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Abstract 

This study examined long-term aerosol optical thickness (AOT) data from the Moderate Resolution Imaging Spec‑
troradiometer (MODIS) to quantify aerosol conditions on the Korean Peninsula. Time-series machine learning (ML) 
techniques and spatial interpolation methods were used to predict future aerosol trends. This investigation utilized 
AOT data from Terra MODIS and meteorological data from Automatic Weather System (AWS) in eight selected 
cities in Korea (Gangneung, Seoul, Busan, Wonju, Naju, Jeonju, Jeju, and Baengyeong) to assess atmospheric aero‑
sols from 2000 to 2021. A machine-learning-based AOT prediction model was developed to forecast future AOT 
using long-term observations. The accuracy analysis of the AOT prediction results revealed mean absolute error 
of 0.152 ± 0.15, mean squared error of 0.048 ± 0.016, bias of 0.002 ± 0.011, and root mean squared error of 0.216 ± 0.038, 
which are deemed satisfactory. By employing spatial interpolation, gridded AOT values within the observation area 
were generated based on the ML prediction results. This study effectively integrated the ML model with point-
measured data and spatial interpolation for an extensive analysis of regional AOT across the Korean Peninsula. These 
findings have substantial implications for regional air pollution policies because they provide spatiotemporal AOT 
predictions.
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1  Introduction
Atmospheric aerosols vary in size and are composed of 
a wide range of materials, including dust, soot, sea salt, 
and sulfate particles. These aerosols play an important 
role in Earth’s climate system, air quality, and environ-
mental processes, making them a topic of considerable 
scientific interest (IPCC 2021, 2023). The importance 
of atmospheric aerosols extends beyond climate change 

and human health considerations (Lelieveld et al., 2015). 
They influence atmospheric chemistry, contribute to 
cloud formation and precipitation, affect visibility, and 
play roles in nutrient transport in terrestrial and aquatic 
ecosystems. Many studies in this field continue to evolve, 
providing insights into the intricate interactions among 
aerosols, climate, and the environment, which are vital 
for understanding and addressing the complex chal-
lenges of global climate change and air quality manage-
ment (Li et al., 2022; Menon et al., 2008).

In addition, long-range transport of aerosols and 
photochemical reactions in the atmosphere have com-
plex effects (Chakraborty et al., 2021; Oh et al., 2015). 
Aerosol particles can remain in the atmosphere for a 
few minutes to more than a week, making it difficult to 
accurately quantify their spatiotemporal distribution. 
Comprehensive instrumental observation and analysis 
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of their chemical species and physical properties are 
necessary to identify the sources or origins of aero-
sols and assess their optical properties, as well as their 
impact on climate. In particular, physical quantities, 
such as atmospheric aerosol optical thickness (AOT), 
have long been used because they contain information 
on the total quantity and optical properties of particles 
in the atmosphere (Lee et al., 2009, 2022; Li et al., 2009). 
AOT can be derived using satellite- and ground-based 
observations. The representative ground-based obser-
vation network (AERONET) provides reliable continu-
ous AOT values from observation points worldwide 
(Holben et al., 1998), but the limited number of obser-
vation points makes regional analysis difficult. Satel-
lites have been launched for various purposes and are 
widely used to study spatiotemporal changes in aerosol 
properties (Lee et al., 2022; Li et al., 2021). Therefore, it 
is possible to estimate geospatial states and evaluate air 
quality levels using multi-platform monitoring.

To date, a large amount of data has been accumu-
lated through various Earth observation satellites, and 
there is a need to quickly reprocess and generate the 
final products (Lee et  al., 2022). Existing mathemati-
cal or physical data analysis methods have limitations 
due to the application of complex formulas and repeti-
tive calculation processes. Recent machine learning 
(ML) and deep learning (DL) techniques have enabled 
more efficient data analyses. Therefore, the demand for 
research using these techniques in the field of remote 
sensing is increasing and various algorithms are being 
developed (Adegun et  al., 2023; Murphy, 2012). How-
ever, spatial analysis techniques allow homogeneous 
values to be estimated from spatially inhomogeneous 
measurements, thereby enabling the evaluation of con-
tinuous information over a region of interest. Examples 
include spatial air quality estimation studies using spa-
tial analysis techniques (Wong et al., 2021; Jerette et al. 
2005), spatiotemporal analysis using reanalysis model 
data over long periods of time (Sun et  al., 2019), and 
spatiotemporal distribution and variation analysis of 
AOT using remotely sensed measurements (Lee, 2018; 
Torres et al., 2002; Yu et al., 2022).

