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Abstract
Accurate panoptic segmentation of 3D point clouds in outdoor scenes is critical for the success of applications such
as autonomous driving and robot navigation. Existing methods in this area typically assume that the differences
between instances are greater than the differences between points belonging to the same instance and use
heuristic techniques for segmentation. However, this assumption may not hold in real scenes with occlusion and
noise. In addition, most of the previous methods formulate point-wise embedding learning and instance clustering
as two decoupled steps for separate optimization, making it a challenging task to learn discriminative embeddings.
To address these issues, we introduce a framework for modeling points belonging to the same instance using
learnable Gaussian distributions and formulate the point cloud as a Gaussian mixture model. Based on this
formulation, we introduce a unified loss function that links the embedding learning and instance clustering in an
end-to-end manner. Our framework is generic and can be seamlessly incorporated with existing panoptic
segmentation networks. By explicitly modeling intra-instance variance and leveraging end-to-end optimization, our
framework improves the discrimination capability of point embeddings with higher accuracy and robustness.
Extensive experiments on two large-scale benchmarks demonstrate the effectiveness of the proposed method.
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1 Introduction
As one of the key challenges in autonomous driving [1–3]
and robot perception [4], panoptic segmentation of 3D
point clouds aims to unify semantic and instance segmen-
tation, further achieving fine-grained 3D scene perception.
Specifically, each 3D point is expected to be classified into
background (stuff) or foreground (things) classes with a
specific instance ID. Due to the irregular and disordered
nature of 3D point clouds, coupled with the effects of oc-
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clusion, noise and incomplete scanning, achieving effec-
tive panoptic segmentation remains a major challenge.

Recently, Behley et al. [5] have first explored panoptic
segmentation on the SemanticKITTI dataset. This pio-
neering method enriches the dataset with instance-level
annotations and leverages both semantic segmentation
[6] and object detection [7] techniques for panoptic seg-
mentation. Inspired by this work, several dedicated net-
work architectures have been developed with improved
accuracy. These approaches can be divided into proposal-
based and proposal-free methods. In particular, proposal-
based methods [3, 5, 8–10] explicitly predict bounding
boxes or binary masks to split instances from backgrounds
for segmentation. In contrast, proposal-free methods [11–
15] learn discriminative point-wise embedding and adopt
clustering techniques to group individual points. Consid-
ering the simplicity in terms of network architecture and
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Figure 1 Panoptic results on the nuScenes dataset. We set random
colors for the points of each predicted instance to distinguish them

low inference cost, proposal-free methods have drawn in-
creasing interest.

Although substantial progress has been achieved in re-
cent years, existing proposal-free methods still have two
limitations. First, previous methods commonly use heuris-
tic techniques (e.g., L2 distance) to distinguish different
instances without considering intra-instance variance (the
measurement of differences between points belonging to
the same instance). In practice, intra-instance variance can
be larger than inter-instance variance (the measurement
of differences between instances), making these methods
sensitive to outliers and prone to dividing an object into
fragments (Fig. 1(a)). Second, existing methods formulate
point-wise embedding learning and instance clustering as
two decoupled steps for separate optimization. Conse-
quently, discriminative embedding cannot be well learned,
which hinders further performance improvement.

To address the above issues, we propose a method
for panoptic segmentation of 3D point clouds in out-
door scenes using a Gaussian mixture model (GMM),
termed GMM-PanopticSeg, by explicitly modeling the
intra-instance variance of an object with a 2D Gaussian
distribution. Furthermore, the point cloud can be simpli-
fied to a GMM [16] for panoptic segmentation. First, we
formulate intra-instance variance in the embedding space
as a Gaussian distribution. Specifically, we develop a distri-
bution estimation module to predict the covariance of the
Gaussian distribution to capture the intra-instance vari-
ance for diverse objects. Second, as the intra-instance vari-
ance is modeled as a Gaussian distribution, we further in-
troduce a unified loss function to achieve joint optimiza-
tion of embedding learning and instance clustering. Our
framework is generic and can be seamlessly integrated
with existing approaches to enable panoptic segmenta-
tion. Moreover, the proposed method can be integrated
with existing panoptic segmentation networks to achieve
consistent performance improvements. For example, with
Panoptic-PolarNet [12] and DS-Net [13] serving as the

backbone, our framework achieves an average improve-
ment of 9.6%/5.9% in the PQTh/PQ score on the nuScenes
dataset.

Overall, the contributions of this paper can be summa-
rized as follows.

