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Abstract 

Using updated emission inventories can enhance the accuracy of air quality forecast models. Given China’s rapid eco‑
nomic growth and Korea’s geographical and meteorological position on the windward side of China, updating China’s 
emission inventory has become particularly crucial for Korea’s air quality modeling. This study aimed to develop 
an updated version of China’s Emission Inventory in Comprehensive Regional Emissions for Atmospheric Transport 
Experiments version 3 for the base year of 2019 (CREATEv3 (YR 2019)). To achieve this goal, we utilized the Chinese 
emission inventory of CREATEv3 for the base year of 2015 (CREATEv3 (YR 2015)) as a framework to incorporate the lat‑
est Chinese emission data from the Multi‑resolution Emission Inventory Model for Climate and Air Pollution Research 
for the base year of 2019 (MEIC COVID‑19 (YR 2019)) and update the inventory. The updated China’s annual emissions 
are now reflected in CREATEv3 (YR 2019), and the amounts are as follows: 132 Tg for CO, 21 Tg for  NOx, 8 Tg for  SO2, 7 
Tg for  PM2.5, 9 Tg for  NH3, and 28 Tg for volatile organic compound (VOC). By comparing previous Chinese emission 
inventories with the updated inventory developed in this study, it was found that  SO2,  NOx, VOC, and  NH3 emissions 
were decreased. Therefore, using the updated inventory seemingly reduces the impact of China’s fine dust on Korea. 
By comparing emissions by pollutant and region in China using CREATEv3 (YR 2019), it was found that regions 
with high emissions of targeted pollutants strongly correlated with major industries operating in those areas. This 
study is expected to provide insights into China’s emission changes in 2019 and support air quality forecasting.

Keywords Emission inventory, Air quality forecast, Comprehensive regional emission inventory for atmospheric 
transport experiment (CREATE), Multi‑resolution emission inventory model for climate and air pollution research 
(MEIC)

1 Introduction
Recently, there has been an increasing interest in and 
concern regarding the impact of air pollution on human 
health and the environment. To address this concern, 
the National Institute of Environmental Research has 
provided official air quality forecasts since August 2013, 
which have been published on its website (https:// 
www. airko rea. or. kr/ web/). Air quality forecasting in 
Korea utilizes numerical models to generate forecasts, 
and the final forecast level is determined by forecaster 
decisions, as described by Jang et  al. (2014). Lee et  al. 
(2016) analyzed the accuracy of the fine dust forecast 
from August 2013 to February 2014, which was the 
testing period for the fine dust forecast. The accuracy 
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of the entire period was found to be 71.8%. Among 
these results, the forecast accuracy for fine dust ana-
lyzed only for days with high concentrations was 33.3%. 
Bae et al. (2017) highlighted the issue that the level of 
pollution experienced by citizens and the forecast dif-
fer significantly. They emphasized the need for research 
to enhance the accuracy of air quality forecasts. To 
improve forecast accuracy, it is essential to enhance the 
accuracy of the air quality model, which depends signif-
icantly on emissions data, as noted by Lee et al. (2014). 
Thus, using the latest emission inventory as input data 
is critical for producing accurate air quality forecasts.

To forecast the air quality in South Korea, emission 
inventories from South Korea and neighboring coun-
tries are necessary. Comprehensive Regional Emission 
Inventory for Atmospheric Transport Experiment ver-
sion 1 for the base year of 2010 (CREATEv1 (YR 2010)) 
was developed by Woo et  al. (2020) and can be used 
for air quality modeling in South Korea. This inven-
tory included emissions of both anthropogenic and 
biogenic pollutants from the East Asian region and was 
created based on data from 2010. Additionally, CRE-
ATEv1 (YR 2010) was upgraded to create CREATEv3 
(YR 2015) (NIER, 2021), which updated the base year 
to 2015. Emission inventories for East Asia have been 
updated in various studies. For instance, the Korea-
United States air quality field campaign emission inven-
tory version 5 for the base year of 2016 (KORUSv5 (YR 
2016)) was jointly created in 2016 by the National Insti-
tute of Environmental Research and NASA based on 
CREATEv1 (YR 2010) to support international cooper-
ative air quality research observation (NIER, 2017). The 
Long-range Transboundary Air Pollutant in Northeast 
Asia for the base year 2017 of (LTP (YR 2017)) emission 
inventory was created for the base year of 2017 based 
on CREATEv1 (YR 2010) (NIER, 2019) with a collab-
orative agreement between Korea, China, and Japan 
(NIER, 2019).

Continuous updates to the emission inventory of East 
Asia are necessary to improve the accuracy of South 
Korea’s air quality models. This research was conducted 
to update China’s emission inventory, which is rel-
evant for air quality modeling in South Korea. This is 
because South Korea, which is located geographically 
and meteorologically downwind of China, is significantly 
affected by air pollutants from China (NIER, 2017; Kim 
et  al., 2023). In particular, rapid economic growth and 
urbanization have occurred in China, resulting in sig-
nificant emission changes. Recently, as various air quality 
improvement policies have been implemented, air pollut-
ants have rapidly reduced (Li et  al., 2021). Therefore, it 
is necessary to use emission inventories that reflect these 
circumstances in air quality modeling.

