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The role of innate immune cells 
as modulators of the tumor microenvironment 
in the metastasis and treatment of pancreatic 
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Abstract 

Pancreatic cancer is a highly aggressive disease, which is often diagnosed late. Consequently, metastasis is common 
among newly diagnosed patients, leading to a poor prognosis and high mortality rates. The tumor microenvironment 
of pancreatic cancer, which comprises pancreatic cancer cells, stromal cells, and immune cells, as well as a multitude 
of extracellular components, plays a pivotal role in cancer progression and metastasis. Conventional immunothera-
pies focused on targeting the adaptive immune response have achieved suboptimal outcomes in patients with pan-
creatic cancer. Thus, the focus has shifted toward targeting innate immune cells, which can infiltrate the pancreatic 
tumor and contribute to the development and maintenance of the immunosuppressive microenvironment to pro-
mote tumor growth and metastasis. This review focuses on the roles of innate immune cells and their interactions 
in the shaping of an immunosuppressive tumor microenvironment to promote the metastasis of pancreatic cancer. In 
addition, we review strategies that target innate immune cells to remodel the immunosuppressive tumor microenvi-
ronment and improve the prognosis of pancreatic cancer.
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Background
Despite decades of research, pancreatic cancer remains 
one of the most lethal cancers. In the U.S., the 5-year 
survival rate for pancreatic cancer is only 10%, which is 
primarily attributed to its aggressive nature and the late 
stage of diagnosis [1]. Pancreatic ductal adenocarcinoma 
(PDAC), the most common type of pancreatic cancer, 
is frequently diagnosed at the advanced stage after has 
metastasis occurred, which contributes to the high motil-
ity rates observed. PDAC is characterized by a highly 
immunosuppressive tumor microenvironment (TME), 
which lowers the efficacy of currently available immu-
notherapies. Thus, there is an urgent need to investigate 
how the TME contributes to PDAC development and 
metastasis,this information will help in the identification 
of potential targets to improve the outcomes of patients 
with PDAC.
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Immune cells play indispensable roles in tumor recog-
nition and eradication. However, tumors often develop 
mechanisms to evade immune surveillance and re-
educate immune cells to form an immunosuppressive 
TME, which is beneficial to tumor survival and pro-
gression. While residing in tissues, innate immune cells 
can be activated to participate in either tumoricidal or 
tumorigenic processes. Among these cells, neutrophils, 
macrophages, and dendritic cells (DCs), have been exten-
sively studied due to their high heterogeneity and plastic-
ity in the TME.

The TME of PDAC consists of tumor cells, stro-
mal cells, immune cells, and extracellular components 
(Fig.  1). Tumor cells, stromal cells, and immune cells, 
which include tumor-associated macrophages (TAMs), 
myeloid-derived suppressor cells (MDSCs), tumor-asso-
ciated neutrophils (TANs), regulatory T cells (Tregs), and 

DCs, secrete extracellular components. These extracellu-
lar components, such as the extracellular matrix (ECM), 
growth factors, and chemokines, are essential for main-
taining an immunosuppressive TME, which facilitates 
tumor progression and metastasis.

PDAC forms ‘cold tumors’, which are characterized by 
low effector T cell infiltration and immunogenicity. Thus, 
PDAC tumors respond poorly to currently available 
immunotherapies, which primarily focus on the action 
of adaptive immune cells such as T cells. Consequently, 
research focus is shifting toward the therapeutic poten-
tial of innate immune cells, which are considerably more 
abundant in the PDAC TME than adaptive immune cells 
[2]. This review briefly summarizes the roles of various 
innate immune cells in the PDAC TME. Specifically, we 
describe the mechanisms used by innate immune cells to 
contribute to PDAC metastasis and how they interact in 

Fig. 1  The tumor microenvironment of PDAC. The PDAC tumor microenvironment (TME) is characterized by desmoplasia and immunosuppression. 
Extracellular matrix proteins, including collagen and laminin, are secreted by pancreatic stellate cells (PSCs). In addition, the PDAC TME contains 
immunosuppressive cells such as tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells 
(MDSCs), dendritic cells (DCs), natural killer (NK) cells, cancer stem cells (CSCs), and cancer-associated fibroblasts (CAFs). Figure generated using 
Biorender
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the TME, before discussing the potential clinical implica-
tions of targeting these immune cells.

Innate immune cells in the PDAC TME
The unsatisfactory response of PDAC to immunotherapy 
can be attributed to the PDAC TME, which is character-
ized by immunosuppression and desmoplasia (the exces-
sive deposition of connective tissue). Tumor cells activate 
PSCs to promote fibrosis of the tissue surrounding the 
tumor. This creates a mechanical barrier around the 

tumor, limiting the infiltration of immune cells or expo-
sure to chemotherapeutic drugs [3, 4]. Cytokines, such 
as tumor growth factor-β (TGF-β) and fibroblast growth 
factor 2 secreted in the ECM, can differentiate fibroblasts 
into cancer-associated fibroblasts (CAFs), promoting 
desmoplasia in the PDAC TME [5]. In addition to PSCs, 
immune cells are crucial components of the immuno-
suppressive PDAC TME,their roles are discussed in the 
following sections. The interactions between innate 
immune cells and tumor cells are summarized in Fig. 2.