In this study, long-term AOT data from Moder-
ate Resolution Imaging Spectroradiometer (MODIS) 
observations were analyzed to statistically quantify the 
aerosol status of the Korean Peninsula and obtain AOT 
observation data for areas without ground observation 
networks. To estimate the future status of regional aero-
sols, we applied time-series ML and spatial interpola-
tion techniques to evaluate the AOT prediction accuracy 
and future trends in the studied areas. These results are 
expected to serve as a guide for the current status and 
future outlook of aerosols on the Korean Peninsula.

2 � Data and methodology
Long-term satellite- and ground-based meteorological 
data provide important information regarding aerosol 
composition, emission sources, and transport pathways. 
Satellites provide global or regional data, whereas 
ground-based stations provide local, detailed insights. 
The integration of both datasets ensured a comprehen-
sive understanding of aerosol dynamics across various 
spatial scales. Satellites track changes in aerosol distribu-
tion and behavior over time by providing frequent snap-
shots of atmospheric conditions, whereas ground-based 
meteorological data capture short-term fluctuations and 
trends at a high resolution. Both satellite- and ground-
based observations assist in identifying aerosol emission 
sources, whether natural or anthropogenic. Combining 
data from multiple sources is crucial for understanding 
their impacts on air quality and climate. These data are 
essential for tracking the long-range transport of aerosols 
and for identifying pathways. Furthermore, integrated 
observations provide comprehensive data to improve the 
accuracy and reliability of atmospheric models, under-
standing aerosol dynamics, and predictive capabilities of 
atmospheric models.

The study area is a region between 20°N and 30°N lati-
tude and 120°E and 130°E longitude, and includes South 
Korea (Fig.  1). Eight points were selected in the study 
area as points of interest: Gangneung (128.89°E, 37.75°N), 
Wonju (127.94°E, 37.34°N), Seoul (126. 69°E, 37.57°N), Bae-
ngnyeong (124.71°E, 37.97°N), Jeonju (127.11°E, 35.84°N), 
Naju (126.90°E, 35.02°N), Busan (129.03°E, 35.10°N), and 
Jeju (126.53°E, 33.514°N). The population of each region 
is listed in the following order: Seoul (9,417,469) > Busan 
(3,295,760) Jeonju (665,884) > Wonju (361,810) > Gang-
neung (215,128) > Naju (114,785) > Baengnyeong (5000) 
(population data are available from the Korea Statistical 
Information Server [https://​kosis.​kr/​index/​index.​do]).

Figure 2 shows a flowchart of the data processing and 
analysis used in this study. In these data processing steps, 
satellite data and ground-based Automatic Weather Sys-
tem (AWS) observation data at eight selected locations 
were collected, and preprocessing was performed to 
modify the data for integrated analysis. The spatial col-
location between the two datasets was performed by 
selecting the satellite pixel data closest to the latitude and 
longitude of the AWS observations. The temporal match-
ing is done by averaging the AWS observations for ± 1 h 
before and after the satellite observation time. In the 
analysis step, we analyzed the AOT ranges according to 
local weather conditions to investigate the influence of 
weather characteristics on aerosols and compared the 
characteristics at each point. After the time-series fore-
casting model utilizing the ML technique was built and 
the performance accuracy of the model was verified, the 

https://kosis.kr/index/index.do
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future outlook for aerosols was predicted. Since the pre-
dicted values are for each selected point, a reanalysis was 
performed with gridded values across the observation 
area through spatial extrapolation.

2.1 � Data
Satellite observations provide information on envi-
ronmental changes and status over large areas and are 
therefore useful for obtaining data on the spatiotempo-
ral distribution and characteristics of aerosols. The satel-
lite data used in this study were the Terra MODIS level 2 
aerosol product (version 6.1) (Levy et al., 2017) and wind 
direction, wind speed, and relative humidity (RH) data 
from AWS observations. Table 1 lists the data used in this 

study, including Terra MODIS aerosol and AWS observa-
tion data.

The MODIS AOT data used in this study are among 
the most widely used satellite products. MODIS is a 
multipurpose sensor aboard the oldest Earth observa-
tion satellites currently in operation: the EOS-AM1 
(Terra) (launched December 18, 1999) and EOS-PM1 
(Aqua) (launched May 4, 2002). Among the various Earth 
observation satellites, MODIS measures multispectral 
radiation in the visible to long-wave infrared wavelength 
region. The most common aerosol-related output from 
satellite observations is AOT, which is the amount of 
radiation attenuated by aerosol particles in the atmos-
phere. In general, the AOT is determined by analyzing 

Fig. 1  Map of study area. Selected eight points of interest show as red circles (Gangneung [128.89°E, 37.75°N], Wonju [127.94°E, 37.34°N], Seoul 
[126.69°E, 37.57°N], Baengnyeong [124.71°E, 37.97°N], Jeonju [127.11°E, 35.84°N], Naju [126.90°E, 35.02°N], Busan [129.03°E, 35.10°N], and Jeju 
[126.53°E 33.514°N])

