HOS9 or other than those targeted by C-repeat dehy-
dration-responsive element binding factor (CBF)-encod-
ing genes. CBFs control the hos9-1 mutation. HOS9 plays 
a significant role in cold tolerance by regulating the kind 
of genes but is not a part of the CBF pathway (Zhu et al. 
2004). In paper mulberry, the expression of five WOXs 
that may be essential in cambial development was sig-
nificantly induced after cold exposure (Peng et al. 2015). 
The OsWOX11-target genes and a NAC-TF-encoding 
gene (OMTN3) were associated with cold tolerance (Fang 
et al. 2014). OsTCP21 and OsERF922 were negative mod-
ulators of cold and salinity response in plants (Liu et al. 
2012). Recent studies have proposed WOXs as promising 
candidate genes for manipulating abiotic stress tolerance 
in plants that can be used for genetic improvement.

The expression patterns and regulatory role of WOX TFs 
in response to heavy metal‑induced stress
Cd is a toxic heavy metal that is highly soluble in water.

Cd is absorbed by the roots and translocated to the aer-
ial parts of plants via xylem loading, leading to physiolog-
ical, biochemical, and genetic damage (Song et al. 2017). 
The PsnWOX family plays a crucial role in  CdCl2-induced 
stress. The expression of PsnWOX13a and PsnWOX13b 
in Populus × xiaohei T.S. Hwang et Liang was positively 
regulated during the early stage of  CdCl2 treatment (Li 
et  al. 2022). WUS, CLV3, and WOX5 were involved in 
stem cell maintenance and control of SAM and RAM 
development in plants. Cd inhibited primary and regu-
lated lateral root growth in Arabidopsis. A short treat-
ment with Cd (100–150  µM) for 24  h altered the RAM 
and SAM. Cd-induced coexpression of WUS and WOX5 

and accumulation of CK played a significant role in SAM 
and RAM activity (Leonardo et al. 2021). Further, the role 
of stress-responsive WOXs and their regulation must be 
identified to understand the signaling pathway involved 
in abiotic stress tolerance.

Conclusions
The response of plants to various abiotic and biotic stresses 
critically depends on the transcriptional regulation of 
stress-responsive genes. In the last few years, significant 
progress has been made in identifying the TFs involved in 
the expression of genes relevant to stress in horticultural 
plants. To date, several members of the WOX family of TFs 
have been identified and functionally studied in plants. 
Increasing genome sequencing in plants and data avail-
ability has provided a basis for genome-wide identifica-
tion, screening, and expression analysis of genes involved 
in abiotic stresses. WOX homologs have species-specific 
functions in plants. However, the studies regarding the 
functional characterization of WOXs using genetic trans-
formations and in vitro regeneration in trees are limited. 
Previous studies have relied on the coexpression patterns 
of WOXs, which may affect the accurate determination of 
gene function. WOXs are involved in the transcriptional 
activation of stress-related genes. The regulation of their 
interactions and the identification of new partners require 
further investigation. Only a few overexpression and 
genetic mutation studies of specific genes have explored 
the variety of WOXs in different plant species. Significant 
evidence indicates the convergence of WOXs during abi-
otic stress tolerance in plants. WOXs play crucial roles in 
abiotic stress responses and are potent targets for modify-
ing abiotic stress tolerance in horticultural plants.

CRISPR/Cas9 technology is a valuable tool for genetic 
improvement in woody perennials (Khan et  al. 2022b), 
and targeted sequence insertion or deletion can modify 
the expression patterns of TFs. A functional comparison 
of the WOX orthologs in diverse plant species and its 
application in constructing WOX mutants by CRISPR/
Cas9-based genome editing will help achieve sustain-
able production goals. Notably, gene editing in horti-
cultural crops could encompass abiotic stress resilience 
and increased yield for food security. Here, we propose 
that WOXs synchronize the link between stress and 
metabolic regulation; the stresses included in this review 
involve WOXs as significant actors. However, the pre-
cise molecular process and equilibrium between defense 
and growth are mostly unclear. During an abiotic stress 
response, the WOXs and their target genes may lead to 
identifying novel signaling pathways. Finally, it dissects 
the functional role of WOXs in developing stress-resilient 
crops that can significantly improve agriculture crop pro-
duction under the climate change framework.
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