To prepare an emission inventory for China that ade-
quately reflects the current circumstances, the following 
process was carried out. Firstly, China’s emission data 
that best reflect the recent emission tendencies in China 
were investigated to update China’s emissions in CRE-
ATEv3 (YR 2015). The latest inventory for China was 
created using the Multi-resolution Emission Inventory 
Model for Climate and Air Pollution Research (MEIC, 
n.d.; http:// meicm odel. org/ lang= en). In their research, 
Zheng et  al. (2021) assessed China’s emission changes 
due to the COVID-19 lockdown. The researchers col-
lected activity data from 2019 and 2020, comparing 
emissions before and after the lockdown. The resulting 
emission inventory based on 2019 data is referred to as 
the Multi-resolution Emission Inventory Model for Cli-
mate and Air Pollution Research for the base year of 
2019 (MEIC COVID-19 (YR 2019)), representing nor-
mal emissions without the impact of lockdown measures. 
This inventory was selected for our research. It was con-
sidered more suitable than the MEIC emission Inven-
tory for the base year 2020, which excludes the impact of 
COVID-19. The structure of MEIC COVID-19 (YR 2019) 
differed from that of CREATEv3 (YR 2015); therefore, a 
matching process was performed to reflect recent emis-
sions. Consequently, the latest Chinese emission inven-
tory, CREATEv3 (YR 2019), was developed.

Next, the updated Chinese emissions in CREATEv3 
(YR 2019) were reviewed from several aspects. First, 
CREATEv3 (YR 2019) and MEIC COVID-19 (YR 2019) 
were compared to ensure the latest data was appropri-
ately reflected. CREATEv3 (YR 2019) was also compared 
with previous emission inventories, including CREATEv3 
(YR 2015), KORUSv5 (YR 2016), and LTP (YR 2017), to 
review changes in emission trends in China. During this 
process, the emissions of each pollutant were analyzed 
for each region in China using CREATEv3 (YR 2019) to 
understand the emission characteristics of each pollut-
ant according to the industrial structure of each region in 
China. Second, emissions for the air quality model input 
data were created using CREATEv3 (YR 2019). Sparse 
Matrix Operator Kernel Emissions for Asia (SMOKE-
Asia; Woo et  al., 2012) were used for this purpose. The 
researchers then identified whether CREATEv3 (YR 
2019), which was created as a result of this research, 
could be used as the input data for an air quality predic-
tion model.

2  Data collection
2.1  Northeast Asia emission inventories based on CREATE
In this study, several previously established emission 
inventories for East Asia were used, including CREATEv3 
(YR 2015), KORUSv5 (YR 2016), and LTP (YR 2017). The 
focus of this research was to update China’s emissions in 
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CREATEv3 (YR 2019) with the base year of 2019, using 
the emissions data from CREATEv3 (YR 2015) with the 
base year of 2015. After the update, the newly established 
inventory was compared with previous inventories to 
analyze the characteristics of recent emission changes in 
China.

CREATEv3 (YR 2015) is a comprehensive emission 
inventory that includes both anthropogenic and biogenic 
emissions for 13 different types of pollutants:  CO2,  CH4, 
 NOx,  N2O,  PM10,  PM2.5,  SO2, volatile organic compound 
(VOC),  NH3, CO, BC, OC, and mercury. An inventory is 
a bottom-up approach that identifies and distinguishes 
approximately 300 different types of emission sources 
and fuels; updates to relevant databases (DBs), such as 
activity rates, can be easily performed. CREATEv3 (YR 
2015) has been utilized as an emission inventory in vari-
ous modeling studies, including air quality modeling 
(Woo et al., 2020). The total emissions of each pollutant 
in each sector in China, calculated using CREATEv3 (YR 
2015), are shown in Table 1.

KORUSv5 (YR 2016) was updated with 2016 emis-
sions based on CREATEv1 (YR 2010) (NIER, 2017), 
and numerous studies have been conducted by Korean 
and international researchers on its application in mod-
eling and aerial observation data analysis (e.g., Choi 
et  al., 2019; Simpson et  al., 2020). The LTP (YR 2017) 
collected emission data in 2017 under the agreement 
of South Korea, China, and Japan, and these emissions 

data were applied to analyze the long-distance disper-
sion of air pollutants (NIER, 2019).

2.2  Recent emission inventories for China
MEIC is an emission inventory for China developed 
and managed by Tsinghua University. The MEIC pro-
vides an emission inventory for eight major air pollut-
ants, CO,  SO2,  NOx, NMVOC,  NH3,  PM2.5, OC, and 
BC, including more than 700 emissions sources since 
1990 in China. The emissions data were categorized 
into five large sectors: power, industry, residential, 
transport, and agriculture.

To assess the effect of the recent COVID-19 lock-
down, MEIC COVID-19 (Zheng et  al., 2021) has been 
created and provided. To compare emissions in 2020 
during the lockdown to those in the previous year, 
activity data from 2019 and 2020 were collected to esti-
mate anthropogenic emissions in China and create an 
emission inventory. In this research, the MEIC COVID-
19 (YR 2019) emission data were utilized as the emis-
sion inventory before the lockdown to reflect the 
normal emissions characteristics, and China emissions 
in CREATEv3 (YR 2015) were updated accordingly. 
Table  2 presents the emissions of various pollutants 
from each emission source in China based on the MEIC 
COVID-19 (YR 2019).

Table 1 CREATEv3 (YR 2015) emissions by sector and pollutant in China (unit: Gg/year)

Pollutant\sector CO SO2 NOx VOC NH3 PM10 PM2.5

Power 567 3274 4645 11,519 82 1103 568

Industry 92,837 14,404 9349 624 2317 5489 2742

Residential 43,636 3503 936 4435 83 3851 3539

Transport 15,717 243 8371 2487 40 725 610

Agriculture 806 ‑ ‑ 408 11,272 843 305

Other 12,077 45 1034 2508 1107 1944 1771

Total 165,640 21,468 24,335 21,981 14,901 13,956 9535

Table 2 MEIC COVID‑19 (YR 2019) emissions by sector and pollutant in China (unit: Gg/year)