Fig. 2  Schematic diagram of data processing flow for AOT status analysis and time-series machine learning technique. The AWS, WD, WS, and RH 
stand for ground-based Automatic Weather System, wind direction, wind speed, and relative humidity, respectively
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the radiative transfer process of sunlight-reflected light 
in the visible region, which can be retrieved using Eq. (1).

where ρTOA , ρAer , ρRay , and ρSfc are the reflectances 
observed by the satellite sensor at the top of the atmos-
phere, atmospheric aerosols, molecules in the atmos-
phere, and ground surface, respectively. T0 and TS are the 
atmospheric transmittances corresponding to the path 
from the target point observed by the satellite to the Sun 
and the satellite, respectively. rh is the reflectivity of the 
atmospheric hemisphere. � and τ represent wavelength 
and AOT, respectively. Basically, the AOT is determined 
from ρAer acquired by deducting the molecular and sur-
face reflectance terms from ρTOA . According to Eq.  (1), 
satellite-observed radiance is strongly controlled by sur-
face reflectance and atmospheric transmission. Therefore, 
the AOT can be inversely calculated using background 
images (such as the clearest images with very high atmos-
pheric transmittance) or dark surface reflectance in spe-
cific channels (such as near-infrared channels in seawater 
and blue and red channels in areas with dense vegetation) 
to remove (or minimize) the effects of surface reflection 
and atmospheric transmission. Current MODIS aero-
sol retrieval methods of “Deep Blue” and “Dark Target” 

(1)ρTOA(τ , �) = ρAer(τ , �)+ ρRay(p, t, �)+
T0 τgas, � · TS τgas, � · ρSfc(�)

1− ρSfc(�) · rh(τ , �)

use the concept of background image and dark surface, 
respectively (Hsu et  al., 2006; Levy et  al., 2013; Remer 

et al., 2005). This study used Terra MODIS Level-2 aero-
sol products (codename: MOD04, version 6.1) with a spa-
tial resolution of 10 km for nadir observations. To obtain 
the spatiotemporal coincidence of satellite and ground 
observations, the satellite data were averaged over a 
10 km radius centered on the ground observation point. 
The ground observation data for the period closest to the 
satellite overpass time were then used.

2.2 � ML
After conducting a statistical analysis of the AOT and 
weather conditions at each location, the ML technique 
was used to characterize the time-series changes and 
estimate future predictions. The AOT and meteoro-
logical data observed over a long period comprise a 
series of observations arranged in chronological order. 
A time-series analysis assumes that the prediction 
of future values depends on variables observed in the 
past. In Fig. 3, the architecture of AOT prediction using 
the ML model is shown. The challenge in prediction 
using ML is to build a prediction model that generalizes 

Table 1  List of the parameters, resolution, and duration of satellite and AWS data used in the study

Instrument Parameters Resolution Period Source

Terra/MODIS Aerosol optical thickness (AOT) 1–2 times/day, 10 km2/
pixel

2000–2021 https://​ladsw​eb.​
modaps.​eosdis.​nasa.​
gov/

Automatic Weather System 
(AWS)

Wind speed (WS), wind direction (WD), 
relative humidity (RH)

Hourly 2000–2021 https://​data.​kma.​go.​kr

Fig. 3  Machine learning architecture for AOT prediction. The input data is the multi-dimensional time-series observations for each geographical 
location, and a machine learning model is performed to produce predicted values over time

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://data.kma.go.kr
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well to new or nonlinear data. Overfitting is a serious 
problem that can occur if the model is too complex or 
if it fits the training data too closely. Generally, regu-
larization is used to prevent overfitting; however, it has 
limitations in multi-dimensional datasets. To reduce 
overfitting, a generalized linear model (GLM) (Fried-
man et al., 2010; Liboschik et al., 2017) was used in the 
ML model. The GLM estimates via penalized maximum 
likelihood, which uses recursive coordinate descent to 
analyze and predict data by iterating until the objec-
tive function is optimized. The GLM for modeling dis-
crete time-series data is shown in Eq.  (2) (Bosowski & 
Manolakis, 2017).

where discrete time-series data Yt with t ∈ ℕ, the condi-
tional mean E(Yt |Ϝt − 1) from discrete time-series data, 
for example, λt and t ∈ ℕ. g: R+  → R is the link func-
tion and g̃: N0 → R is a transformation function, a vector 
parameter η = (η1, …, ηr)T. g(�t) is a linear predictor and 
the regression can be used for the past time response 
variables defined as P = {i1, … ip} and i is integer 0 < i1 
… < ip < ∞, with p ∈ N0. In Eq.  (2), the conditional mean 
for discrete time-series data represents the expected 
value of the response variable given a set of predictor 
variables and the model parameters. The GLM frame-
work extends the linear regression model to handle non-
normal distributions and non-constant variance, making 
it suitable for analyzing various types of data, including 
discrete outcomes.