1) We propose modeling the intra-instance variance of
an object in the embedding space as a 2D Gaussian distri-
bution and employing a Gaussian mixture model to rep-
resent the point cloud. To the best of our knowledge, our
framework is the first work that explicitly considers intra-
instance variance during panoptic segmentation.

2) We introduce a unified loss function to integrate em-
bedding learning and instance clustering for end-to-end
joint optimization.

3) Our framework improves the discrimination capabil-
ity of the embedding and can further boost the perfor-
mance of previous state-of-the-art approaches on bench-
mark datasets.

2 Related work
In this section, we first review several point cloud instance
segmentation methods. Then, we discuss recent advances
in point cloud panoptic segmentation.

2.1 Instance segmentation of 3D point clouds
Existing point cloud instance segmentation techniques can
be categorized into boundary-based and grouping-based
methods.

Boundary-based methods. This category of methods
commonly follows a two-stage pipeline. Specifically,
bounding boxes are first predicted as the initial bound-
aries of instances and then further refined through bound-
ing box regression or binary classification. For example,
GSPN [17] uses an analysis-by-synthesis strategy to gen-
erate bounding boxes from shape proposals, and subse-
quently refines these boxes using R-PointNet. 3D-SIS [18]
extracts geometry and color features from multi-views to
generate bounding boxes and binary masks to segment
instances. 3D-BoNet [19] leverages global features to di-
rectly regress bounding boxes and then matches proposals
to instances using the Hungarian algorithm [20]. GICN
[21] follows a bottom-up paradigm to first select center
points and then predict corresponding bounding boxes.
Although these methods produce promising results, a
two-stage pipeline with costly post-processing technique
(e.g., non-maximum suppression) introduces considerable
overhead.

Grouping-based methods. Unlike boundary-based meth-
ods, grouping-based methods directly learn discrimina-
tive point-wise embeddings and adopt clustering tech-
niques for instance segmentation. Specifically, SGPN [22]
makes the points belonging to the same instance close
to each other in the feature embedding space, and lever-
ages a similarity matrix for grouping. Recently, several
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works [23–26] have used the averaged embedding of the
points that belong to an instance as the optimization goal
of the embedding learning process. Using this method,
point-wise embeddings tend to be similar to their cor-
responding averaged embeddings, but dissimilar to oth-
ers. MASC [27] iteratively merges neighbor nodes into in-
stance groups and clusters points using learnable multi-
scale affinity. DyCo3D [28] and Mask3D [29] predict bi-
nary masks to assign instance IDs. Moreover, the other
methods [30–33] leverage positions of objects as addi-
tional information and adopt instance centers as the op-
timization goal of embedding learning. However, due to
the occlusion and noise, predicted centers from incom-
plete partial point clouds usually deviate from the instance
centroids, thereby resulting in limited performance.

2.2 Panoptic segmentation of 3D point clouds
Point cloud panoptic segmentation aims to provide uni-
fied semantic segmentation and unique instance segmen-
tation results. Due to the advantages in handling instance
ID conflicts, grouping-based methods have attracted in-
creasing interest from researchers for the task of panoptic
segmentation. Considering the irregular nature of point
clouds, several methods transform them into other rep-
resentations for panoptic segmentation. Specifically, LP-
SAD [11] encodes point clouds into a range-view repre-
sentation to extract point-wise embeddings and extracts
and utilizes a learnable radius for clustering. DS-Net [13]
uses Cylinder3D [34] as the backbone and clusters dif-
ferent instances via dynamic shifting to address the is-
sues of inconsistent accuracy of predicted centers from
different instances. Panoptic-PolarNet [12] first projects
point clouds onto the bird’s-eye view (BEV) plane and then
predicts a 2D heatmap to conduct clustering. Panoptic-
PHNet [14] modifies the BEV encoder and employs voxel
features to improve segmentation performance. In ad-
dition, a k-nearest neighbor (KNN) transformer is used
to predict a pseudo heatmap to avoid inconsistency be-
tween the heatmap and the offset branches. Since trans-
formation inevitably introduces information loss, recent
works have directly implemented panoptic segmentation
on point clouds. PVCL [35] uses contrastive learning to
learn stable and discriminative features. GP-S3Net [36]
first excessively segments foreground points and then pro-
poses graph convolutional neural networks (GCNNs) to
merge fragments from the same instance. PolarStream
[37] uses polar coordinate system and leverages wedge-
shaped point cloud sectors to improve inference efficiency.
Recently, mask-based methods [38, 39] have achieved
outstanding performance on leaderboard. They use in-
stance prototypes from learnable parameters matched
with point-wise embeddings, and perform instance seg-
mentation by predicting binary masks.