Pollutant/sector CO SO2 NOx VOC NH3 PM2.5

Power 5178 1345 3893 58 ‑ 229

Industry 46,455 4481 9009 18,343 272 2913

Residential 54,794 2494 803 4675 319 2817

Transport 22,159 117 7228 3970 47 436

Agriculture ‑ ‑ ‑ ‑ 8,323 ‑

Total 128,586 8437 20,933 27,046 8962 6390
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3  Methods
3.1  Research framework
Figure  1 presents an overview of the study. The main 
focus of this research was to update the CREATEv3 (YR 
2015) emission inventory to CREATEv3 (YR 2019) by 
incorporating the latest Chinese emission inventory data 
from MEIC COVID-19 (YR 2019). A matching process 
was performed to accommodate structural differences in 
MEIC COVID-19 (YR 2019) and CREATEv3 (YR 2015). 
In order to validate the accuracy of the updated emission 
inventory, the China emission inventory in CREATEv3 
(YR 2019) was compared to the actual China emission 
data in 2019 as represented by MEIC COVID-19 (YR 
2019). Additionally, the emissions in China from CRE-
ATEv3 (YR 2019) were compared with those from the 
previously established CREATEv3 (YR 2015), KORUSv5 
(YR 2016), and LTP (YR 2017) to review recent emission 
changes. During this process, the emissions of each pol-
lutant in each region of China were analyzed to identify 
the emission characteristics according to the industrial 
structure of each region. In addition, the CREATEv3 
(YR 2019) emission inventory was used as input data for 
SMOKE-Asia to create Chemical Transport Model-ready 
(CTM-ready) emissions. This allows the inventory to be 
used in atmospheric models to predict air quality.

3.2  Developing China emissions for CREATEv3 (YR 2019)
The method used to update CREATEv3 (YR 2015) with 
emissions from MEIC COVID-19 (YR 2019) is simple 
and straightforward. CREATEv3 (YR 2015) calculated 
emissions considering both anthropogenic and bio-
genic emissions, but CREATEv3 (YR 2019) calculated 
emissions targeting only anthropogenic emissions. The 
projection factors are calculated based on the ratio of 

emissions in MEIC COVID-19 (YR 2019) to the base 
inventory of CREATEv3 (YR 2015) for each pollutant, 
region, and sector. These factors were multiplied by the 
emissions from CREATEv3 (YR 2015) for each pollutant, 
region, and sector, generating an updated CREATEv3 
(YR 2019) inventory. This method ensures that the lat-
est emission information is incorporated into the inven-
tory while maintaining consistency with the previous 
inventory.

P.FP,R,S : projection factors of pollutants, regions, and 
sectors.
Em(MEIC COVID−19(Yr.2019))P,R,S : Controlled emissions of 

each pollutant, region, and sector [MEIC COVID-19 (YR 
2019)].
Em(CREATEv3(Yr.2015))P,R,S : Controlled emissions of each 

pollutant, region, and sector [CREATEv3 (YR 2015)].
Several factors should be considered before using 

Eq. (1). As shown in Table 3, the two inventories differed 
slightly in terms of included regions, emission source sec-
tors, and pollutant types. Regarding the difference in the 
regional distinction, MEIC COVID-19 (YR 2019), unlike 
CREATEv3 (YR 2015), does not include Hong Kong and 
Macao. Additionally, the Tier 1 emission source category 
in MEIC COVID-19 (YR 2019) does not include an “other 
sector,” and the  PM10 emissions are not provided. After 
reviewing the emissions for each sector in Tables 1 and 
2, it was found that only  NH3 emissions were included 
in the emissions from the agricultural sector in MEIC 
COVID-19 (YR 2019), and  NH3 emissions were not pro-
vided in the power sector. Therefore, the emissions omit-
ted in MEIC COVID-19 (YR 2019) must be included, and 

(1)P.FP,R,S =

Em(MEIC COVID−19(Yr.2019))P,R,S

Em(CREATEv3(Yr.2015))P,R,S

Fig. 1 Research flow chart
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the emission source classification sectors must be unified 
with CREATEv3 (YR 2015).

Region gap filling The emissions from Hong Kong and 
Macao were included in CREATEv3 (YR 2015) but not 
in MEIC COVID-19 (YR 2019). To calculate the emis-
sions from Hong Kong and Macao in CREATEv3 (YR 
2019), the projection factor (rate of change in emissions) 
of Guangdong Province, which is adjacent to Hong Kong 
and Macao, was used. Specifically, the projection factor 
obtained from the increase in Guangdong emissions in 
MEIC COVID-19 (YR 2019) compared to the emissions 
in Guangdong in CREATEv3 (YR 2015) was applied to 
the emissions from Hong Kong and Macao in CREATEv3 
(YR 2015) to calculate their emissions in CREATEv3 (YR 
2019).

Sector reclassification To address the issue of inconsist-
ent classification systems caused by the absence of the 
“other sector” category in MEIC COVID-19 (YR 2019), 
the sources of emissions classified as “other sector” in 

CREATEv3 (YR 2015) were reclassified by referring to 
Tier 2, which provides a more detailed classification sys-
tem. In CREATEv3 (YR 2015), the “other sector” was 
reclassified into power, industry, transport, residen-
tial, agriculture, and other sectors, as shown in Table 4. 
Of note, the “solvent-use sector” was added as a new 
category.

Emissions from the newly added solvent-use sector were 
not included in MEIC COVID-19 (YR 2019), so they were 
estimated by referring to MEICv1.2 2010, the 2010 emis-
sion inventory of MEIC. As summarized in Table 5, the 
data provided by the MEIC homepage do not separately 
distinguish VOC emissions due to solvent use. However, 
in a study relevant to an identical inventory (Li et  al., 
2017), the solvent-use sector was distinguished. Based on 
the two reference datasets, the ratios of VOC emissions 
from solvent use in the industrial and residential sectors 
were determined to be 0.45 and 0.12, respectively. These 
ratios were applied to MEIC COVID-19 (YR 2019) emis-
sions to calculate emissions from the solvent-use sector. 