The MODIS AOT data observed from 2000 to 2020 were 
divided into training and testing datasets at 10-year time 
steps. The training and test datasets comprised 80% and 
20% of the input data, and the test data were used to esti-
mate the prediction accuracy. The optimal model was then 
used to predict the AOT for the next 24 months. An accu-
racy analysis of the forecast results for each location was 
performed to evaluate the forecast accuracy of the models 
for predicting the AOT. This process involves the funda-
mental assumption that a model with a small error is suita-
ble for predicting future values. To determine whether the 
model used was suitable for explaining AOT, we analyzed 
the performance of the model using the Mean Absolute 
Error (MAE), Mean Square Error (MSE), Mean Absolute 
Percentage Error (MAPE), Bias, and Root MSE (RMSE), as 
shown in Eqs. (3)–(7). Therefore, the optimal model had 
the lowest MAE, MSE, MAPE, Bias, and RMSE, indicating 
that it had the best predictive capability.

(2)
g(�t) = β0 +

∑p

k=1
β0˜g

(

yt−ik

)

+

∑q

l=1
αl g

(

�t−jl

)

+ η
TXt

(3)MAE =
1

n

∑n

i=1

∣

∣yi − ŷi
∣

∣

where y is the observed value; ŷ is the predicted value; 
and n is the total number of data points.

2.3 � Spatial analysis
In the previous section, methods for analyzing the cur-
rent aerosol situation at a selected point and predict-
ing future aerosol changes were described. However, 
these analytical methods cannot generate results in 
areas where data are not available due to the absence 
of observation equipment or loss of data. Therefore, 
to analyze the AOT values of points where observa-
tions could not be obtained, the results were generated 
from spatial modeling using the kriging technique. To 
evaluate the AOT values at given points where ground 
observations do not exist, spatially interpolated AOT 
values were estimated based on the AOT values pre-
dicted using ML for 2021–2022 in the previous 
section.

Kriging is a technique that uses weighted linear com-
binations to make predictions about data in space using 
Eq.  (8). The weights in kriging are determined as a 
function of distance, such that the error between the 
predicted and actual values is minimized. In kriging, var-
iograms are used to represent the spatial autocorrelation.

where 
′

Z and Z represent the predicted unobserved and 
measured values, respectively, where N is the num-
ber of points to be predicted. �i is a weighting factor. 
Kriging uses a variogram to represent the spatial auto-
correlation. A variogram is a measure of the squared 
difference between data points separated by a certain 
distance, which indicates the similarity between data 
points.

(4)MSE =
1

n

∑n

i=1

(

yi − ŷi
)2

(5)MAPE =
100

n

∑n

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

(6)Bias =
1

n

∑n

i=1

(

ŷi − yi
)

(7)RMSE =

√

1

n

∑n

i=1

(

yi − ŷi
)2

(8)
′

Z (s0) =
∑n

i=1
(�i · Z(si))

(9)2γ

(

′

h

)

=
1

n

∑n

i=1

{

z(Ui)− z(Ui + h)
}2
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where z(Ui) and z(Ui + h) are values at a given point in 
time and at distance h. n is the number of pairs at dis-
tance h.

3 � Result
3.1 � Status of atmospheric aerosols on the Korean 

Peninsula
To analyze the regional aerosol distribution, MODIS 
AOT data observed over 22  years (2000–2021) were 
divided into three bins using a probability density func-
tion. Fig. 4 shows a comparison of the probability density 
functions for the AOT observations at each point. The 
level of AOT in each location was categorized into three 
clusters, with low-level AOT locations, including Gang-
neung, Jeju, and Busan, showing similar distributions. 
Seoul had the highest AOT distribution. The remaining 
locations had a moderate AOT distribution. Accordingly, 
the AOTs at each point can be categorized according to 
their probability distribution characteristics.

The bins were classified into three categories as 
low AOT (mean-σ < AOT ≤ mean), moderate AOT 
(mean < AOT ≤ mean + σ), and high AOT (mean + σ < AOT). 
Table 2 summarizes the statistical breakdown of the MODIS 
AOT data for the study points. The average AOT value for 
all points of interest ranged from 0.471 ± 0.427, with maxi-
mum and minimum values of 0.633 ± 0.591 for Seoul and 
0.362 ± 0.312 for Gangneung. The mean and standard devia-
tion values at each point varied widely, which may have been 
due to the combined effects of emission sources, weather 
conditions, and terrain. A study by Pyo et al. (2021) showed 
that the contributions of aerosols from outside Seoul and 
Gangneung were high, mainly due to westerly winds, at 67% 

and 83%, respectively. Thus, it is necessary to analyze the 
differences in AOT values in the remaining regions due to 
changes in weather conditions, such as wind direction and 
wind speed.