3 The proposed method
In this section, we first introduce the overview of our
framework. Then, we present our distribution estimation
module, distribution-instance matching strategy, and loss
function in detail.

3.1 Overview
Given a point cloud with N points P ∈ R

N×din , our
method aims to predict a semantic label and an instance
ID (0 for stuff classes) for each point. Here, din refers to
the input attributes, including 3D coordinates and the in-
tensity of reflection. As illustrated in Fig. 2, our GMM-
PanopticSeg method consists of a backbone module, a dis-
tribution estimation module (DEM) and a voting-based
post-process module. Note that, we follow Ref. [40] to
generate instance centers from the heatmap branch (see
reference [21] for point-based methods). In addition, the
heatmap branch can be replaced by other instance center
generation modules [13, 14]. Our framework is generic and
can be applied to extend different semantic segmentation
networks to the panoptic segmentation task.

Our GMM-PanopticSeg method is composed of four
major steps, as shown in Fig. 2. First, 3D point clouds are
fed to the backbone network [34, 41] to predict the point-
wise offset to move each point towards its corresponding
instance center, resulting in predicted centers Pctr. More-
over, point-wise semantic labels and a BEV heatmap are
produced. The resultant heatmap is employed to predict
N inst instance centers Ictr using a window-based search
strategy [12, 40]. Second, Ictr, Pctr and point-wise features
in the backbone are passed to the proposed distribution
estimation module to produce a Gaussian distribution per
instance and model the whole scene as a Gaussian mix-
ture model [16] (a probabilistic model that assumes that
all points are generated from a mixture of Gaussian dis-
tributions). Third, we calculate the likelihood probabilities
that one point belongs to different Gaussian distributions
and assign each point to the instance with the maximum
probability. Finally, we merge the instance segmentation
result and semantic segmentation result. Specifically, we
accumulate the semantic segmentation results of points
assigned to the same instance ID and set semantic labels
to the highest scoring category.

3.2 Distribution estimation module
Our distribution estimation module called DEM aims to
use a 2D Gaussian distribution to model the intra-instance
variance of point-wise embeddings on BEV. As Gaussian
distributions are characterized by their covariance matri-
ces, we parameterize each covariance matrix using three
hyperparameters, which are learned with neural networks.
As illustrated in Fig. 3, our distribution estimation module
consists of three steps, including hyperparameter predic-
tion, covariance matrix generation and distribution learn-
ing.
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Figure 2 The overall framework of our GMM-PanopticSeg model. The distribution estimation module (DEM) uses the likelihood probability of each
point to model the intra-instance variance. BEV refers to the bird’s eye view

Figure 3 Network architecture of our distribution estimation module. N is the number of input points and Ninst is the number of predicted
instances. σ , k and θ are parameters of covariance matrices C. Îctr is the refined instance center. MLP1, MLP2 and MLP3 are multi-layer perceptron
networks. Ind info is the information of 2D coordinates. Pos info is the information of 2D position

Hyperparameter prediction. Intuitively, the relationship
between instance predicted centers Ictr and point-wise
predicted centers Pctr reflects the intra-instance variance
and can be used to generate the hyperparameters of Gaus-
sian distributions. For each pointPctr

i , we first find its near-
est instance predicted center Ictr

j , and concatenate the cen-
ter feature with it. Next, the 2D indices ofPctr

i and Ictr
j with

Pctr
i – Ictr

j are concatenated with the point feature, which
is subsequently fed into a two-layer multilayer perceptron
(MLP) (i.e., MLP1 in Fig. 3) for point-wise aggregation.
Similarly, we further concatenate the 2D coordinates of
Pctr

i and Ictr
j with their difference from the point feature

and pass the concatenation to another MLP (i.e., MLP2).
After aggregating the relationships between instance pre-
dicted centers and point-wise predicted centers for each
point, we gather features for points belonging to the same
predicted instance by indices and use a pooling operation
to produce an instance representation. Finally, the hyper-
parameters σ , k, and θ and the refined instance center Îctr

are regressed for each instance using a three-layer MLP
(i.e., MLP3).