Fig. 2  Interaction between tumor and innate immune cells in the PDAC microenvironment. Interactions between tumor and tumor-associated 
macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and natural killer (NK) 
cells are depicted. Arrows depict interactions between tumor cells and each immune cell type. Image generated using Biorender
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TAMs
Macrophages are innate phagocytic cells, which have 
broad functions in the process of inflammation; they 
exist as a heterogeneous population with distinct func-
tional characteristics [6]. Macrophages are commonly 
classified as either the pro-inflammatory M1 type or 
the anti-inflammatory M2 type, which represent oppos-
ing extremes of a continuous functional spectrum [7]. 
Colony stimulating factor 1 (CSF-1), interleukin (IL)-4, 
and IL-13, which are abundant in the TME, promote the 
recruitment of monocytes and polarize TAMs toward 
the M2 type [8]. Thus, in solid tumors, including PDAC, 
TAMs have similar functions and characteristics to 
M2-type macrophages and their accumulation is associ-
ated with a poor prognosis [9–11]. However, the roles of 
TAMs appear to be more complex than initially thought. 
Several single-cell RNA-sequencing (scRNA-seq) stud-
ies have demonstrated that TAMs express a mixture of 
M1 and M2 markers in colorectal [12], liver [13], and 
renal [14] cancers. Another scRNA-seq study discov-
ered that TAMs in PDAC could be subdivided into two 
groups: the SPP1+TAMs and the C1QC+TAMs [15]. The 
SPP1+TAMs are enriched in genes involved in epithelial-
mesenchymal transition (EMT), glucose metabolism, 
and hypoxia, whereas the C1QC+TAMs are enriched in 
genes associated with the interferon (IFN) response and 
antigen presentation. Intriguingly, both the SPP1+ TAMs 
and C1QC+ TAMs also have an M2-like signature, which 
prevents them from being classified into the M1 or M2 
categories [15].

TAMs contribute to the immunosuppressive TME 
by secreting cytokines, chemokines, and enzymes, such 
as TGF-β, IL-10, prostaglandin E2 (PGE2), and argin-
ase-1 (Arg-1) [16]. For instance, the secretion of C–C 
chemokine ligand 5 (CCL5) and tumor necrosis factor-α 
(TNF-α) by TAMs induces pancreatic acinar-to-ductal 
metaplasia through NF-κB pathway activation [17]. 
TAMs polarized by tumor-secreted granulocyte mac-
rophage (GM)-CSF, inhibited CD8+ T cells in a pan-
creatic mouse model [18]. Moreover, TAMs have been 
shown to express high levels of C-X-C motif chemokine 
receptor 2 (CXCR2,these CXCR2+TAMs trafficked to 
the PDAC tumor site in response to the tumor-derived 
C-X-C motif ligand 8 (CXCL8), impairing the efficacy of 
anti-PD1 therapy [19]. The galectin-9-mediated activa-
tion of dectin-1 on TAM also leads to tolerogenic T cell 
program induction in PDAC [20].

MDSCs
Although their distribution and functions are still 
under debate, MDSCs are an important component 
of the PDAC TME [21]. MDSCs are a heterogene-
ous population of immature myeloid cells, which 

can be classified into two subtypes: granulocytic or 
polymorphonuclear (PMN-MDSCs) and monocytic 
(M-MDSCs) MDSCs. PMN-MDSCs are phenotypi-
cally and morphologically similar to neutrophils, with 
CD11b+Gr-1+Ly6GhighLy6Clow and HLA-DR−CD33+C
D11b+CD15+CD14− signatures in mice and humans, 
respectively. Meanwhile, M-MDSCs are related to mono-
cytes and have a CD11b+Gr-1+Ly6GlowLy6Chigh signature 
in mice and a HLA-DRlowCD11b+CD15−CD14+ signa-
ture in humans [22–24].

MDSCs help shape the immunosuppressive TME by 
suppressing CD4+ and CD8+ T cells, stimulating Tregs 
expansion, and promoting M2 phenotype polarization 
[25, 26]. Moreover, the TGF-β and IL-10 in the TME 
cause MDSCs to release reactive oxygen species (ROS), 
which promote oxidative stress and further impair T 
cell function [8, 27]. Interactions between MDSCs and 
activated T cells lead to STAT3 activation in MDSCs 
and an increase in PD-1 expression in T cells, result-
ing in the suppression of T-cell activation [28]. MDSCs 
can be recruited to the tumor sites via chemokines and 
cytokines, such as CXCL12, CCL2, and IL-6 [29, 30]. 
Inflammatory CAFs use the FAP-STAT3 signaling path-
way to release CCL2, which recruits MDSCs and ulti-
mately dampens the activity of CD8+ T cells in the TME; 
these events further promote tumor progression [31, 32]. 
The expression of CXCL12 by CAFs facilitates the migra-
tion of MDSCs, which can be suppressed by using the 
poly ADP ribose polymerase inhibitor olaparib (R. [30]. 
Direct physical interactions between MDSCs and Tregs 
were observed in both the murine PDAC model and the 
tissues of PDAC patients, whereby MDSCs induced Treg 
proliferation [33].