Table 3 Summary of CREATEv3 (YR 2015) and MEIC COVID‑19 (YR 2019) format

a The emissions from Hong Kong and Macau were calculated by grouping them into regions

Inventory Region Sector Pollutant

Tier1 Tier2

CREATEv3 (YR 2015) 32 Province Power, industry, 
transport, residential, 
agriculture, other

186 Sub-sector CO,  SO2,  NOx, VOC,  NH3,  PM2.5, PM10

MEIC COVID-19 (YR 2019) 31 Province (w/o. Hong 
Kong and Makau)a

Power, industry, 
transport, residential, 
agriculture

‑ CO,  SO2,  NOx, VOC,  NH3,  PM2.5

Table 4 Reclassification of CREATEv3 (YR 2015) “other sector”

Sector Assigned Sector

Tier1 Tier2 Description

Other D_GASST Gasoline distribution—service stations Industry
D_REFDEP Gasoline storage & distribution (excl. gas stations) Industry
D_REFDEP_S Gasoline storage & distribution (excl. transport sector) Industry
EXD_LQ Extraction of oil (incl. delivery to terminals) Industry
MSW_FOOD Food and organic waste in MSW Residential
MSW_OTH Waste composition: fraction of other waste in MSW Residential
MSW_PAP Waste composition: fraction of paper in MSW Residential
MSW_PLA Municipal plastic waste Residential
MSW_TEX Waste composition: fraction of textile in MSW Residential
MSW_WOOD Waste composition: fraction of wood in MSW Residential
OTH_NH3_EMISS Other  NH3 emissions Agriculture
OTHER_VOC Other NMVOC emissions Solvent use
WASTE_AGR Agricultural waste burning Agriculture
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Table 6 provides an example of a VOC emission reclas-
sification procedure in Beijing. To calculate the emissions 
for the industrial and residential sectors, the original 
emissions were multiplied by their respective VOC ratios 
(0.55 and 0.88) obtained from Table  7. This resulted in 
emissions of 160.5 Gg/year and 38.9 Gg/year, respec-
tively. The resulting value for the solvent-use sector was 
135.9 Gg/year. The same process was then applied to all 
other regions to recalculate VOC emissions by sector and 
to compute VOC emissions in the solvent-use sector.

Pollutant gap filling First, in the case of  PM10 emis-
sions, emissions were estimated in CREATEv3 (YR 2015) 
but not in MEIC COVID-19 (YR 2019). Therefore, the 
 PM10 emissions of CREATEv3 (YR 2019) were calculated 
by applying the ratio of change of  PM2.5 emissions for 
each region and sector that existed in both CREATEv3 
(YR 2015) and MEIC COVID-19 (YR 2019) to the  PM10 
emissions of CREATEv3 (YR 2015).

Second, the  NH3 emissions not included in the power 
sector in MEIC COVID-19 (YR 2019) were estimated 
based on the value presented in the study by Jang et al. 

(2020). The authors of this study reported that  NH3 was 
emitted as a byproduct of  NOx reduction when selec-
tive catalytic reduction (SCR) and selective non-catalytic 
reduction (SNCR) systems were installed in the power 
sector to reduce  NOx emissions. They also presented the 
 NH3/NOx ratios of coal-fired and non-coal-fired power 
plants to determine the  NH3 emissions in the power sec-
tor of China. Therefore, in the present study,  NH3 emis-
sions of the power sector were calculated by distinguish-
ing coal and non-coal fuels sector-wise and applying 
the appropriate regional  NH3/NOx ratio based on fuel 
classification.

The MEIC COVID-19 (YR 2019) only considered  NH3 
emissions for the agricultural sector, as shown in Table 2. 
However, CREATEv3 (YR 2015) included CO, VOC, 
 PM10, and  PM2.5, in addition to  NH3 for the agricultural 
sector, as shown in Table 3. Furthermore,  SO2 and  NOx 
emissions could be calculated through sector reclassifica-
tion in CREATEv3 (YR 2015), as described in Sect. 3.2.2. 
Table  7 illustrates the pollutants and Tier 2 sectors for 
the agricultural sector in CREATEv3 (YR 2015), indicat-
ing that fugitive emissions from livestock and agricultural 

Table 5 VOC emissions by sector in MEIC v1.2 2010 (unit: Gg/year)

a VOC emissions due to solvent use among total VOC emissions in a sector
b The difference in the total VOC emissions between the two references was 54.2 Gg/year. This discrepancy is thought to be due to the methodology of Li et al. (2017) 
for estimating sectoral VOC emissions, which may have included some solvent-use emissions from sectors beyond the industrial and residential sectors

Sector\reference Agriculture Industry Power Transport Residential Solvent use

MEIC Website (A) 0 14,286 (100%) 66 2,352 5703 (100%) ‑

Li et al. (2017) (B) 0 7878 (55.15%) 66 2,352 5014 (87.92%) 7151
Difference (A-B)a 0 6407 (44.85%) 0 0 689 (12.08%) b

Table 6 Reclassification of Beijing VOC emissions in MEIC COVID‑19 (YR 2019) (unit: Gg/year)

Agriculture Industry Power Transport Residential Solvent use

Original ‑ 291.1 (100%) 1.1 83.3 44.2 (100%) ‑

Difference ‑ 130.5 (44.85%) 0 0 5.3 (12.08%) -
After reclassification ‑ 160.5 (55.15%) 1.1 83.3 38.9 (87.92%) 135.9

Table 7 Sub‑sectors and pollutants of the agricultural sector in CREATEv3 (YR 2015)

Sector\pollutant Tier1 Tier2 Description

NH3 + PM (NH3, PM10, PM2.5) Agriculture AGR_BEEF Fugitive emissions from livestock (other cattle)

AGR_COWS Fugitive emissions from livestock (dairy cattle)

AGR_PIG Fugitive emissions from livestock (pigs)

AGR_POULT Fugitive emissions from livestock (poultry)

PM  (PM2.5,  PM10) STH_AGR Storage & handling of agricultural crops

All pollutants (CO, SO2, NOx, VOC, NH3, 
PM10, PM2.5)

WASTE_AGR Agricultural waste burning
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waste burning also emit pollutants other than  NH3. 
Therefore, the ratio of  NH3 emission changes between 
CREATEv3 (YR 2015) and MEIC COVID-19 (YR 2019) 
can help estimate China’s emissions of all pollutants in 
the agricultural sector for CREATEv3 (YR 2019).