Covariance matrix generation. A 2D Gaussian distribu-
tion can be characterized using a covariance matrix C ∈
R

2×2. With the predicted hyperparameters σ , k, and θ in
the previous step, where σ is the minor axis variance, k
measures the ratio of the major axis and minor axis vari-
ance, and θ represents the rotation angle of the distribu-
tion. The covariance matrix of the Gaussian distribution
for the i-th predicted instance can be obtained as

Ci =
[

cos(θi) –sin(θi)
sin(θi) cos(θi)

][
σ 2

i 0
0 k2

i σ
2
i

][
cos(θi) sin(θi)
–sin(θi) cos(θi)

]
.

(1)

Without loss of generality, we keep k > 1 so that σ repre-
sents the minor axis variance. Here, we use the softplus
activate function to keep k and σ positive. Compared with
directly calculating the covariance matrix, our method de-
couples the distribution parameters and reduces the insta-
bility during training. Note that, Eq. (1) can also be gen-
eralized to higher-dimensional cases. Our ultimate goal is
not to perfectly fit the predicted center but to distinguish
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points of different instances through the predicted distri-
bution. Intuitively, points closer to the center of the dis-
tribution are more likely to be the same instance, and the
variance represents the degree of confidence in the distri-
bution. The degree of confidence of the distribution in dif-
ferent dimensions is different and correlated. We adopt a
formulation of 2D Gaussian distribution in this paper due
to its simplicity in the formulation of point clouds and low
computational complexity.

Distribution learning. After the above steps, each pre-
dicted instance is modeled as a Gaussian distribution.
However, how to fit these 2D Gaussian distributions, char-
acterized by learnable hyperparameters, to diverse ob-
jects in point clouds still remains a challenge because the
ground truth covariance matrix is not available in real-
world scenes to provide supervision. To address this is-
sue, we alternatively maximize the probability that each
point in the instance belongs to the corresponding Gaus-
sian distribution. Mathematically, the probability for the
i-th predicted instance is calculated as follows:

Pi =
∏
j∈Si

Pij

=
∏
j∈Si

1√
2π|Ci|e– 1

2 (Îctr
i –Pctr

j )TC–1
i (Îctr

i –Pctr
j ),

(2)

where Pij is the probability that the j-th point belongs to
the i-th predicted instance. Ci and Îctr

i are the covariance
matrix and the center of the Gaussian distribution for the
i-th predicted instance, respectively. Si is the point set for
the i-th instance and Pctr

j is the predicted center of the j-th
point. We assume that the probability of each instance is
independent and the negative log-likelihood (NLL) is used
as the loss function to help Gaussian distributions tend to
fit the intra-instance variance:

Ldl = –
N inst–1∑

i=0

log(Pi). (3)

Due to the effects of occlusion and noise, the mismatches
between points and corresponding instances usually lead
to unstable training. To remedy this, points with scores
lower than a threshold τ are filtered out in Ldl: Pij/

∑
k Pkj <

τ . Specifically, for the j-th point in an instance, the denom-
inator is the probability that a point j belongs to the i-th
Gaussian distribution. Moreover, the denominator repre-
sents its summed probability with all Gaussian distribu-
tions. The smaller the value of Pij/

∑
k Pkj, the lower the

confidence that the j-th point belongs to the i-th Gaussian
distribution. Consequently, this point is excluded from
Eq. (3) to increase the stability of our Gaussian distribu-
tions.

3.3 Distribution-instance matching
With each predicted instance modeled by a Gaussian dis-
tribution, the whole point cloud can be considered to be
a Gaussian mixture model. In practice, the number of
the predicted instances (i.e., Gaussian distributions) may
not be consistent with the ground truth number of ob-
jects in the scene, and this matching imposes challenges
to the optimization. To address this issue, we propose a
distribution-instance matching method, which consists of
three steps. First, we calculate the probabilities that asso-
ciate each point with each predicted distribution (i.e., Pij
in Eq. (2) that associates the j-th point with the i-th distri-
bution). To prevent missing instances, we first pre-define
Gaussian distributions with the identity covariance matri-
ces as padding distributions. Then, for each point, we cal-
culate its probabilities of belonging to different Gaussian
distributions, including both predicted and pre-defined
distributions. Second, for the i-th Gaussian distribution,
we aggregate the mean probabilities of points belong-
ing to the k-th ground truth instance to calculate the
distribution-instance matching probability Pmatch

ik . Third,
we use the Hungarian algorithm [20] to obtain the optimal
matching with the highest probability. The PyTorch-style
distribution-instance matching algorithm is displayed in
Alg. 1.