TANs
Similar to TAMs, TANs can be divided into the pro-
inflammatory N1 and the anti-inflammatory N2 types 
[34]. The TME can influence the polarization of TANs. 
For instance, IFN-γ and TGF-β in the TME polarize 
TANs toward the N1 or N2 types, respectively [34, 35]. 
N2 neutrophils have a strong immunosuppressive func-
tion. They recruit Tregs and macrophages to the TME 
and secrete factors such as matrix metalloproteinases 
(MMPs), hepatocyte growth factor (HGF), and neu-
trophil elastase (NE) [26, 36]. scRNA-seq analysis has 
revealed that TANs can be classified into four subpopu-
lations: a terminally differentiated pro-tumor subtype 
(TAN-1), an inflammatory subpopulation (TAN-2), a 
transitional stage population (TAN-3), and a subtype 
that preferentially expresses IFN-γ-associated genes 
(TAN-4) [37]. The infiltration of TANs into the PDAC 
TME is associated with a poor prognosis [38]. Moreo-
ver, in clinical studies of PDAC patients, the neutrophil 
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to lymphocyte ratio was suggested as a predictor of prog-
nosis [39–41]. After being recruited to the tumor site by 
adipocyte-secreted IL-1β, TANs induce the activation of 
PSCs, which leads to further IL-1β section and contrib-
utes to PDAC progression [42]. Mutations in genes such 
as SETD2 and TP53 promote the recruitment of TANs, 
and consequently, PDAC tumorigenesis [43, 44]. SETD2-
deficient PDAC tumor cells recruit neutrophils to the 
tumor site and reprogram them toward the N2 type,this 
causes the neutrophils to upregulate genes such as IL10 
and MRC1 via the activation of AKT signaling [43]. The 
gain-of-function TP53R172H mutation promotes TAN 
infiltration into the tumor in response to tumor-cell-
derived chemokines; these TANs subsequently render 
the tumor resistant to chemotherapy and CD40 com-
bination immunotherapy [44]. scRNA-seq analysis has 
shown that, in liver cancer, CCL4+TANs and PD-L1+ 
TANs recruit TAMs to the tumor site and suppress T cell 
cytotoxicity, respectively [45].

Neutrophil extracellular traps (NETs) were first dis-
covered in the context of inflammation. NETs are web-
like structures composed of DNA, histones, and various 
proteins, which are extruded by neutrophils in a process 
termed NETosis [46]. In the TME, NETs promote tumor 
cell proliferation and metastasis, as well as inducing 
hypercoagulation [47]. Moreover, IL-17 production in 
the PDAC TME leads to the recruitment of neutrophils 
and triggers NET formation [48]. A recent study reported 
that the binding of TIMP1 (an MMP inhibitor) to its 
receptor CD63 induced NET formation in neutrophils 
via ERK signaling [49]. Moreover, KDM6A depletion 
from PDAC cells induced neutrophil recruitment to the 
tumor site and NET formation via the CXCL1-CXCR2 
axis [50]. Emerging evidence suggests that NETs directly 
or indirectly foster tumor proliferation, shield tumor cells 
from cytotoxic lymphocytes, and promote tumor angio-
genesis [51].

TANs and MDSCs have common origins and share 
a differentiation pathway, which raises questions about 
whether they are indeed distinct cell types. Moreo-
ver, there is currently no standardized nomenclature or 
methods for accurately differentiating these cells. MDSCs 
were named on the basis of their immunosuppres-
sive function, whereas TANs described a group of neu-
trophils modulated by the tumor. Although TANs and 
MDSCs express similar surface markers (e.g., CD66b+, 
CD11b+, and HLA-DR−), unlike MDSCs, TANs exhibit 
high chemokine secretion and low ROS production, sug-
gesting that TANs and MDSCs are different types of cells 
[52]. In addition, despite some sample processing limita-
tions, neutrophils and MDSCs can be separated by gra-
dient centrifugation [53]. However, Shaul et al. suggested 
that MDSCs are a subset of neutrophils with a unique 

activation state rather than a separate cellular entity. 
Furthermore, the existence of MDSCs as a population of 
myeloid cells with an entirely immunosuppressive func-
tion contradicts the typical plasticity and dynamics of 
myeloid cells [54]. Given the challenges of differentiating 
between these myeloid cell types, TANs and MDSCs will 
be discussed alongside each other in this review,however, 
we prefer the term TANs over MDSCs as it better 
describes the plasticity of these cells and their interplay 
with various other cell types.

DCs
Dendritic cells bridge the gap between innate and adap-
tive immunity. Generally, DCs can be classified into 
three populations: conventional DCs (cDCs), plasmacy-
toid DCs (pDCs), and monocyte-derived DCs (moDCs) 
[55]. cDCs can be further divided into two subsets: the 
CD8α+ and/or CD103+ cDC1 subset, which presents 
antigens and recruits cytotoxic T cells, and the CD103+ 
cDC2 subset, which activates CD4+ T cells such as T 
helper type 17 (Th17) cells. pDCs are less adept at anti-
gen presentation than cDCs and instead play a dominant 
role in IFN-γ secretion during viral infection. moDCs are 
mainly generated under inflammatory conditions and are 
involved in Treg generation during cancer pathogenesis 
[55, 56].

The tumor nests of pancreatic cancer contain fewer 
cDCs than those of lung cancer; moreover, these cDCs 
exhibit reduced antigen presentation capacity [57]. 
Moreover, the level of cDC infiltration into PDAC tumors 
is correlated with increased patient survival [58]. The 
recruitment of cDCs into early pancreatic lesions leads 
to a decrease in the number of immunosuppressive Th17 
cells and an increase in that of cytotoxic CD8+ T cells. 
This remodeling of the TME activates the antitumor Th1 
response and promotes tumor eradication [57]. DCs 
lacking heat shock proteins 70 (Hsp70) express higher 
TNF-α and MHC-II levels and are more effective at 
reducing the tumor burden than wildtype DCs in KPC 
mice models [59]. Moreover, the stimulator of IFN genes 
(STING) agonist induced DC activation and maturation 
both in vivo and in vitro, which also increased the DC-
mediated secretion of the proinflammatory cytokines 
IL-6 and TNF-α [60]. Collectively, these findings suggest 
that DCs are promising targets in the treatment of pan-
creatic cancer.

Innate lymphoid cells (ILCs)
Despite representing a small population of immune 
cells, ILCs are crucial players in the progression and 
prognosis of cancers. ILCs are divided into five subsets: 
natural killer (NK) cells, ILC1, ILC2, NCR+ILC3, and 
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NCR−ILC3, based on their lineage-specific progenitor 
populations [61].