3.3  Developing CTM‑ready emission using CREATEv3 (YR 
2019)

In this study, CREATEv3 (YR 2019) was used as the input 
data for SMOKE-Asia to create CTM-ready emissions. 
The SMOKE (Sparse Matrix Operator Kernel Emissions), 
developed by the United States Environmental Protec-
tion Agency (U.S. EPA), is a powerful and flexible emis-
sion processing system. It was selected as the base system 
for developing an Asian emissions processing system, 
SMOKE-Asia. SMOKE-Asia was developed according 
to the emission inventories and the processing of surro-
gates based on Asia. The differences between SMOKE 
and SMOKE-Asia are in temporal allocation and chemi-
cal speciation profiles regionalized using resources from 
Asia-based studies. SOMKE-Asia is a model for gen-
erating emission input data suitable for the CTM, such 
as Comprehensive Air quality Model with extensions 
(CAMx, n.d.; https:// www. camx. com/) and Community 
Multiscale Air Quality (CMAQ, n.d.; https:// www. epa. 
gov/ cmaq). This approach was developed specifically 
for emission treatment in Asia. Figure  2 shows a flow-
chart of the SMOKE-Asia process used in this study. 
First, the CREATEv3 (YR 2019) emission inventory was 

transformed into the one record per line (ORL) data 
format required by SMOKE-Asia (UNC, 2020). The 
transformed emission inventory was then input into 
SMOKE-Asia, and the spatial allocation of emissions for 
each emission source, temporal allocation of emissions, 
and chemical speciation of emissions were processed in 
parallel. Finally, the allocation results were merged to 
create the CTM-ready emissions.

The framework for emissions processing is shown 
in Table 8. A spatial allocation process of air pollutant 
emissions was applied to each region, yielding gridded 
emissions that were used in the air quality models. The 
latest overseas geographical data were reflected to pro-
ceed with a more precise spatial allocation to construct 
the database. Temporal allocation is the process of 
temporal allocation of the inventory, written as annual 
emissions. To consider emission trends in China over 
time, the latest data from China were used to create a 
temporal allocation profile. In this research, processed 
emissions were created on an hourly basis. Chemi-
cal speciation is a process used to generate input data 
considering photochemical reactions during air qual-
ity modeling. Among the chemical mechanism meth-
ods, the carbon bond mechanism (CB6; Yarwood et al., 
2010) and AEROsol module version 7 (AERO7; Sonn-
tag et  al., 2014) chemical species classification were 
applied, and chemical speciation factors were created 
for the recent model input. Some of the profiles pro-
vided as basic values in SMOKE were enhanced using 

Fig. 2 SMOKE‑Asia processing steps

https://www.camx.com/
https://www.epa.gov/cmaq
https://www.epa.gov/cmaq
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previous research. In addition, the modeling domain 
information used to generate emissions per grid, such 
as grid resolution, number of grids, projection type, 
projection units, projection alpha value projection beta 
value, and projection gamma value, is shown in Table 8.

4  Results
4.1  Emission inventory comparisons
The emissions from China in CREATEv3 (YR 2019) 
established in this research can be categorized into 32 
provincial regions, six Tier 1 emission sources (power, 
industry, transport, residential, agriculture, and solvent 
use), and 186 sub-sectors, with emissions for pollutants 
CO,  SO2,  NOx, VOC,  NH3,  PM10, and  PM2.5; Table 9 sum-
marizes the total emissions of each pollutant. CO showed 
about 131.6 Tg  y−1,  SO2 8.5 Tg  y−1,  NOx 21.0 Tg  y−1, VOC 
27.7 Tg  y−1,  NH3 9.0 Tg  y−1,  PM10 10.8 Tg  y−1, and  PM2.5 
6.9 Tg  y−1. Further, the emissions by sectors, according to 
CREATEv3 (2019), indicated that CO accounted for the 
greatest emissions in the residential sector at 54.8 Tg  y−1, 
 NH3 accounted for the greatest emissions in the agricul-
tural sector at 8.3 Tg  y−1, and in the industrial sector,  SO2 
accounted for 4.5 Tg  y−1,  NOx 9.0 Tg  y−1, VOC 10.2 Tg 
 y−1,  PM10 6.0 Tg  y−1, and  PM2.5 2.9 Tg  y−1.

Table  10 shows the pollutant emissions in China 
according to CREATEv3 (YR 2019), which was developed 
in this study, and previous emission inventories. Figure 3 
shows the same data as bar graphs. Additionally, the val-
ues within parentheses in Table 10 refer to the ratios of 
other inventories based on CREATEv3 (YR 2019). China’s 
emissions contained in CREATEv3 (YR 2019) can be vali-
dated through comparison with MEIC COVID-19 (YR 
2019) as the current emissions, and the recent emission 
changes in China can be considered by comparing with 
inventories with different reference years.