Note that, we also match the pre-defined distribution
from the ground truth to avoid the instance missing prob-
lem. We set the selected probability Ps of the distribution

Algorithm 1: Distribution-Instance Matching

Input: distribution centers: Îctr ∈R
N inst×2

covariance matrices: C ∈R
N inst×2×2

GT centers: Igt ∈R
Ngt×2

GT instance masks: Minst ∈R
Ngt×N

selected probability: Ps ∈ R
(N inst+Ngt)×1

predicted centers: Pctr ∈ R
N×2

Output: match result: Rmatch ∈R
Ngt×1

1 Add ground truth centers: Îctr = concat(Îctr,Igt)
2 Add unit diagonal matrices:

C = concat(C, eyes(2).repeat(Ngt)) ∈R
(N inst+Ngt)×2×2

3 Reshape: Îctr ∈R
1×(N inst+Ngt)×2, Pctr ∈R

N×1×2

4 Calculate the distance: X = Îctr – Pctr

5 Calculate the point-distribution probability:

Pprob = 1√
2π|C| e

– X×C–1×XT
2 ∈R

N×(N inst+Ngt)

6 Count the points of each mask:
Nmask = sum(Minst, dim = 1)

7 Calculate the instance-distribution probability:
Pmatch = Minst × Pprob · 1

Nmask · Ps ∈R
Ngt×(N inst+Ngt)

8 Match by the Hungarian algorithm:
Rmatch = Hungarian(Pmatch)
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from the DEM to 1 and set the selected probability Ps of the

i-th pre-defined distribution to 0.1 · FFgt
i

heat, where Fgt is the
ground truth center and Fheat is the heatmap value. Con-
sidering that the ground truth centers are potential pre-
dicted centers, we associate the selection probability with
Fheat and encourage proposing ground truth centers when
instances are missing.

To achieve trainable distribution-instance matching, we
introduce a matching loss to consider matched and missed
instances separately:

Lprob = –
1

Ngt

∑
k

⎧⎪⎪⎨
⎪⎪⎩

Pmatch
ak∑N inst–1

i=0 Pmatch
ik

, if matched,

Pmatch
bk∑N inst+Ngt–1

i=N inst Pmatch
ik

, if missed.
(4)

If the k-th ground truth instance matches the a-th Gaus-
sian distribution predicted by our distribution estimation
module, the upper term is calculated to maximize the
matching probability Pmatch

ak among all the predicted Gaus-
sian distributions. If the k-th ground truth instance has no
matched predicted distribution, it is associated with pre-
defined Gaussian distributions centered at ground truth
instance centers to calculate Pmatch

bk . Then, the lower term is
calculated and our distribution estimation module is used
to predict an additional Gaussian distribution to cover this
missed instance.

3.4 Loss function
Previous methods consider point-wise embedding learn-
ing and instance clustering as two sequential steps and
use two independent losses for separate optimization [13].
To address this issue, we introduce a unified loss func-
tion Lprob for end-to-end joint optimization of the whole
framework. The sum of loss is as follows:

L = aLcls + bLheatmap + cLoffset + dLdl + eLprob, (5)

where we empirically set a = 1, b = 100, c = 0.01, d = 5, and
e = 10. Note that, the first three loss terms are already used
in existing panoptic segmentation methods (Lcls is the loss
of the semantic branch,Loffset is the absolute loss of the off-
set branch, Lheatmap is the mean square loss of the heatmap
branch). Ldl and Lprob incorporate the learning of embed-
ding and clustering into unified losses, thereby allowing for
joint optimization of the whole framework.

4 Experiments
In this section, we first present the experimental setups.
Then, we compare our method with previous state-of-the-
art methods on two benchmark datasets. Finally, we per-
form ablation experiments to investigate the effectiveness
of our framework.

4.1 Experimental setups
Datasets. In our experiments, we evaluate our method
on two widely-used large-scale datasets, namely
SemanticKITTI [2] and nuScenes [3].

SemanticKITTI. This dataset is composed of 22 se-
quences with 43,552 sparse LiDAR scans. Specifically, Se-
quences 00-07 and 09-10 are used for training (19,130
scans), sequence 08 with 4071 scans is used for valida-
tion, and the rest are used for online testing (20,351 scans).
For the task of panoptic segmentation, the original anno-
tations are remapped to 19 classes, of which there are 8
thing classes and 11 stuff classes. Each point is labeled with
a unique semantic label and instance ID, where ID is set to
0 if it belongs to the stuff classes.

nuScenes. This dataset consists of 1000 sequences. We
use 28,130 frames for training, 6019 frames for validation,
and 6008 frames for testing. The nuScenes dataset con-
tains 16 classes, 10 of which are things. There are more
sparse point clouds and denser objects in
nuScenes than in SemanticKITTI, which makes instance
segmentation more difficult. Moreover, nuScenes has
a more balanced distribution of categories than
SemanticKITTI, which facilitates the learning of seman-
tic segmentation.