NK cells, which have similar functions to CD8+ cyto-
toxic T cells, have been the most extensively investigated 
of all the ILCs in the tumor. The function of NK cells is 
impaired by the accumulation of tumor-derived fac-
tors such as TGF-β, IL-10, indoleamine 2,3-dioxygenase 
(IDO), in the TME; moreover, the characteristics of NK 
cells are influenced by the tumor type [62]. For instance, 
in PDAC, NK cells exhibit impaired cytotoxicity, while 
expressing low levels of IFN-γ and high levels of IL-10 
[63]. The cytotoxicity of NK cells can also be impaired 
by the overexpression of UQCRC1, a key component 
of mitochondrial complex III, in response to elevated 
extracellular ATP concentrations [64]. The roles of other 
ILCs in PDAC remain unclear, largely due to their low 
frequencies in the PDAC TME. While the IL-33-medi-
ated activation of ILC2s, which led to the recruitment 
of CD103+ DCs into the PDAC TME and subsequently 
CD8+ T cell activation, was associated with better PDAC 
prognosis in one study, it was associated with poor prog-
nosis in another [65, 66].

Compared with other immune cells, our understand-
ing of ILCs remains limited, especially considering the 

complexity of the TME and the low ILC frequencies. 
Therefore, strategies such as scRNA-seq will be instru-
mental in investigating ILC function in PDAC.

Role of innate immune cells in PDAC metastasis
Approximately 80% of PDAC patients present with 
unresectable or metastatic cancer; thus, metastasis is a 
leading cause of death among newly diagnosed PDAC 
patients [1]. Common PDAC metastatic pathways are 
local invasion and lymphatic metastasis, with distal 
metastasis typically occurring in the liver, lung, and bone. 
Metastasis involves several sequential steps: angiogene-
sis, lymphangiogenesis, EMT, migration, invasion of sur-
rounding tissues, formation of the pre-metastatic niche, 
and growth at the metastasis site. The crosstalk between 
tumor cells and stromal cells, which contributes to PDAC 
metastasis, is outlined in Fig. 3.

TAMs
Interplay among TAMs, tumor cells, and stromal cells 
through various pathways is pivotal in PDAC metastasis. 
A recent study has shown that TAM numbers are posi-
tively correlated with the microvessel density of PDAC 
tissues and that exosomes derived from TAMs promote 

Fig. 3  Innate immune cells participate in PDAC metastasis. Innate immune cells participate in multiple steps of PDAC metastasis. Cytokines, such 
as vascular endothelial growth factor (VEGF), IL-1β, and CCL5, secreted by innate immune cells promote angiogenesis and tumor cell proliferation. 
Meanwhile, signaling pathways such as NF-κB induce the invasion and migration of tumor cells. Exosomes and cytokines derived from TAMs 
and TANs promote EMT and growth of PDAC tumors at metastatic sites. Image generated using Biorender
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the angiogenesis of endothelial cells in vitro [67]. TAMs 
are involved in angiogenesis and lymphangiogenesis 
through the direct secretion of vascular endothelial 
growth factor (VEGF) [68] or the activation of several 
signaling pathways. Moreover, ANXA-1, contained in 
the extracellular vesicles of PDAC cells, regulates M2 
phenotype polarization, which in turn activates endothe-
lial cells and fibroblasts and contributes to angiogenesis 
and ECM degradation [69]. In addition, the frequency 
of M2-polarized TAMs in the regional lymph nodes of 
PDAC patients is strongly associated with nodal lym-
phatic vessel density, suggesting that TAMs are capable 
of lymphangiogenesis [70].

Several other PDAC metastasis mechanisms implicat-
ing TAMs have been described. For instance, the exoso-
mal microRNA-301a-3p expressed by hypoxic pancreatic 
cancer cells induced M2 polarization of macrophages via 
the PTEN-PI3Kγ signaling axis, promoting PDAC cell 
migration, invasion, and EMT [71]. Notch signaling trig-
gered by microRNA-124 in PDAC cells promoted M2 
polarization, leading to STAT3 pathway activation, which 
facilitated tumor cell EMT and invasion [72]. EMT is also 
triggered when TAM-secreted oncostatin M (OSM) acti-
vates the LOXL2-mediated metastatic cascade [73]. In 
addition, debris and IgG derived from PDAC cells can 
induce IL-1β secretion from TAMs via the TLR4/TRIF/
NF-κB signaling pathway, resulting in EMT, and con-
sequently, PDAC metastasis [74]. Moreover, blocking, 
growth-arrest-specific 6 (GAS6), which is produced by 
TAMs and CAFs in the PDAC TME, partially reversed 
EMT and supported NK activation [75]. TAMs can also 
enhance PDAC cell migration by inducing EMT via the 
TGF-β/SMAD/SNAIL signaling axis [76].

TAM-derived exosomal micro-RNA-501-3p activates 
the TGF-β signaling pathway, promoting PDAC cell 
migration and invasion by inhibiting the tumor sup-
pressor gene TGFBR3 [77]. The STAT3/NF-κB pathway 
is activated by PDAC-derived exosomal FDG5-AS1, 
polarizing the formation of M2 macrophages, which in 
turn stimulates PDAC cell proliferation and metastasis 
[78]. The expression of TNFSF9, an immune checkpoint 
marker originally shown to be expressed on antigen-pre-
senting cells, on PDAC cells was associated with a poor 
prognosis [79]. A recent study revealed that TNFSF9 pro-
moted the metastasis of PDAC by inducing M2 polariza-
tion via Src/FAK/p-Akt/IL-1β signaling [79]. TAMs can 
also contribute to liver fibrosis and sustain the growth 
of tumor cells by secreting granulin to activate resident 
hepatic stellate cells; these events contribute to the devel-
opment of PDAC liver metastases [80].

