
Visual
Intelligence

Sun et al. Visual Intelligence             (2024) 2:9 
https://doi.org/10.1007/s44267-024-00042-1

R E V I E W Open Access

Recent advances in implicit
representation-based 3D shape generation
Jia-Mu Sun1,2 , Tong Wu1,2 and Lin Gao1,2*

Abstract
Various techniques have been developed and introduced to address the pressing need to create three-dimensional
(3D) content for advanced applications such as virtual reality and augmented reality. However, the intricate nature of
3D shapes poses a greater challenge to their representation and generation than standard two-dimensional (2D)
image data. Different types of representations have been proposed in the literature, including meshes, voxels and
implicit functions. Implicit representations have attracted considerable interest from researchers due to the
emergence of the radiance field representation, which allows the simultaneous reconstruction of both geometry
and appearance. Subsequent work has successfully linked traditional signed distance fields to implicit
representations, and more recently the triplane has offered the possibility of generating radiance fields using 2D
content generators. Many articles have been published focusing on these particular areas of research. This paper
provides a comprehensive analysis of recent studies on implicit representation-based 3D shape generation,
classifying these studies based on the representation and generation architecture employed. The attributes of each
representation are examined in detail. Potential avenues for future research in this area are also suggested.
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1 Introduction
In recent years, the demand for three-dimensional (3D)
content has reached an unprecedented level as virtual real-
ity (VR) and augmented reality (AR) applications have be-
come increasingly influential. Fancy terms such as Meta-
verse and digital human are being created and used in dif-
ferent contexts. However, it is a challenge to acquire the
vast amount of 3D content that is needed to build these
applications. Traditional approaches to creating 3D shapes
rely heavily on trained artists and are struggling to keep
up with the growing demand. To solve this problem, var-
ious methods have been proposed to generate 3D shapes,
making 3D content generation an active area of computer
graphics and computer vision.
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However, the inherent complexity and variety of 3D
data makes 3D content generation a difficult task. Unlike
two-dimensional (2D) data, which can be effectively rep-
resented by an array, a number of representations have
been proposed for 3D content generation. These repre-
sentations include meshes, voxels, point clouds, structures
(or primitives), deformation-based representations, multi-
view images, and implicit representations [1, 2]. Many
methods and architectures for 3D content generation have
been built on top of these representations. Traditionally,
researchers have focused on explicit representations such
as meshes, voxels, and point clouds [3–5] because they are
easy to render and edit. With the rapid development of
deep learning and neural networks, function-based im-
plicit representations have become popular [6–9] since
neural networks can be flawlessly transferred to an im-
plicit function. It has been observed that these methods
enhanced by deep learning outperform traditional meth-
ods. However, these methods omit the appearance of 3D
shapes, and they often need abundant ground truth 3D
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data. Led by the pioneering work [10], neural radiance
fields (NeRFs) are rapidly gaining attention for their abil-
ity to learn and generate appearance along with geome-
try from just a few multi-view images [11, 12]. Further-
more, EG3D [13] shows the possibility of compressing the
3D representation of NeRF into three feature planes (tri-
planes). More recently, Dreamfusion [14] and a series of
follow-up works have taken advantage of the power of 2D
diffusion models [15] and generated NeRFs from multi-
modal conditions. These studies have contributed to the
increasing popularity of 3D shape generation using im-
plicit representation. Existing surveys [1, 2] usually involve
generating implicit shapes along with other types of rep-
resentations such as meshes and point clouds, and they
are generally based on works published before 2022. How-
ever, recent developments in the above-mentioned meth-
ods for generating 3D content have led to numerous stud-
ies, achieving high-quality generation results. The wealth
of work can also be confusing for researchers attempting to
get involved. Therefore, a comprehensive survey of recent
work is needed.

In this survey, we focus on recently proposed implicit
representation-based 3D shape generation methods. We
categorize the implicit representations actively used in the
literature into three types: signed distance fields, radiance
fields, and triplanes. In Sect. 2, we will first introduce these
popular representations, and then we describe various ar-
chitectures used to generate geometry from these repre-
sentations. In Sect. 3, we will list and analyze works accord-
ing to these representations and architectures. In Sect. 4,
we present some open problems and future research direc-
tions and finally draw conclusions.