Metrics. Following Alexander et al. [42], we use the
widely used panoptic quality (PQ) as the main metric to
evaluate the performance of panoptic segmentation.

PQ =
∑

(p,g)∈TP IoU(p, g)
|TP|︸ ︷︷ ︸

Segmentation quality (SQ)

|TP|
|TP| + 1

2 |FP| + 1
2 |FN|︸ ︷︷ ︸

Recognition quality (RQ)

, (6)

where PQ can be decomposed into the product of recogni-
tion quality (RQ) and segmentation quality (SQ). RQ can
be used to measure the recognition quality, and SQ repre-
sents the segmentation quality when the object is recog-
nized. Considering that PQ over-penalizes errors for stuff,
we also follow Porzi et al. [43] to use PQ† as evaluation
metrics. In addition, we use the mean intersection-over-
union (mIoU) as the metric for semantic segmentation
performance.

Implementation details. Since the latest methods are not
open source, we choose two representative methods as our
baseline. For a fair comparison with the previous method,
we use the same hyperparameter settings as in Ref. [12] for
training and inference (all parameters not mentioned are
the same). τ is empirically set to 0.01 in our experiments.
As Dropblock [44] affects the generation of the heatmap,
we do not activate Dropblock when training DEM. We
also employ several data augmentation techniques, includ-
ing instance oversampling, random rotation ([–π,π]), ran-
dom flipping (both the x-axis and the y-axis), and random
scaling ([0.95, 1.05]). The default Adam optimizer for the
backbone with a learning rate of 0.001 and the customized
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Adam optimizer for the DEM are used to train our method
on RTX3090 GPUs.

Incorporate DEM to DS-Net. Unlike Panoptic-Polarnet,
DS-Net does not have a heatmap branch, hence we project
the sparse 3D feature from the backbone to a dense BEV
and use U-Net style upsampling layers as the heatmap
branch to predict prototypes. Prototypes and point-wise
embedding are fed into the DEM to generate predicted dis-
tributions.

4.2 Comparison with the state-of-the-arts
Quantitative evaluation on nuScenes. Table 1 shows the
quantitative comparison of different methods on the
nuScenes test set. The proposed method significantly im-
proves the performance of DS-Net and Panoptic-PolarNet
in terms of almost all the metrics. Since the additional
loss function only focuses on things, the segmentation
performance of stuff may be slightly degraded. In other
words, stuff receives less attention in relative terms. No-
tably, the most significant improvement lies in the PQTh

score (an average improvement of 9.6%), indicating that
our method can substantially improve the instance seg-
mentation accuracy of the baseline network. Following re-
cent works, we merge instance segmentation and semantic
segmentation results via a major-voting strategy. Specifi-
cally, points with the same instance ID are updated with
the same semantic label such that the semantic segmenta-
tion performance is improved. Moreover, Panoptic-PHNet
has the best performance because it uses a stronger non-
open source backbone and test time augmentation tech-
nology on the nuScenes test dataset, which increases the
cost of inference. We compare our method with Panoptic-
PHNet in ablation studies with the same backbone and
post-processing.

We further provide quantitative comparisons on the val-
idation set of the nuScenes dataset in Table 2. It is observed
that the combination of the baseline networks with our
method significantly improves their overall performance.
In particular, by utilizing Eq. (4) to handle mismatches be-
tween instances and Gaussian distributions, a much higher
accuracy is achieved. This can be reflected by the sub-
stantial increase in RQTh (an average increase of 8.7%).
Additionally, the Gaussian distributions predicted by our
DEM enable the baseline network to model intra-instance
variance, which improves its robustness to occlusion and
noise.

Quantitative evaluation on SemanticKITTI. We have
conducted experiments on the SemanticKITTI dataset,
and the quantitative results on the validation set are pre-
sented in Table 3. For a fair comparison with correspond-
ing baseline networks, their officially released pre-trained
models are used for the initialization of our backbones.
It can be observed that our framework significantly im-
proves the performance of Panoptic-PolarNet. Since the

SemanticKITTI dataset has a lower instance density and
relatively rich point information, the main challenge on
this dataset is not instance segmentation but semantic seg-
mentation, as also noted in Panoptic-PolarNet [12]. There-
fore, the performance improvements achieved on this
dataset are relatively smaller than those achieved on the
nuScenes dataset. Nevertheless, our GMM-PanopticSeg
still improves the PQTh on SemanticKITTI from 65.7% to
68.6%, demonstrating the effectiveness of our framework.