Table 8 Emission modeling framework

a Yarwood et al. (2010)
b Sonntag et al. (2014)

Anthropogenic emission processor SMOKE-Asia (SMOKE v4.5)

Modeling domain (spatial resolution) Grid resolution (number 
of grid): 27000 × 27000 
(174 × 128)
Projection types: lamber 
conformal conic
Projection units: meters
Projection alpha value: 30’ N
Projection beta value: 60’ N
Projection gamma value: 
126’ E
X‑direction projection center 
in units of the projection: 
126’ E
Y‑direction projection center 
in units of the projection: 38’ N
X origin in units of the projec‑
tion: − 2,349,000
Y origin in units of the projec‑
tion: − 1,728,000

Temporal resolution Hourly

Chemical mechanism VOC:  CB6a

PM2.5:  AEROb

Table 9 CREATEv3 (YR 2019) emissions by sector and pollutant in China (unit: Gg/year)

CO SO2 NOx VOC NH3 PM10 PM2.5

Power 5255 1347 3910 59 83 434 224

Industry 46,462 4493 9024 10,215 272 5999 2916

Residential 54,807 2495 805 4113 320 3073 2818

Transport 22,218 118 7254 3984 48 512 437

Agriculture 2849 14 13 536 8325 761 462

Solvent use ‑ ‑ ‑ 8,831 ‑ ‑ ‑

Total 131,591 8466 21,006 27,737 9047 10,780 6858

Table 10 China’s emissions by pollutant from various inventories (unit: Tg/year)

CO SO2 NOx VOC NH3 PM10 PM2.5

CREATEv3 (YR 2019) 131.6 (100%) 8.5 (100%) 21.0 (100%) 27.7 (100%) 9.1 (100%) 10.8 (100%) 6.9 (100%)

MEIC COVID‑19 (YR 2019) 128.6 (98%) 8.4 (99%) 20.9 (100%) 27.1 (98%) 9.0 (99%) ‑(‑) 6.4 (93%)

LTP (YR 2017) 115.5 (88%) 9.4 (111%) 17.1 (81%) 23.8 (86%) 10.1 (111%) 8.8 (81%) 6.7 (97%)

KORUSv5 (YR 2016) 141.9 (108%) 13.4 (158%) 22.5 (107%) 28.4 (103%) 10.3 (113%) 10.8 (100%) 8.1 (117%)

CREATEv3 (YR 2015) 165.6 (126%) 21.5 (253%) 24.3 (116%) 22.0 (79%) 14.9 (164%) 14.0 (130%) 9.6 (139%)
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Comparing Chinese emissions estimated by CREATEv3 
(YR 2019) and MEIC COVID-19 (YR 2019) revealed that 
the two models yielded similar results. The CREATEv3 
(YR 2019) emissions showed the following differences 
compared to MEIC COVID-19 (YR 2019) emissions: 
3.0 Tg  y−1 for CO, 0.1 Tg  y−1 for  SO2, 0.1 Tg  y−1 for  NOx, 
0.6 Tg  y−1 for VOC, 0.1 Tg  y−1 for  NH3, 10.8 Tg  y−1 for 
 PM10, and 0.5 Tg  y−1 for  PM2.5. The differences between 
the emissions estimated by CREATEv3 (YR 2019) and 
MEIC COVID-19 (YR 2019) were primarily attributable 
to several factors, including the addition of emissions to 
account for the omission of data from Hong Kong and 
Macao, the inclusion of other pollutants (excluding  NH3) 
resulting from fugitive dust and agricultural waste burn-
ing in the agricultural sector,  NH3 emissions generated as 
a byproduct of  NOx reduction via SCR and SNCR in the 
power sector, and an additional calculation of  PM10 emis-
sions. In summary, although we identified differences due 
to additional emissions and correction of omitted emis-
sions, CREATEv3 (YR 2019) seemed to well reflect MEIC 
COVID-19 (YR 2019).

In Crippa et al. (2023), most pollutants except VOC and 
NH3 show a decreasing trend in China since 2010. LTP 
(YR 2017) is a government-driven regional collaborative 
framework between Korea, China, and Japan. The China’s 
inventory for LTP (YR 2017) is believed to apply more 
stringent emissions control measures from Chinese gov-
ernment. For this reason, emissions from LTP (YR 2017) 
appeared lower than those from research-driven invento-
ries, such as MEIC COVID-19 (YR 2019) and CREATEv3 
(YR 2019). And then, compared to LTP (YR 2017), one of 
the currently used emissions inventories, Table 10 shows 
smaller emissions for pollutants other than  SO2 and  NH3 

relative to CREATEv3 (YR 2019). Conversely, compared 
to KORUSv5 (YR 2016), all pollutants showed higher 
emissions than those indicated by CREATEv3 (YR 2019); 
among the pollutants,  SO2 showed 1.5 times higher emis-
sions. The emissions from CREATEv3 (YR 2015) showed 
higher emissions than CREATEv3 (YR 2019) in all pol-
lutants excluding VOC and about 2.5 times higher emis-
sions for  SO2.

4.2  Characteristics of China’s emissions
Figure 4 shows the emissions of each pollutant in the 32 
Chinese provinces. The pollutant emissions from each 
region in China were compared, and the characteris-
tics of each pollutant emission according to the regional 
industrial structure were considered. In the figure, the 
region showing high emissions of CO,  SO2,  NOx, VOC, 
 NH3,  PM10, and  PM2.5 is Shandong. This region has the 
most abundant mineral resources, such as petroleum 
and natural gas, and is rich in basic resources for indus-
trial development, such as petrochemicals, textiles, and 
machinery. Additionally, it includes large amounts of 
arable land, ranking first and second as major agricultural 
production areas in China. Therefore, Shandong, where 
heavy chemical industry and agriculture developed, 
showed high emissions for all pollutants at 9.16 Tg  y−1 of 
CO, 0.75 Tg  y−1 of  SO2, 2.02 Tg  y−1 of  NOx, 2.45 Tg  y−1 of 
VOC, 0.63 Tg  y−1 of  NH3, 0.85 Tg  y−1 of  PM10, and 0.53 
Tg  y−1 of  PM2.5.