Besides tumor cells, TAMs interact with CAFs to pro-
mote PDAC metastasis. The binding of OSM secreted 
by TAMs to its receptor (OSMR) on CAFs induces 

inflammatory gene expression in CAFs. Thus, OSM 
depletion creates a more immunogenic environment, in 
which CAFs exhibit reduced inflammation gene expres-
sion, M2-like TAM numbers decline, and T cell func-
tion increases (evidenced by elevated CD44 and CD127 
expression) [81]. Crosstalk between PDAC cells, TAMs, 
and CAFs is mediated via the IL-33/ST2/CXCL3/CXCR2 
signaling pathway. The activation of the IL-33/ST2 path-
way in TAMs induces them to express CXCL3, which in 
turn converts CAFs into myoblast CAFs,because these 
myoblast CAFs express the cell surface matrix protein 
collagen III, they can form clusters with PDAC cells to 
promote PDAC metastasis [82].

MDSCs and TANs
An increasing number of studies have revealed that 
TANs and their NETs are involved in the progression 
and metastasis of PDAC via diverse signaling pathways. 
GAS6 expressed by TANs activates the AXL receptor on 
PDAC cells, enabling their regrowth after chemotherapy 
[83]. Gap junction protein beta 3 (GJB3), a protein which 
forms gap junctions (channels for the transportation of 
small molecules between adjacent cells), was found to 
facilitate PDAC liver metastasis by promoting neutrophil 
accumulation and N2 polarization by transferring cAMP 
[84], GJB3 depletion consequently suppressed PDAC 
liver metastasis in vivo. It was also observed that circulat-
ing tumor cells (CTCs were surrounded by neutrophils in 
tumor-adjacent vessels of PDAC tumors [85],thus, TANs 
may assist in distant metastasis formation through their 
direct interaction with CTCs. A population of immuno-
suppressive P2RX-1− neutrophils, which promoted meta-
static tumor growth by upregulating PD-L1 expression 
on tumor cells, was identified in a murine PDAC liver 
metastasis model and in clinical PDAC samples [86]. 
NRF2, a ROS-sensitive transcription factor, may promote 
PDAC liver metastasis by increasing PD-L1 expression 
on PDAC cells after boosting intracellular ROS produc-
tion by P2RX-1− neutrophils [86].

NETs also contribute to PDAC metastasis via a vari-
ety of signaling pathways. The peptidylarginine deimi-
nase 4 (PAD4)-mediated release of DNA from NETs was 
shown to activate PSCs by interacting with receptors for 
advanced glycation end products (RAGE) and promot-
ing the proliferation and metastasis of PDAC cells [87]. 
In addition, PDAC cells express collagen-induced discoid 
domain receptor (DDR1). In response NF-κB signaling, 
DDR1 stimulates CXCL5 production from tumor cells, 
leading to TAN recruitment, NET formation, and even-
tually, the invasion and metastasis of PDAC cells [88]. In 
PDAC, NETs facilitate EMT, as well as tumor cell migra-
tion and invasion, via the IL-1β/EGFR/ERK pathway 
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[89]. NETs can also promote PDAC liver metastasis by 
enhancing the migration of hepatic stellate cells [90].

Although less investigated, the interactions among 
MDSCs and other cells in the PDAC TME may also have 
important roles in the metastatic process. For instance, 
MDSCs significantly increased CSC numbers in a mouse 
model of PDAC, which was accompanied by a significant 
upregulation of genes related to EMT in tumor cells [91].

Other innate immune cells
The roles of NK cells, DCs, and other innate immune cells 
in PDAC metastasis are not as well-studied as those of 
TAMs or TANs. An immunosuppressive DC subset was 
found to express PD-L2 in the metastatic site and induce 

the expansion of Tregs in  vitro, suggesting that they 
played a role in shaping the immunosuppressive PDAC 
TME [92]. NK cells are the only innate immune cells with 
direct tumoricidal function. Moreover, NK-cell-derived 
exosomal miR-3607-3p inhibits the migration and inva-
sion of PDAC cells in vitro by targeting IL-26 [93].

Crosstalk between innate immune cells
In the TME, innate immune cells communicate via 
the secretion of soluble factors (e.g., cytokines and 
chemokines) or interactions between surface molecule 
and their receptors, which regulate various signaling 
pathways (Fig. 4). The levels of cytokines such as IL-1β, 
IL-10, VEGF, and TNF were reported to be increased in 

Fig. 4  Crosstalk between innate immune cells in the PDAC TME. Innate immune cells, such as tumor-associated macrophages, tumor-associated 
neutrophils, dendritic cells, and natural killer cells, secrete cytokines, chemokines, and molecules to interact with each other, forming 
an immunosuppressive microenvironment that promotes tumor progression and proliferation. Image generated using Biorender
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patients with PDAC [94]. IL-10 is an anti-inflammatory 
cytokine secreted by most immune and tumor cells. A 
study of breast cancer revealed that macrophages were a 
major source of IL-10 and that DCs were responsive to 
this cytokine as they expressed high levels of the IL-10 
receptor (IL-10R). Thus, high IL-10 levels reduced the 
capacity of DCs to produce IL-12, which in turn impaired 
the recruitment of cytotoxic T cells to the tumor site 
[95]. In addition, IL-1β, which promotes NETosis, can be 
secreted by TAMs, DCs, and tumor cells, suggesting pos-
sible interactions among these cell types [96, 97]. Moreo-
ver, TAMs release IL-8 in response to tumor cells, which 
leads to the recruitment of neutrophils and MDSCs to 
the tumor site [98]. In addition, innate immune cells may 
mutually recruit each other via the secretion of specific 
chemokines. For instance, scRNA-seq analysis predicted 
that CCL4+TANs recruited macrophages via the CCL4/
CCR5 axis; this result was validated in an in vitro chemo-
tactic assay in which liver tumor cells were co-cultured 
with TANs [45]. In chronic pancreatitis, macrophages 
were recruited via the CCL2/CCR2 axis,however, the dis-
ruption of this axis inhibited not only macrophage but 
also neutrophil recruitment, implying that chemokines 
are important for crosstalk between macrophages and 
neutrophils [99]. Gas6 is a TAM receptor ligand, and 
binding of Gas6 to its receptor AXL causes phosphoryla-
tion and activation of AXL. Interestingly, blocking GAS6 
binding to AXL activated NK cells and partially reverse 
the EMT of tumor cells [75]. In the PDAC TME, TAMs 
express high levels of apolipoprotein E (ApoE), which 
drives tumor cells to secrete CXCL1 and leads to the 
recruitment of more immunosuppressive myeloid cells 
[100].