Qualitative results. We provide qualitative comparisons
between the baseline and our GMM-PanopticSeg method
on the SemanticKITTI and the nuScenes datasets in Fig. 4
and Fig. 5, respectively. Note that stuff is assigned a unique
color according to the semantic label and each thing is as-
signed a random color according to the instance ID. We
use black points to represent points that are mapped to
the noise. Two important observations in Fig. 4 and Fig. 5
are noted here. First, large instances are segmented into
multiple fragments by the baseline network. Since the
point clouds on the surface of these large objects are far
from their instance centers, high intra-instance variance
limits the accuracy of previous methods. Second, dense
objects are prone to being assigned wrong instance IDs.
This is because the inter-instance differences for dense ob-
jects are relatively small, making previous methods sensi-
tive to occlusion and noise. By explicitly modeling intra-
instance variance and conducting embedding learning
with instance clustering in an end-to-end framework, our
method produces more accurate segmentation results for
both large and dense objects.

4.3 Ablation studies
To verify the effectiveness of the proposed components
in our framework, we perform ablation studies in this
section. Specifically, we start by reproducing our GMM-
PanopticSeg method from Panoptic-PolarNet step by step,
as shown in Table 4.

Learnable vs. pre-defined Gaussian distribution. One
of the major contributions of our method is to model
the intra-instance variance using Gaussian distributions
characterized with learnable parameters. A straightfor-
ward alternative is to use pre-defined Gaussian distribu-
tions. To validate the effectiveness of our approach, we de-
sign model 1 and model 2 by introducing pre-defined and
learnable Gaussian distributions to the baseline to model
intra-instance variance, respectively. Note that models 1
and 2 use the same heuristic technique as the baseline for
instance segmentation during inference and Gaussian dis-
tributions that are used only for embedding learning dur-
ing the training phase. It is found that pre-defined Gaus-
sian distributions boost the performance of the baseline,
with PQ/mIoU scores improving from 63.2%/67.9% to
64.9%/66.8%. When learnable Gaussian distributions are
employed, model 2 achieves further gains (68.5%/69.1%).
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Table 1 Quantitative results (%) of different approaches on the nuScenes [3] test dataset. PQ means panoptic quality. RQ denotes
recognition quality. SQ represents segmentation quality. mIoU denotes intersection over union. Th represents foreground classes. St

denotes stuff classes. § means our reproduced results. The blue number represents the growth compared to the baseline. The red
number denotes the reduction compared to the baseline

Table 2 Quantitative results (%) of different approaches on the nuScenes [3] validation dataset. PQ means panoptic quality. RQ denotes
recognition quality. SQ represents segmentation quality. mIoU denotes intersection over union. Th represents foreground classes. St

denotes stuff classes. § means our reproduced results. The blue number represents the growth compared to the baseline. The red
number denotes the reduction compared to the baseline

Table 3 Quantitative results (%) of different approaches on the SemanticKITTI [2] validation dataset. PQ means panoptic quality. RQ
denotes recognition quality. SQ represents segmentation quality. mIoU denotes intersection over union. Th represents foreground
classes. St denotes stuff classes. The blue number represents the growth compared to the baseline. The red number denotes the
reduction compared to the baseline

This demonstrates that learnable Gaussian distributions
can better improve the discrimination capability of point
embeddings by explicitly modeling the intra-instance vari-
ance of an object.

With learnable Gaussian distributions, we can also re-
place the heuristic technique in the baseline (i.e., L2 dis-
tance) with the likelihood probability to make better use of
the modeled intra-instance variance. Using the likelihood
probability for instance segmentation during inference,
model 3 further surpasses model 2 with notable improve-
ments (69.6%/71.3%). Due to occlusion and noise in real-
world scenarios, the intra-instance variance may be larger
than inter-instance difference such that heuristic tech-
niques produce limited accuracy. By modeling the intra-
instance variance with Gaussian distributions, the likeli-

hood probability measure is more robust than the other
methods and can better distinguish different instances.

Visualization of learned Gaussian distributions. We fur-
ther visualize learned Gaussian distributions for different
objects in Fig. 6 and two important observations are re-
ported here. First, larger objects (e.g., vehicles) with higher
intra-instance variance have higher variance in their pre-
dicted Gaussian distributions than smaller objects (e.g.,
persons and bicycles). Second, the major axis of the pre-
dicted Gaussian distribution is usually along the long side
of the object (e.g., cars and motorcycles). In summary,
our predicted Gaussian distributions can model the intra-
instance variance well for diverse instances.