2 Background
In this section, we briefly introduce the preliminary knowl-
edge of implicit 3D shape generation. Section 2.1 describes
three different implicit representations: the signed dis-
tance field, radiance field, and triplane, and Sect. 2.2 covers
some commonly used deep learning methods used to gen-
erate 3D data.

2.1 Implicit representation of 3D shapes
2.1.1 Signed distance fields (SDFs)
Signed distance fields (SDFs) are essentially functions de-
fined in 3D space: f (x) : R3 →R. The level set of this func-
tion S = {s|s ∈R

3, f (s) = 0} is the surface of the underlying
3D geometry, and |f (x)| for any other points represents the
minimum distance from x to S . The sign of f (x) is posi-
tive if x lies inside S and negative otherwise. As a function,
SDF is more flexible than the common explicit representa-
tions such as point clouds or meshes, and inherently allows
topology manipulations such as constructive solid geom-
etry (CSG) operations. Moreover, SDF allows the use of a

technique known as “sphere tracing” [16], which can accel-
erate the rendering of path tracing. Owing to these prop-
erties, SDF is popular in several areas of computer graph-
ics literature. SDF can be easily transformed to meshes us-
ing algorithms such as Marching Cubes [17], and this pro-
cess is performed by means of deep marching tetrahedra
(DMTet) [18]. DMTet can be used as a bridge between SDF
and mesh, enabling much previous work such as neural
rendering built on meshes to be transferred to SDF. We
include this type of work in signed distance field-based 3D
content generation, since the underlying representation is
SDF.

2.1.2 Radiance fields (RFs)
Radiance fields (RFs) are a pair of functions: c(x) : R3 →
[0, 1]3 and d(x) : R3 → [0, +∞]. c and d are the radiance
color and density of a point, respectively. They can be ren-
dered by volume rendering and ray marching algorithms
[19]. RFs are often accompanied by a positional encoding
e(x) = (sin(20πx, cos(20πx), . . . , sin(2L–1πx, cos(2L–1πx)),
where L is a hyperparameter controlling the dimension
of the embedding layer. Positional encoding is the key for
RFs to reconstruct high-frequency features of the geome-
try. The use of the radiance field as a representation was
introduced in Ref. [10]. Although recently proposed, it has
gained surprising popularity due to its ability to accurately
reconstruct 3D geometry from only a few sparse multi-
view images. However, the density field used by vanilla RFs
struggles to define a clear surface for the geometry, limit-
ing the fidelity of RFs as a representation. To solve this
problem, VolSDF [20] and NeuS [21] use SDFs as the ge-
ometry and propose algorithms to transfer SDF values to
the weight of volume rendering. Although they use SDFs,
we regard works built upon them as radiance field-based
works because they preserve the volume rendering and
positional encoding techniques of RFs.

2.1.3 Triplanes
Triplanes are three 2D feature planes, each of which is rep-
resented by a N × N × C, where N is the resolution of
the feature planes, and C is the channel number of the
feature planes. The three planes can be denoted by Fxy,
Fxz and Fyz since they are placed perpendicular to each
other in 3D space, aligning to xy, xz and yz planes. The
rendering of triplane-based geometry also uses ray march-
ing. In contrast to RFs, the sample points are directly pro-
jected to Fxy, Fxz and Fyz to sample the features via bilin-
ear interpolation. Three sampled features are then con-
catenated and fed to a small multi-layer perceptron (MLP).
The output of the MLP is often density or SDF values
and color values, following the convention of RFs. Triplane
was introduced by EG3D [13] in 2022, and the initial pur-
pose of the triplane is shape generation. Given that tri-
planes and RFs often appear together, one can easily cat-
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Figure 1 A brief timeline of implicit representation based 3D shape generation

egorize triplanes into another “trick” in RFs such as posi-
tional encoding, but we decide to list these triplanes in-
dependently as a representation because: 1) Triplanes can
be directly generated from random noise or latent vectors
by utilizing methods like StyleGAN [22]. 2) Triplanes can
be transferred to other function-based implicit represen-
tations such as occupancy fields by modifying the head
of the MLP. 3) A great deal of recent work is built based
on triplanes, so it makes sense to create a category for
them when reviewing. Note that the SDF-based generation
method is only capable of generating shapes, while the RF-
or triplane-based methods can generate both shapes and
appearances simultaneously due to their ability to combine
the color with the geometry in an implicit neural field.