Atmospheric particles can change their physical prop-
erties and chemistry depending on the weather con-
ditions. It is well known that wind conditions play an 
important role in the transport and dispersion of air 
pollutants. Wind patterns significantly influence the dis-
tribution and concentration of atmospheric aerosols. 
Fig.  5 shows wind rose plots as a function of the three 
AOT categories. The RH directly affects the hygroscopic 
growth of particles, which can change their size or refrac-
tive index and affect their optical properties (Gassó et al., 
2000; Hegg et  al., 2002; Markowicz et  al., 2003). These 
mechanisms affect the optical properties of aerosol par-
ticles and, as a result, cause changes in the measurement 
of AOT (Bian et al., 2009). However, these relations can 
vary depending on a variety of environmental factors 
and aerosol types; therefore, more precise experiments 
and analyses are required to generalize the observations 
to specific regions or conditions. To estimate the asso-
ciation between AOT and RH, the average RH ranges at 
three different AOT levels in each study area were ana-
lyzed. Fig. 6 shows boxplots of the RH distribution versus 
the AOT distribution at each point.

The results of analyzing the meteorological conditions 
using the three AOT bins at each location were as fol-
lows. First, westerly winds are the predominant winds in 
Gangneung, but the AOT tends to increase when north-
ern or eastern winds prevail, as shown in Fig. 5a. Inter-
estingly, the easterly winds (wind direction ranging from 

Fig. 4  Probability density distribution of AOT over Gangneung, Wonju, Seoul, Baengnyeong, Jeonju, Naju, Busan, and Jeju during 2000–2021
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20 to 90°) accounted for 4.6% for low AOT, 13.5% for 
moderate AOT, and 22.5% for high AOT cases, respec-
tively. Gangneung faces mountains to the west and the 
coast to the east. Certain weather conditions can cause 
atmospheric stagnation, and complex terrain, includ-
ing mountains and oceans, can cause inversions. In par-
ticular, easterly winds blowing landward from the ocean 
can increase moisture and salt from the sea surface and 
increase the production of sea salt particles. Thus, east-
erly winds contribute to atmospheric stagnation and 
transport sea salt particles, thereby affecting aerosol 
loads in the local atmosphere. The complex interac-
tions between meteorological and geographical factors 
determine the magnitude of these effects, emphasizing 
the need for a comprehensive understanding of regional 
atmospheric dynamics. Fig. 6a shows that mean RH val-
ues in Gangneung are 43.68 ± 15.72%, 54.77 ± 16.39%, and 
58.38 ± 16.12% related to the low, moderate, and high 
AOT categories, respectively. These results indicate that 
the AOT in Gangneung increased as the RH increased, 
and the higher the contribution of the east wind, the 
higher the AOT value.

In Fig. 5b, the frequency distribution of observed wind 
direction in Wonju showed largest values of 45.3% and 
54.7% for east and west winds, respectively. In addition, 
it was found that the AOT increased as the southwesterly 
winds increased. This process can lead to an influx of air 
pollutants from neighboring metropolitan areas. Inter-
estingly, the frequency of southwest winds increased by 
9.9% for low AOT, 13.9% for moderate AOT, and 17.6% 
for high AOT cases. In contrast, winds from the north-
east and east lowered the AOT. Wind direction ranged 
from 50 to 90° accounted for 26.9% of low AOT, 18.9% 
of moderate AOT, and 15.2% of high AOT cases, respec-
tively. In Fig. 6b, the mean RH values are 57.80 ± 12.04% 
in the low AOT, 61.80 ± 11.35% in the moderate AOT, 

and 65.64 ± 10.02% in the high AOT conditions. Sum-
marizing the observations in Wonju, the AOT increased 
with increasing RH, and the wind direction increased 
with increasing contribution from the southwest wind.

The prevailing winds in Seoul are westerly, with approx-
imately 65.5% of the total observations being highly influ-
enced by atmospheric aerosols from the west (Fig.  5c). 
Higher AOTs in Seoul were associated with southwest-
erly winds, with the frequency of southwesterly winds 
increasing to 2.9% for low AOT, 7.0% for moderate AOT, 
and 13.0% for high AOT. In addition, RH by AOT bin in 
Fig. 6c was 51.96 ± 11.11% at low AOT, 58.77 ± 10.94% at 
moderate AOT, and 63.18 ± 10.74% at high AOT. Thus, 
the AOT tended to increase as the RH and/or southwest 
wind increased in Seoul.