End-to-End vs. decoupled optimization. Another major
contribution of our framework is the unified loss function
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Figure 4 Qualitative results on SemanticKITTI. Note that stuff is assigned a unique color according to the semantic label and each thing is assigned a
random color according to the instance ID. We use black points to represent points that are mapped to the noise. The errors made by the baseline
method are indicated by the red circle

Figure 5 Qualitative results on nuScenes. Note that stuff is assigned a unique color according to the semantic label and each thing is assigned a
random color according to the instance ID. We use black points to represent points that are mapped to the noise. The errors made by the baseline
method are indicated by the red circle
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Figure 6 Visualization of the predicted Gaussian distributions on the
SemanticKITTI dataset

Table 4 Ablation studies on the nuScenes validation set. PQ
means panoptic quality. mIoU denotes intersection over union.
L2 means Euclidean norm

Training phase Inference phase PQ(%) mIoU(%)

Gaussian Lprob Measure

Baseline L2 63.2 67.9
1 Predefined � L2 64.9 66.8
2 Learnable � L2 68.5 69.1
3 Learnable � Likelihood 69.6 71.3

Table 5 Ablation studies on the SemanticKITTI validation set. All
values are in [%]. PQ means panoptic quality. mIoU denotes
intersection over union. Th represents foreground classes. St

denotes stuff classes

Optimization PQ PQTh PQSt mIoU

Baseline Decoupled 58.9 65.2 54.3 63.9
4 Decoupled 59.6 67.0 54.3 64.0
5 End-to-End 60.3 68.6 54.3 64.2

that optimizes embedding learning and instance cluster-
ing in an end-to-end manner. To validate its effectiveness,
we have trained our method using two different optimiza-
tion strategies. Specifically, the backbone of model 4 is first
optimized and then frozen to train the subsequent mod-
ules. In contrast, in model 5, all modules are trained to-
gether via end-to-end fusion. Table 5 shows that model 5
outperforms model 4 on most metrics. This demonstrates
the superiority of our end-to-end optimization paradigm
for panoptic segmentation.

Comparison of clustering methods. We compare our
method with Meanshift, PHM [14] and LHM [12] in Ta-
ble 6. The result of using ground truth instance labels is
also provided. The same semantic branch is used for fair

Table 6 Results on the SemanticKITTI validation set. PQ means
panoptic quality

MeanShift LHM [12] PHM [14] Ours GT

PQ(%) 56.2 59.1 59.8 60.0 60.1

Table 7 Computational consumption on SemanticKITTI. Params
means parameters. FLOPs denotes floating point operations

With DEM Params(M) FLOPs(G)

13.12 123.7
� 13.17 131.3

comparison. Our method outperforms existing clustering-
based methods while being very close to the ground truth.
We can also observe that even if the instance labels are
replaced by ground truth labels, the PQ does not change
much. This also explains why our method does not sig-
nificantly improve the PQ score on the SemanticKITTI
dataset.

Computational consumption. In our design, we only feed
points predicted as things to the DEM. This design has the
same effect as feeding the complete points but helps min-
imize the computational cost. The inference cost is pre-
sented in Table 7. We measure the average inference cost
of our method with Panoptic-PolarNet as the backbone on
SemanticKITTI. The DEM is tiny, and the additional com-
putational consumption is focused mainly on calculating
the probability of each point in each distribution.

5 Conclusion
In this paper, we introduce a Gaussian mixture model for
3D panoptic segmentation and employ learnable Gaussian
distributions to capture the intra-instance variance of dif-
ferent objects. In addition, we propose an end-to-end loss
function for the joint optimization of embedding learning
and instance clustering. Extensive experiments on differ-
ent benchmark datasets and backbones validate the effec-
tiveness of the proposed method.

Abbreviations
BEV, bird’s-eye-view; DEM, distribution estimation module; FLOP, floating point
operations per second; GCNN, graph convolutional neural networks; GMM,
Gaussian mixture model; GPU, graphics processing unit; GT, ground truth; L2,
Euclidean norm; LHM, learnable heatmap; mIoU, mean intersection over union;
MLP, multi-layer perceptron; NLL, negative log-likelihood; PHM, pseudo
heatmap; PQ, panoptic quality; RQ, recognition quality; SOTA, state-of-the-art;
SQ, segmentation quality.
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