Despite being well documented in the context of 
inflammation, the crosstalk between innate immune cells 
and tumor cells in cancer is not well characterized. The 
arrival of state-of-the-art technologies such as scRNA-
seq and spatial transcriptomics, will enable a more 
comprehensive and detailed exploration of the intricate 
interactions among innate immune cells in the TME. 
A deeper understanding of the PDAC TME will pave 
the way for the development for promising therapeutic 
strategies.

Targeting immune cells to remodel the PDAC TME
The PDAC TME comprises diverse interactions among 
cells, cytokines, chemokines, and other factors; this com-
plex and dynamic nature of the TME poses challenges for 
the development of strategies aimed at targeting its spe-
cific components. The studies discussed above provide 
strong evidence that TAMs, TANs, MDSCs, and other 
innate immune cells play vital roles in PDAC metasta-
sis. Targeting these cells can be a potential therapeutic 

strategy against PDAC. Here, we discuss present and 
potential future strategies related to the targeting of 
innate immune cells in PDAC TME. Among these strat-
egies, the targeting of macrophages, neutrophils, and 
MDSCs has been most extensively investigated (Table 1); 
however, as most of the evidence has been gathered at 
the preclinical stage, the efficacy of these strategies will 
need to be validated in larger trials.

Targeting TAMs
Reprogramming TAMs is one of the most popular immu-
notherapeutic strategies being developed for PDAC. For 
instance, IFN-γ was reported to re-educate TAMs into 
M1-type macrophages, which released higher levels of 
the pro-inflammatory cytokine IL-12 and lower levels 
of the pro-tumorigenic factors IL-10, MMP9, and VEGF 
[101]. CD40 can also be targeted to reprogram TAMs. 
Treatment with an agonistic anti-CD40 antibody mAb 
CP-870,893 led to partial tumor regression in both mice 
and humans, via a mechanism in which the CD40-acti-
vated macrophages became tumoricidal and contributed 
to the degradation of the tumor stroma [102]. A phase 
Ib, multicenter study combining a monoclonal, agonis-
tic anti-CD40 antibody with chemotherapy, showed that 
this combination had promising clinical activity and 
tolerable adverse effects [103]. The use of selicrelumab, 
another agonistic anti-CD40 antibody as a neoadjuvant 
therapy, activated T cells, increased the production of the 
inflammatory factors CXCL10 and CCL22 by several cell 
types, and decreased TAM numbers in the PDAC TME 
[104]. The PI3K-γ and CSF1-R signaling pathways have 
also been targeted to enhance the response of T cells to 
checkpoint immunotherapy and reprogram TAMs in 
pancreatic cancer mouse models (clinical trial number: 
NCT02777710) [105, 106]. Specifically, a PI3K-γ inhibi-
tor and a CSF1-R-siRNA were simultaneously adminis-
tered to PDAC model mice [105]. Increased numbers of 
M1 type macrophages and a reduction in the M2 type 
macrophages were observed in mouse tumors, which was 
associated with a significant decrease in tumor weight 
[105].

Macrophage depletion is another research direc-
tion being explored. Several studies [109, 110, 112, 129] 
have targeted the CCL2/CCR2 axis, which is vital in the 
recruitment of TAMs to the TME [130]. Using a CCR2 
inhibitor in combination with FOLFIRINOX chemo-
therapy, achieved local tumor control with tolerable 
adverse effects [109]. CCL2 inhibition increased effector 
T cell responses, enhanced chemotherapeutic efficacy, 
and inhibited metastasis [110]. The specific depletion of 
TAMs with lurbinectedin increased the extent of gemcit-
abine-mediated DNA damage in a PDAC mouse model, 
thus improving the efficacy of gemcitabine therapy [111].
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CD47 is a transmembrane glycoprotein, which binds 
to signal regulatory protein α (SIRPα) to send a “don’t 
eat me” signal to macrophages, reducing their phago-
cytic ability [131]. Therefore, blocking the CD47/SIRPα 
interaction has emerged as a promising next-generation 
immune checkpoint disruption strategy [131]. Indeed, 
administering a blocking anti-CD47 antibody to PDAC 
model mice increased the numbers of CD4+ and CD8+ T 
cells in the tumor, while decreasing those of monocytes/
macrophages [132]. A phase I trial of an anti-CD47 anti-
body has demonstrated that it is well tolerated and asso-
ciated with objective responses in multiple tumor types 
[107, 108].