CO emissions are generated in urban areas with heavy 
road traffic, industrial plants that handle chemicals, 
power generation, organic synthesis, indoor kitchens, and 
district heating facilities. Therefore, as shown in Fig. 4(a), 
Hebei and Shandong, where the industrial sector 

Fig. 3 Comparison of emission inventories (CO emissions scale: divided by 10)
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Fig. 4 CREATEv3 (YR 2019) China emissions region‑wise (unit: Gg/year)
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(particularly the steel industry) is well-developed because 
of the abundance of mineral resources such as coal and 
petroleum, and Guizhou Province, a major energy base in 
the south, which is rich in mineral resources such as coal 
and bauxite, showed high emissions at 11.16 Tg  y−1, 9.16 
Tg  y−1, and 8.23 Tg  y−1, respectively. Additionally, these 
regions showed the highest emissions in the industrial, 
residential, and transport sectors, whereas emissions 
from domestic cooking stoves in the residential sector 
accounted for at least 30% of the total CO emissions.

As shown in Fig.  4(b),  SO2 emissions in Shandong, 
Guizhou, Hebei, and Inner Mongolia were 0.75 Tg  y−1, 
0.69 Tg  y−1, 0.64 Tg  y−1, and 0.55 Tg  y−1, respectively. 
Fuels with high sulfur content, such as coal and heavy oil, 
have higher emissions with an increase in fuel use; there-
fore, the highest emissions were observed in Guizhou 
and Hebei, where the industry is well-developed, as well 
as Inner Mongolia and Shandong, whose industrial sec-
tor mainly consists of coal and power generation indus-
tries. Among the four regions, the highest emissions were 
observed in the industrial and power sectors. In Inner 
Mongolia, total  SO2 emissions seemed to be relatively 
high because of the large area (1,183,000  km2). However, 
it was found that emissions were relatively low at 0.0005 
Gg/year/km2. Shandong exhibited approximately 0.0108 
Gg/year/km2, while Hebei displayed around 0.0034 Gg/
year/km2, indicating higher emissions compared to Inner 
Mongolia.

Figure 4(c) shows that  NOx emissions were highest in 
Shandong, Hebei, and Jiangsu at 2.02 Tg  y−1, 1.72 Tg  y−1, 
and 1.41 Tg  y−1, respectively. These three regions have 
active combustion and manufacturing processes with 
heavily trafficked; therefore, they all showed high emis-
sions from the industrial and transport sectors. However, 
the emissions per area were 0.0316 Gg/year/km2, 0.0091 
Gg/year/km2, and 0.0161 Gg/year/km2 from Shandong, 
Hebei, and Jiangsu, respectively. Furthermore, Beijing, 
as the center of transportation and capital city of China, 
at 0.0144 Gg/year/km2, showed higher emissions than 
Hebei, while showing similar emissions with Jiangsu.

VOC are generated and emitted using volatile organic 
matter rather than fuel combustion; therefore, they are 
generated during manufacturing in factories of petro-
chemicals, refineries, paint, and coatings, from storage 
tanks of petrol stations, and automotive paints and adhe-
sives. Thus, as shown in Fig. 4(d), Guangdong and Zheji-
ang, whose economies are dominated by light industries, 
and Jiangsu, where light industries account for at least 
50% of the total industrial production costs, showed the 
highest emissions as 2.18 Tg  y−1, 1.83 Tg  y−1, and 2.02 
Tg  y−1, respectively. In addition, in the case of emissions 
per area, the highest value was recorded in the Jing-
Jin-Ji region (Beijing-Tianjin-Hebei), which is severely 

industrialized and has a high population density. In par-
ticular, high emissions in this region were attributable 
to the industrial, solvent-use, transport, and residential 
sectors.

As shown in Fig.  4(e), the  NH3 generated during the 
decomposition of organic and chemical fertilizers or 
manure was high in Henan (the region with the highest 
wheat production in China), Sichuan (where grain pro-
duction, including rice and wheat, is high), and Shandong 
(whose agricultural sector is well-developed). Thus, all 
three regions showed the highest emissions in the agri-
cultural sector, with the highest emission being recorded 
in Henan at 0.78 Tg  y−1, followed by Sichuan at 0.66 Tg 
 y−1 and Shandong at 0.63 Tg  y−1.

PM2.5 is typically produced during fuel combustion 
owing to incomplete combustion or the presence of ash 
in the fuel; therefore, significant amounts are generated 
from solid fuels such as coal, heavy oil, or diesel fuel. 
Therefore,  PM2.5 is emitted directly from industrial facili-
ties, automobiles, heating, and energy sources. As shown 
in Fig. 4(f ), emissions were high in Shandong, Hebei, and 
Guizhou, these three regions showed the greatest emis-
sions from the industrial and residential sectors, and 
emissions were 0.53 Tg  y−1, 0.51 Tg  y−1, and 0.39 Tg  y−1, 
respectively. Beijing, the capital of China, showed high 
emissions due to traffic jams, industrial activity, and coal 
heating. Accordingly, emissions were primarily generated 
from industrial activities, such as steel and cement pro-
duction and coal-fired power plants in Hebei, which sur-
rounds Beijing.

4.3  CTM-ready emission results
CREATEv3 (YR 2019), established in this research, was 
used as the input data for SMOKE-Asia to construct the 
CTM-ready emissions data. Among the seven pollutants 
considered as CTM-ready emission data, the results for 
four pollutants, namely  SO2,  NOx, VOC, and  PM2.5, are 
shown in Fig. 5. The CTM-ready emissions results from 
applying the temporal distribution, spatial distribution, 
and speciation processes. Despite some differences, the 
CTM-ready emission results show a distribution simi-
lar to that of the regional emissions of CREATEv3 (YR 
2019), as shown in Sect. 4.2.