Baengnyeong, the westernmost island of South Korea, 
experiences a variety of weather conditions. The AOT 
increased as the RH and the contribution of the southerly 
and easterly winds increased, as shown in Fig. 5d. South-
erly winds increased from 4.8% at low AOT to 13.7% at 
high AOT, which means that an approximately three 
times increase in the frequency of southerly winds is 
associated with an increase in AOT. Eastern winds rang-
ing from 90 to 110° increased from 7.6% for low AOT to 
15.1% for high AOT. Fig. 6d shows the AOT and RH val-
ues for Baengnyeong. RH was 62.19 ± 13.30% at low AOT, 
69.52 ± 15.07% at moderate AOT, and 73.78 ± 13.94% at 
high AOT.

Jeonju and Naju are small cities located in the south-
western part of the Korean Peninsula, where high RH 
and westerly winds contribute to a high AOT (Fig.  5e, 
f ). In Jeonju, the westerly and southeasterly winds were 
associated with increased AOT. Wind frequencies for 
the westerly winds were 10.1% (low AOT), 18.4% (mod-
erate AOT), and 23.2% (high AOT), respectively. How-
ever, in Naju, the increase and decrease in AOT were 
reversed under the southwest and northeast wind con-
ditions. In detail, the wind frequencies were 21.6% in 
the northeast and 74.2% in the southwest. In Fig. 6e, the 
mean RH values in Naju were 59.13 ± 11.36% at low AOT, 
63.32 ± 11.59% at moderate AOT, and 66.80 ± 10.52% at 
high AOT. Similarly, the mean RH values in Jeonju were 
61.07 ± 11.36% at low AOT, 64.66 ± 11.59% at moderate 
AOT, and 68.62 ± 10.52% at high AOT as shown in Fig. 6f.

As a port city located in the southeastern part of the 
Korean Peninsula, the AOT in Busan was found to 
increase with an increase in southerly winds, whereas an 
increase in northwesterly winds was associated with a 
decrease in AOT (Fig. 5g). Under high AOT conditions, 
the frequency of northwesterly winds was 6.5%, but the 
frequency of southerly winds increased to 44.8%. In addi-
tion, the maximum frequency values for wind were found 
in the north (16.5%) and west winds (13.6%) under low 

Table 2  List of the number of data and average and standard 
deviation of AOT by region

a Total number

Site Number of 
data (n)

Mean (m) Standard 
deviation 
(σ)

m − σ m + σ

Gangneung 3712 0.362 0.312 0.050 0.674

Seoul 3150 0.633 0.591 0.042 1.224

Busan 3581 0.389 0.333 0.056 0.721

Wonju 3964 0.504 0.544 0.010 1.044

Naju 3419 0.553 0.458 0.100 1.010

Jeonju 3525 0.506 0.490 0.016 0.996

Jeju 3326 0.417 0.299 0.108 0.716

Baengnyeong 2959 0.406 0.392 0.014 0.798

Average a27,636 0.471 0.427 0.050 0.898
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Fig. 5  Distribution of wind direction by three AOT categories over Gangneung, Wonju, Seoul, Baengnyeong, Jeonju, Naju, Busan, and Jeju 
during 2000–2021
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AOT conditions. Fig. 6g shows that mean RH values were 
48.72 ± 14.749% at low AOT in Busan, 61.22 ± 13.56% at 
moderate AOT, and 68.41 ± 12.35% at high AOT.

Finally, Jeju, an island in the southern part of the 
Korean Peninsula, tended to have higher AOTs owing 
to increased prevailing northeastern winds, as shown in 

Fig. 6  Boxplots of relative humidity (%) by three AOT categories (low: mean-σ < AOT ≤ mean, medium: mean < AOT ≤ mean + σ, high: 
mean + σ < AOT)
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Fig.  5h. Under high AOT conditions, the frequency of 
northwesterly wind was 33% at maximum. In addition, 
the lower the AOT value, the greater the frequency of 
southerly winds. Fig. 6h shows that mean RH values were 
62.24 ± 11.03% at low AOT, 65.41 ± 12.46% at moderate 
AOT, and 67.73 ± 11.64% at high AOT.

3.2 � Aerosol prediction with ML
In the previous chapter, the current status of the atmos-
phere, using long-term observed MODIS AOT data and 
meteorological data, explained a variety of AOT distribu-
tions, and meteorological conditions were found at each 
location. In aerosol-related research, it is important to 
obtain information about aerosols in places other than 
aerosol observation points and to make predictions using 
long-term observations of aerosols and trend informa-
tion. The ML technique was used to achieve this goal. As 
an example, the model used input data with AOT data 
observed from 2011 to 2020 at eight locations, as shown 
in Fig.  1. Data from 2011 to 2018 and 2019–2020 were 
used as the training and testing data, respectively. Accu-
racy was estimated using the test dataset. Figs.  7 and 8 
show the ML results of the AOT time series at the eight 
study sites.