Targeting TANs and MDSCs
Similar to targeting TAMs, the reprogramming or deple-
tion of TANs are potential PDAC strategies being investi-
gated in clinical trials. The protumor N2-like TANs have 
the potential to transform into N1-like TANs via IFN 
signaling pathway activation. Indeed, β-glucan admin-
istered to a subcutaneous mouse model of melanoma 
activated the IFN signaling pathway and promoted neu-
trophils to exhibit long-term antitumor effects [133]. 
Endogenous IFN-β inhibits tumor angiogenesis through 

the repression of genes encoding VEGF, MMP9, and 
CXCR4 in TANs [35]. Blocking CXCR2 signaling on 
TANs improved antitumor immunity in a murine PDAC 
model by enhancing the chemotherapeutic efficacy [112]. 
Lorlatinib treatment inhibited PDAC progression in a 
PDAC mouse model by specifically targeting Ly6G+ neu-
trophils and suppressing their development, mobiliza-
tion, and infiltration, as well as improving the efficacy of 
immune checkpoint blockade [113].

The depletion of neutrophils or the inhibition of NETo-
sis are valid strategies aimed at remodeling the PDAC 
TME. NETosis inhibition by DNase, chloroquine, IL-17/
IL-17R blockade, or the PAD4 inhibitor have been 
reported [48, 87, 114–116]. DNase treatment of PDAC 
model mice inhibited tumor growth and stromal activa-
tion within the PDAC TME [87]. In a phase II clinical 
trial, the administration of chloroquine to preoperative 
patients with PDAC in combination with chemotherapy 
resulted in greater antitumor responses and autophagy 
inhibition [114]. IL-17 recruits neutrophils and trig-
gers NET release. Accordingly, disrupting the IL-17/
IL-17R interaction increased immune checkpoint block-
ade sensitivity in a PDAC model [48]. Thus, IL-17 and 
checkpoint blockade may be combined to enhance the 

Table 1  Targeting innate immune cells to treat PDAC

This table summarizes the strategies developed to treat PDAC, focusing primarily on targeting innate immune cells

References Mechanism Treatment Stage

[101] Macrophage reprogramming IFN-γ Preclinical

[102–104] CD40 agonistic antibody Phase I

[105, 106] NCT02777710 PI3K-γ and CSF1-R inhibition Phase I

[107, 108] CD47 antibody Phase I

[109] Macrophage depletion CCR2 inhibitor Preclinical

[110] CCL2 inhibitor Preclinical

[111] Lurbinectedin Preclinical

[35] Neutrophil reprogramming IFN-β Preclinical

[112] Neutrophil depletion CXCR2 blockade Preclinical

[113] Lorlatinib Preclinical

[87] NETosis inhibition DNase Phase II

[114, 115] Chloroquine Phase II

[48] IL-17/IL-17R blockade Preclinical

[116] PAD4 inhibition Preclinical

[50] Neutrophil depletion and NETosis inhibition CXCL1 inhibition Preclinical

[117]
NCT03767582

MDSCs depletion CCR5 antagonist
CCR2/CCR5 dual antagonist

Preclinical
Phase II

[118] MDSC migration CD11b/CD18 agonist Preclinical

[119, 120] Neutrophil and MDSC depletion CXCR2 inhibition Preclinical

[121–123] DC maturation CD40 agonist
DC vaccines

Phase I

[124] DC expansion FLT3L Preclinical

[123, 125–128] Cytotoxicity of NK cells CAR-NK Phase II

NCT03841110 Allogenic NK cells iPSC-derived NK Phase I
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efficacy of existing PD-1-targeting therapies for the 
treatment of metastatic PDAC. Inhibiting PAD4, an 
enzyme with a central role in NET formation, reduced 
the NET forming capacity of both murine and human 
neutrophils,moreover, this PAD4 inhibitor can be used 
in combination with other therapeutic agents such as 
an IL-17 inhibitor [116]. CXCL1 inhibition significantly 
reduced TAN infiltration and NETosis, and ultimately 
attenuated the tumor growth in KDM6A-deficient PDAC 
mice model in vivo [50].

CCR5 and CXCR2, two chemokine receptors involved 
in the recruitment or maturation of neutrophils, are also 
potential targets for remodeling the PDAC TME [117, 
119]. In other cancers, the inhibition of CCR5 reduced 
MDSC recruitment to the tumor and prevented tumor 
metastasis [117]. In PDAC, CXCR2 signaling is predomi-
nantly upregulated in TANs and MDSCs. Thus, treat-
ment of a PDAC model mice with a CXCR2 inhibitor 
significantly decreased their intratumoral MDSC num-
bers, while increasing the infiltration of CD8+T cell into 
the PDAC TME [120]. Moreover, CXCR2 blockade sup-
pressed PDAC metastasis and, to some degree, inhibited 
tumorigenesis [119].

The CD11b/CD18 integrin heterodimer is expressed 
on the membranes of MDSCs, TANs, and TAMs, where 
it mediates myeloid adhesion, migration, tissue recruit-
ment, phagocytosis, and survival. Given these functions, 
CD11b/CD18 blockade promises to reduce the infil-
tration of most myeloid subsets into the tumor [134]. 
Indeed, the CD11b modulator GB1275 reduced the 
tumor infiltration of CD11b+ MDSCs and prolonged the 
survival of KPC model mice [118].

Targeting DCs
Emerging DC-targeting treatment methods have been 
developed. These include DC vaccines and the use of 
CD40 agonists to promote cDC1 maturation [121, 122]. 
A phase I clinical trial was conducted by injecting autol-
ogous, tumor-lysate-loaded moDCs into patients with 
resected PDAC. After a median follow-up of 25 months, 
seven out of ten patients did not experience PDAC recur-
rence or progression and had no vaccine-related serious 
adverse effects, suggesting the favorable safety and feasi-
bility of this DC vaccine [121]. A clinical trial combining 
DC agonists with allogeneic tumor-lysate-loaded DCs 
is ongoing, with treatment safety and tolerability as the 
primary endpoints and the magnitude of the antitumor 
immune response as the secondary endpoint [122]. In the 
context of lung cancer, combining neoantigen-present-
ing DCs with an anti-CD38 antibody has been shown to 
reduce Treg infiltration, thereby reshaping the immuno-
suppressive TME [123].