2.2 Architectures for 3D shape generation
2.2.1 Generative Adversarial Networks (GANs)
Generative adversarial networks (GANs) [23] consist of a
pair of neural networks. One is called the generator and
the other is called the discriminator. The generator pro-
duces a data sample from a random noise or a condition,
while the discriminator takes the sample and tries to dis-
tinguish it from the data taken from the real distribution.
The generator and the discriminator are trained simulta-
neously, which is why they are called adversarial networks.
GANs are flexible and can be used to generate both 2D and
3D data under various conditions.

2.2.2 Variational autoencoders (VAEs)
Variational autoencoders (VAEs) [24] are encoder-decoder
structures, in which the encoder compresses data samples
to a latent vector z, and the decoder maps it back to the
sample. A good feature of the VAEs is the space that con-
tains the latent vectors. When VAE is trained, the latent
space is naturally obtained and can be used as an embed-
ding of the original data distribution, supporting opera-
tions such as interpolation. In this context, VAEs are more
controllable than GANs.

2.2.3 Diffusion models (DMs)
Diffusion models (DMs) [25] generate data by assuming a
noise of the same dimension as the data and iteratively “de-
noising” it using the same network. During training, Gaus-
sian noise is added to the real data, and the network is su-
pervised to recover the data from the noisy data by pre-
dicting the added noise. Since performance of the original
model in the data space is slow, the latent diffusion model
[15] runs the DM in the latent space and uses an encoder-
decoder structure to link the latent space to the data space.

2.2.4 2D-to-3D models
2D-to-3D models are special kind of models introduced
by Dreamfusion [14]. It takes advantage of the pre-trained
large latent diffusion models such as stable diffusion [15]
available on the Internet and RFs that can reconstruct 3D
shapes from a few 2D images. These models typically uti-
lize a kind of loss like the score distillation sampling (SDS)
loss [14] to obtain the gradient from the frozen latent dif-
fusion models (LDMs), using it to update the weight of the
NeRF.

3 Generation of implicit shapes
In this section, we review in detail recent work on implicit
representation-based 3D shape generation. We categorize
the works according to the type of representation they use,
including signed distance fields (Sect. 3.1), radiance fields
(Sect. 3.2), and triplanes (Sect. 3.3). A brief timeline of the
generation of implicit shapes is shown in Fig. 1.

3.1 Signed distance field-based shape generation
Signed distance fields implicitly represent shapes by pre-
dicting the distance values for sample points in the 3D
space. The distance values’ signs provide inside-outside in-
formation indicating which points are inside the surface
and which are outside. These distance values can also be
fed to the Marching Cubes algorithm [17] to extract an ex-
plicit triangle mesh. In Table 1, we briefly categorize shape-
generating methods based on SDF according to the gener-
ation architecture and type of the generated results.
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Table 1 Overview of works based on SDFs according to the
generator and the generated results. GAN stands for generative
adversarial network, VAE for variational autoencoders, and DM for
diffusion models