The metrics of bias and RMSE were used to evalu-
ate the prediction performance of the ML model. 
Table  3 summarizes the performance results of 
the ML model for eight sites. The validation indi-
ces were MAE, MSE, MAPE, bias, and RMSE, with 
lower values indicating relatively low error levels. 
The average values of the validation indices for all 
points are MAE = 0.152 ± 0.025, MSE = 0.048 ± 0.016, 
MAPE = 77.325 ± 10.889%, Bias =  − 0.002 ± 0.011, and 
RMSE = 0.216 ± 0.038, respectively. Relatively low vali-
dation indices were found in Gangneung, Busan, Jeju, 
and Baengnyeong. These locations are mainly close 
to the ocean, and thus have low AOT levels. In con-
trast, the validation indices were relatively high in 
larger cities, such as Seoul, Wonju, and Jeonju. The 
size range of the inputs in the ML model can affect 
the forecast results (Ahsan et  al., 2021; Shrestha & 
Mahmood, 2019). The data scale can directly affect 
the performance of the forecasting model. If the mag-
nitude range of the input data is small, the model 
attempts to predict small variations in the data, and 
if the magnitude range of the input data is large, the 
model attempts to predict large variations in the data. 
In other words, a model trained with large-magnitude 
range data will not have difficulty predicting highly 
variable data, but a model trained with small-magni-
tude range data will have difficulty. Our results indi-
cate that as the observational ranges of the MODIS 

AOT values over the model period increased, the fore-
cast accuracy decreased.

In addition, the standard deviations of the model inputs 
and predicted values were compared. This was verified 
using the F-test (or the ratio of variances test), where the 
ratio approached one if the variances of the two datasets 
were not significantly different. In this result, the standard 
deviation of the inputs is 0.431 ± 0.112, and the standard 
deviation of the predictions is 0.175 ± 0.044. The F statis-
tic is 0.166 ± 0.017, which means that the variance of the 
predicted results is within approximately 34% of the input 
values, indicating a narrow error band. Consequently, 
the RMSE values were smaller than the standard devia-
tions of the actual observations for all regions. Therefore, 
the accuracy of the model predictions was considered 
sufficient. After ensuring the accuracy of the model per-
formance, AOT predictions from 2021 to 2022 were 
performed. Forecast results show mean RMSE and bias 
are 0.033 ± 0.012 and 0.036 ± 0.022 which is less than the 
standard deviation of the observations, which is accurate 
enough to make AOT predictions from 2021 to 2022.

3.3 � Spatial analysis of aerosol distribution
After accurately estimating the AOT prediction at the 
eight selected points, the predicted AOT values were 
acquired for each location. However, these predicted 
values are limited to point locations and cannot be esti-
mated over large areas. Thus, AOT values within the 
study area were estimated using the kriging spatial 
interpolation method. This technique was achieved by 
applying a spatial Gaussian distribution model with a res-
olution of 0.01° at both the latitude and longitude.

Figure  9 shows spatially interpolated AOT map by 
using the ML model and MODIS observations at eight 
selected locations. Full-covered MODIS AOT maps are 
also shown as the gridded at 0.1° within the study area of 
interest. Compared with that of 2021, the predicted AOT 
data for 2022 showed decreases of 10.5%, 2.9%, 8.3%, 
5.3%, 7.1%, 8.5%, 10%, 6.8%, and 7.4% at sites of Gang-
neung, Wonju, Seoul, Baengnyeong Island, Naju, Jeonju, 
Busan, Jeju, and the national average, respectively. Gener-
ally, the higher the spatial resolution of the observations, 
the more accurate the predictions because the kriging 
technique is a weighted linear extrapolation of the inter-
val values. Therefore, obtaining satellite-measured AOT 
values from a broader range of locations outside the 
study area may provide more accurate AOT predictions 
for the Korean Peninsula.

Figure  10 shows scatterplot illustrating the relation-
ship between spatially interpolated AOT and full MODIS 
AOT. The spatially interpolated AOT data represent two 
distinct datasets are from the dataset used in Fig. 8. Two 
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scatterplots are overlaid with the linear regression lines 
affirming the strength of the linear association between 
the variables. Derived linear regression equations are 
y = 1.33x − 0.07 (r = 0.87) and y = 1.18x − 0.04 (r = 0.88). 
The correlation coefficients (r) indicate a strong posi-
tive linear relationship between the two variables. This 
suggests that as the independent variable increases, the 

dependent variable tends to increase as well, and vice 
versa. A comparison of the modeled and MODIS AOTs 
shows RMSE = 0.08 and bias = 0.02, confirming that these 
results are within the prediction error presented earlier. 
Again, the scatterplot with the regression line demon-
strates the close alignment of the data points with the 
predicted values.