As professional antigen-presenting cells, DCs prime 
and stimulate T cells to eliminate cancer cells. Hence, 
boosting DC function represents a promising immuno-
therapeutic strategy in cancer treatment. Growth fac-
tors, such as FMS-like tyrosine kinase 3 ligand (FLT3L) 
have attracted increasing attention due to their abil-
ity to expand and activate DCs [135]. Administration of 
FLT3L expanded cDC1s in both lymphoid and periph-
eral tissues, while also enhancing tumor-specific T cell 
responses in conditions such as breast cancer and mela-
noma [124, 136]. Notably, in the case of melanoma, the 
administration of FLT3L activates CD103+ DC progeni-
tors, thereby increasing the efficacy of BRAF and PD-L1 
blockade [124].

Targeting NK cells
NK cells can be likened to the innate immune equiva-
lent of T cells; as such, NK cells represent promising 
targets for the treatment of PDAC. Inspired by the suc-
cesses of CAR-T cell therapy, CAR-NK cell therapy has 
emerged as a budding immunotherapy, with several nota-
ble advantages over CAR-T cells (e.g., a better safety pro-
file) [137]. Treating a PDAC subcutaneous mouse model 
with CAR-NK cells engineered to target folate recep-
tor alpha and death receptor 4, both highly expressed 
in tumor cells, increased NK infiltration into the tumor 
tissue and promoted tumor cell apoptosis [138]. CAR-
NK cells displayed even greater antitumor efficacy when 
used in combination with a STING agonist, as evidenced 
by marked tumor growth inhibition in PDAC model 
mice and their prolonged survival [125]. Robo1-specific 
CAR-NK cell immunotherapy enhanced the efficacy of 
125I seed treatment. Higher greyscale values and a sig-
nificant reduction in tumor size were observed in the 
orthotopic PDAC mouse model treated with the combi-
nation therapy compared with either monotherapy [126]. 
Given that NK cells are less likely to induce graft-versus-
host disease than CD8+ T cells, clinical trials of allogenic 
NK cells have also been carried out [127, 137]. Patients 
with stage III PDAC being treated with a combination of 
irreversible electroporation and allogenic NK cell immu-
notherapy had a higher median overall survival and pro-
gression-free survival than the control group, and few 
adverse events [127].

Induced pluripotent stem cells (iPSCs) provide an “off-
the-shelf” supply of lymphocytes, which can be used a 
source of NK cells for immunotherapy. NK cells gener-
ated from human iPSCs, express NK-defining markers 
such as CD56, CD16, and death-inducing ligands, and 
exhibit cytotoxicity through cytokine secretion or anti-
body-dependent cell-mediated cytotoxicity [128]. The 
iPSC-derived NK cell product FT500 is being admin-
istrated in a phase I clinical trial to target solid tumors, 
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including pancreatic cancer (clinical trial number: 
NCT03841110). FT516 and FT576 are other allogeneic 
NK cells being trialed in the treatment of ovarian cancer 
and multiple myeloma, respectively (clinical trial num-
ber: NCT04630769, NCT05182073).

Conclusions and future perspectives
Despite the emergence of advanced therapies, pancreatic 
cancer remains one of the most lethal cancers, which is 
largely due to its complex immunosuppressive TME. 
Innate immune cells such as TAMs, TANs, and MDSCs 
play critical roles in shaping the immunosuppressive 
PDAC TME, which also impacts tumor progression and 
metastasis.

Despite our growing understanding of the PDAC TME 
and the development of many innovative TME remod-
eling strategies, various challenges still exist. Owing 
to the heterogeneity of tumors, the TME of orthotopic 
and metastatic sites may be different. This may explain 
the unsatisfactory response observed to currently avail-
able treatments. Moreover, innate immune cells, espe-
cially TAMs and TANs, exhibit considerable plasticity, 
which is greatly influenced by the TME. Thus, techniques 
such as spatial transcriptomics and multiplex phenotyp-
ing are needed to accurately characterize the subtypes 
of immunosuppressive cells in the TME. These cells can 
then either be eliminated or repolarized to attack tumor 
cells and enhance the efficacy of other immunotherapies. 
Given the complexity of the TME, interactions among its 
various components, especially among innate immune 
cells, are not fully understood. In addition, PDAC 
patients are usually diagnosed at a late stage after metas-
tasis has occurred. Thus, finding more sensitive diagnos-
tic biomarkers for PDAC remains a priority.

In light of these challenges, we believe that a deeper 
understanding of the PDAC TME is needed to success-
fully and safely target this cancer. For instance, recent 
studies have used scRNA-seq to explore the differences 
in the TME between orthotopic and liver metastasis in 
PDAC. However, the primary focus of these studies was 
on cancer cells, CAFs, and T cells, with less emphasis 
on innate immune cells such as TAMs and TANs [139]. 
Consequently, the specific roles and mechanisms through 
which innate immune cells, such as macrophages and 
neutrophils, may influence these TME differences are 
unclear. Moreover, the intricacies of interactions among 
innate immune cells in the PDAC TME remain a mystery. 
At present, the hunt for potential biomarkers and drug 
targets expressed by cells in the PDAC TME continues. 
What is evident, however, is that by gaining a deeper 
understanding of the PDAC TME, we are moving closer 
to developing more effective, targeted therapeutics for 
this aggressive cancer.
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