Generated results Generator architectures

GAN & VAE DM

General objects [6, 7, 9, 26] [27–33]
Human bodies [34, 35] –
Human faces [36] –

3.1.1 GANs and VAEs
With the emergence of SDF, several pioneering works
started to represent and generate 3D shapes using the SDF
representation. Two concurrent works [8, 9] model the
3D space with occupancy grids where 1 represents inside
and 0 represents outside. Later, a convolution-based oc-
cupancy network [37] predicts learnable features defined
in the volume space or on multiple planes from an in-
put point cloud, and the signed distance value of a sam-
ple point is determined by the interpolated features and a
decoder network. Instead of modeling the whole shape at
once, BAE-Net [38] and BSP-Net [26] learn to segment and
reconstruct shape parts in an unsupervised manner based
on IM-Net [9]. RIM-Net [39] also decomposes shapes into
multiple parts but further predicts hierarchical structure.
With the availability of fine-grained segmentation datasets
[40, 41], researchers [42] have started to model shape ge-
ometry at the part level to capture more details where each
part is represented by a latent vector and an occupancy
decoder and when generating shapes, these parts are gen-
erated sequentially by an RNN network. SDF is a contin-
uous version of occupancy grids that can represent more
geometry details. DeepSDF [6] was the first to use SDF
to represent a 3D shape and it uses an auto-decoder ar-
chitecture to jointly optimize the latent vectors and the
decoder network. To improve the generation and recon-
struction quality, PIFu [34] and PIFuHD [35] propose ex-
tracting pixel-aligned features from human body images
as extra outputs for the decoder network. DISN [7] shares
a similar idea but focuses on general 3D objects. D2IM-
Net [43] reconstructs and generates more geometric de-
tails by separating the signed distance field learning as a
base signed distance field and a displacement value. SDF-
StyleGAN [44] extends the 2D StyleGAN [22] to 3D and
both global and local discriminators are deployed to en-
sure the generation quality. To reduce the flexibility of
generated shapes, template-based methods [45, 46] have
been proposed for modeling shapes in a specific category
with a template signed distance field and a displacement
field. With the discrete encoding [47] becoming popular
in data compression, ShapeFormer [48] learns to gener-
ate 3D shapes from incomplete point cloud data by first
encoding the incomplete data as incomplete discrete in-
dices using VQ-VAE [47] and a transformer network [49]

to fill the missing indices. AutoSDF [50] shares a similar
idea but splits the whole 3D space into multiple 3D grids
and encodes these grids as indices of the codebook in VQ-
VAE [47]. A transformer network later takes the indices
sequence as input and generates them auto-regressively.
AutoSDF [50] allows not only the completion of shapes
from incomplete data, but also the generation of random
shapes. Apart from geometry generation, TextureFields
[51] was the first to explore texture generation based on
image and shape conditions, but it can synthesize only the
rendered results of a given shape because both geometry
and texture are implicit. To obtain explicit geometry and
texture, DVR [52] represents geometry and texture with a
single latent vector and uses an occupancy function and a
texture function to predict the occupancy value and tex-
ture color for a sample point. AUV-Net [53] moves a step
forward to learn an aligned UV parameterization network
for shapes in the same category to allow seamless texture
generation and transfer.

3.1.2 Diffusion
With recent advances in generative modeling with diffu-
sion models, LION [27] applies the diffusion model to the
3D domain but takes point clouds as its 3D representa-
tion. MeshDiffusion [28] was the first to extend the dif-
fusion model to an implicit representation. It represents
the 3D shape with the Deep Marching Tetrahedra [18]. Li
et. al. [30] proposed encoding local patches of 3D shapes
into the voxel grids and training the diffusion model on
a 3D grid. SDF-Diffusion [29] reduces the learning diffi-
culty by first training a diffusion model on a low-resolution
grid and performing a patch-based super-resolution to in-
troduce additional geometric details. NeuralWaveletDiffu-
sion [31] and NeuralWaveletDiffusion++ [32] instead con-
vert the 3D signed distance volume into coefficient vol-
umes using multi-scale wavelet decomposition. The dif-
fusion model first generates a coarse coefficient volume
and a detailed predictor models the geometric details.
LAS-Diffusion [33] also uses a coarse-to-fine generation
paradigm. It first trains an occupancy diffusion network to
generate a sparse voxel grid and subdivide it into a voxel
grid with higher resolution. Later, an SDF diffusion net-
work is optimized to generate local details. Diffusion-SDF
[54] first encodes shapes into triplane features and fur-
ther compresses them into a compact latent vector. The
diffusion model learns to generate 3D shapes by gener-
ating the latent vector. As regular grids and global latent
code are proven less expressive in geometric modeling,
3DShape2VecSet [55] proposes representing a 3D shape
with a set of latent vectors distributed irregularly in the
3D space. The feature of a sample point used to predict
the occupancy value is determined by querying features
from the set of latent vectors with a cross-attention layer.
The diffusion model takes multiple sets of latent vectors
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as training data to generate a plausible set of latent vec-
tors, which is decoded as a 3D shape. HyperDiffusion [56]
overfits each 3D shape in a training set with an occupancy
network and represents one with the optimized parame-
ters in the occupancy network. Later, the parameters are
taken as the training data for the diffusion model, which
also means that the diffusion model operates in a “hyper”
space.