Fig. 7  Machine learning analysis results of AOT for Gangneung, Wonju, Seoul, and Baengnyeong. Data periods used for training (2011–2018), 
testing (2019–2020), and prediction (2021–2022) are shown with different colors of backgrounds
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4 � Summary and conclusion
Column aerosol observation data contain information 
on the total amount and optical properties of aerosol 
particles in Earth’s atmosphere, which is important for 
research on aerosol composition, emission sources, and 
transport. The current status of atmospheric aerosols in 
Korea was estimated using long-term satellite-observed 
AOT data from Terra MODIS and meteorological data 

from AWS. The main conclusions are summarized as 
follows:

First, AOT levels were analyzed in eight selected cit-
ies (Gangneung, Wonju, Seoul, Baengnyeong Island, 
Jeonju, Naju, Busan, and Jeju) in Korea using MODIS 
AOT data. The mean and standard deviation results 
were 0.362 ± 0.312 (Gangneung), 0.544 ± 0.504 (Wonju), 
0.633 ± 0.591 (Seoul), 0.406 ± 0.392 (Baengnyeong), 

Fig. 8  Machine learning analysis results of AOT for Naju, Jeonju, Busan, and Jeju. Data periods used for training (2011–2018), testing (2019–2020), 
and prediction (2021–2022) are shown with different colors of backgrounds
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0.553 ± 0.458 (Naju), 0.506 ± 0.49 (Jeonju), 0.389 ± 0.333 
(Busan), and 0.419 ± 0.299 (Jeju), with the highest values 
in Seoul and the lowest values in Jeju.

Second, the AOT was classified into three bins, 
i.e., low AOT (avg—σ < AOT ≤ avg), moderate AOT 
(avg < AOT ≤ avg + σ), and high AOT (avg + σ < AOT) 
at the eight regions. Wind direction, wind speed, and 
humidity were evaluated for each of the three AOT bins. 

At each location, the relation between AOT and mete-
orological parameters exhibited distinct characteris-
tics. Gangneung, located in the northeast of the Korean 
Peninsula, has experienced an increase in AOT owing to 
the double frequency of easterly winds. Southwesterly 
winds in Wonju and Seoul were strongly associated with 
increased AOT, with the intensity increasing from 6.8 
to 12.9% from moderate to high AOT. On Baengnyeong 
Island, the east and south winds typically increase by 
2.6 and 1.5 times as the AOT increased, demonstrat-
ing distinctive features from locations at similar lati-
tudes. Jeonju and Naju experienced increased AOT due 
to the frequency of westerly and southerly winds further 
south. The AOT increase in Jeju, the southernmost island 
region, was caused by an increase in westerly winds 
(approximately 3.3 times) and a reduction in southerly 
winds (43%).

In addition, regional-scale AOT values for the entire 
Korean Peninsula were acquired by combining ML with 
a spatial interpolation method using satellite-observed 
AOT and meteorological observation data. A time-series 
forecasting model using a GLM was built for future AOT 
data. The RMSE was lower than the standard devia-
tion of the actual observations for all points in the test 

Table 3  Accuracy results for the site-specific time-series forecast 
models, including MAE, MSE, MAPE, Bias, and RMSE

Site MAE MSE MAPE (%) Bias RMSE

Gangneung 0.122 0.028 73.592  − 0.012 0.167

Seoul 0.189 0.068 86.201 0.013 0.261

Busan 0.126 0.033 63.078 0.001 0.180

Wonju 0.144 0.040 85.684  − 0.007 0.201

Naju 0.151 0.050 68.513  − 0.011 0.225

Jeonju 0.174 0.062 71.101  − 0.018 0.249

Jeju 0.133 0.034 74.644 0.006 0.186

Baengnyeong 0.178 0.067 95.788 0.010 0.259

Average 0.152 0.048 77.325  − 0.002 0.216

Standard deviation 0.025 0.016 10.889 0.011 0.038

Fig. 9  Spatially interpolated AOT map in a and b 2021 and c and d 2022 by using a and d model estimated and b and e MODIS observations (black 
dots: selected eight locations of measurements). c and f MODIS AOT maps gridded at 0.1° within the study area of interest
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set, confirming that the trained prediction model had an 
acceptable level of prediction accuracy. Forecasting was 
conducted for a 24-month period between 2022 and 2023 
to determine the future outlook of AOT values, and the 
results showed a gradual increase. The spatially interpo-
lated AOT map showed that an accurate gridded AOT 
could be acquired with a higher spatial resolution over 
the study area. These outcomes could benefit regional air 
pollution policies.
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