As shown in Fig. 5(a), in the case of  SO2 emissions, the 
Jing-Jin-Ji region showed high emissions, whereas emis-
sions from Inner Mongolia were low, unlike the regional 
emission results in Sect.  4.2, where the area was not 
accounted for. In Fig.  5(b),  NOx emissions, which were 
concentrated in the eastern region, are shown in a spe-
cific location where combustion from coal power plants 
was active. Figure 5(c) shows significant  PM2.5 emissions 
in the eastern region where Jing-Jin-Ji is located. The 
gridded emission map of VOC in Fig. 5(c) illustrates the 
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aggregate of values, converted into molar mass through 
the molecular weights of 19 distinct chemical species. 
This conversion is undertaken following the transition 
VOC into the format of the CB6 chemical species mecha-
nism so that it can be used in CTM. Figure  5(d) shows 
that emissions were high in the Eastern and Southern 
regions. Thus, the emissions of all the major pollutants 
 (SO2,  NOx, VOC, and  PM2.5) were high in the eastern 
region adjacent to South Korea. In particular, emissions 
from the industrial regions near Beijing and Shandong 
and regions near Shanghai (Yangtze River Delta) were 
significantly high.

5  Conclusions
This study aimed to update the emission input data for 
the air quality forecasting models used in South Korea. 
Specifically, this study focused on updating China’s 
emission inventory to the base year of 2019. The results 
were used to generate CTM-ready emissions for fore-
casting models. To achieve this, (1) the Northeast Asia 
emissions inventories that were previously used for air 

quality prediction models and China’s latest inventory 
were identified. CREATEv3 (YR 2015) China emissions 
were utilized as the reference inventory, and the latest 
emissions data of China, MEIC COVID-19 (YR 2019), 
was used to update and construct China emission 
inventory in CREATEv3 (YR 2019) with the base year 
of 2019. (2) While updating the emission inventory, dif-
ferences between the two inventories for each region, 
sector, and pollutant were comparatively analyzed. 
Based on this analysis, relative to the MEIC COVID-19 
(YR 2019) inventory, CREATEv3 (YR 2019) included 
additional emissions data from Hong Kong and Macao, 
reclassified the other sectors and solvent-use sector, 
and added emissions for other pollutants (excluding 
 NH3) in the agricultural sector,  NH3 emissions in the 
power sector, and  PM10 emissions. (3) A comparison 
was made between the CREATEv3 (YR 2019) emis-
sion inventory constructed in this study and previous 
inventories. (4) Additionally, in CREATEv3 (YR 2019), 
emissions for each pollutant were calculated for each of 
the 32 provinces and cities in China, and the emission 

Fig. 5 CTM‑ready emission results using CREATEv3 (YR 2019)
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characteristics were analyzed for each region and 
industry. (5) Finally, SMOKE-Asia was used to write 
the CTM-ready emission data and identify the emission 
characteristics for each major pollutant.

In CREATEv3 (YR 2019), established in this research, 
China’s emissions were categorized into 32 provincial 
regions and from six sectors, including power, industry, 
residential, transport, agriculture, and solvent use, and 
the emissions were computed for seven pollutants: CO, 
 SO2,  NOx, VOC,  NH3,  PM10, and  PM2.5. The total amount 
of emissions in China for each pollutant from CREATEv3 
(YR 2019) was 131.6 Tg  yr−1 for CO, 8.5 Tg  yr−1 for  SO2, 
21.0 Tg  yr−1 for  NOx, 27.7 Tg  yr−1 for VOC, 9.0 Tg  yr−1 
for  NH3, 10.8 Tg  yr−1 for  PM10, and 6.9 Tg  yr−1 for  PM2.5.

The constructed CREATEv3 (YR 2019) was compared 
with LTP (YR 2017) and KORUSv5 (YR 2016) as emis-
sion inventories previously used for air quality forecast 
models in China. First, the LTP (YR 2017) emissions were 
lower than those of CREATEv3 (YR 2019) for other pol-
lutant emissions, excluding  SO2 and  NH3. Additionally, 
KORUSv5 (YR 2016) emissions exceeded those of CRE-
ATEv3 (YR 2019) for all pollutants. Among them, a trend 
of decreasing emissions of  SO2,  NOx, VOC, and  NH3, 
which affect the secondary production of fine particulate 
matter, was identified. When CREATEv3 (YR 2019) was 
used as input data for air quality modeling in Korea, the 
emissions of precursors were seemingly reduced, leading 
to an expected decrease in China’s impact on fine par-
ticulate matter compared to that obtained using previous 
emissions data.

The results of comparing China’s emissions by pollutant 
for each region using CREATEv3 (YR 2019) showed that 
the regions where the target pollutants were abundantly 
emitted significantly correlated with the major industries 
in the corresponding region. Additionally, to support the 
current air quality forecast model, CREATEv3 (YR 2019) 
was used to create CTM-ready emission data as input 
data for the air quality model. The gridded CTM-ready 
emissions and the regional distribution of CREATEv3 
(YR 2019) showed slight differences owing to the appli-
cation of temporal, spatial, and chemical speciation pro-
cesses. However, they were similar overall. In addition, 
gridded CTM-ready emissions using the spatial alloca-
tion factor were found to consider the distribution of 
major emission sector concentration areas.

The use of CREATEv3 (YR 2019), which reflects recent 
changes in emissions in China, can potentially improve 
the accuracy of air quality forecasting models in Korea, 
leading to more reliable forecasts and supporting effec-
tive responses to changes in air quality. Future research 
is necessary to update the East Asian emission inventory 
to account for the latest emissions changes in these three 
countries following the COVID-19 pandemic.
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