3.1.3 Summary
SDF is a fundamental implicit representation of 3D shapes.
Many works take SDF as its representation for geome-
try reconstruction and generation tasks. One advantage
of SDF is that it provides clear inside-outside informa-
tion that can be used to extract an explicit surface. This
property can be well integrated into the geometry recon-
struction pipeline. However, such a representation also has
limitations. For example, it is difficult to represent thin
structures or open surfaces using the SDF representation.
Hence, introducing a more flexible and general representa-
tion like unsigned distance field [57] is a possible direction.

3.2 Radiance field-based shape generation
Radiance fields model the appearance and geometry of 3D
shapes by using volume rendering (ray marching) algo-
rithms and positional encoding [10]. This technique can
efficiently reconstruct geometry given only a few multi-
view posed images. To achieve higher geometry quality,
NeuS [21] and VolSDF [20] extend radiance fields by us-
ing SDF instead of density as the geometry. In Table 2,
we briefly categorize shape generation methods based on
NeRF according to the generation architecture and the
type of results generated.

3.2.1 GANs and VAEs
The first attempt to generate radiance fields is GRAF [11].
The generator of the GRAF is simply a “conditional” NeRF,
which takes a random noise in addition to the positional
encoding to render a random patch of the full image,
and the patch is fed into the discriminator. NeRF-VAE
[58] bases its generative model on VAE and uses mul-
tiple scenes to train the VAE. On the other hand, pi-
GAN [59] replaces the activation function with trigono-
metric functions as proposed by SIREN [97], while avoid-
ing convolution-based networks. GIRAFFE [12] extends

Table 2 Overview of works based on NeRFs according to the
generator and the generated results

Generated results Generator architectures

GAN & VAE DM 2D-to-3D

General objects [11, 12, 36, 58–66] [67–70] [14, 71–81]
Human bodies [82] – [83]
Human faces [84–92] – –
Scenes [93, 94] – [95, 96]

GRAF by implementing the disentanglement of geometry
and appearance features and by considering the scene in a
compositional manner.

Wang et al. [60] utilized template and deformation fields
on geometry to control the shape generation. VolumeGAN
[61] introduces a feature volume and uses volume render-
ing to map it into the image space. GIRRAFFE HD [62]
further improves the resolution of the generated image by
using the super-resolution module [22]. Xu et al. [63] pro-
posed another extension to the GRAF. To improve the fi-
delity of the generated geometry, they added a progressive
sampling strategy to the GRAF. ShadeGAN [64] uses the
consistency under multiple lighting conditions as a fur-
ther constraint on the generation of shadows. StyleNeRF
adopts the super-resolution of StyleGAN [22] to improve
3D consistency. This method uses a novel regularization
loss and upsampler. StyleSDF [36] replaces the original
density field of NeRF with SDF, and simultaneously ren-
ders a low-resolution image and a 2D feature map. The
feature map is transferred to a high-resolution image with
the 2D generator. Persistent Nature [93] participates in the
terrain with a grid and uses an upsampler to generate fine-
grained geometry. Discoscene [94] generates large scenes
from a layout prior that consists of labeled bounding boxes
and generates radiance fields in the boxes. GRAM [65]
combines the primitive-based method and radiance fields,
generating multiple manifolds and their radiance. Volume
rendering is modified by directly integrating the radiance
of these manifolds. GVP [66] is based on the same idea as
GRAM, predicting multiple primitives with radiance fields
defined in them. Apart from the works above that focus on
generating “general” 3D shapes, generating human faces or
bodies (or called “avatars”) is also an active topic. Multi-
NeuS [84] attempts to directly generate 3D heads repre-
sented by SDF field of NeuS. Tewari et al. [85] further dis-
entangled the face geometry and appearance by predict-
ing a deformation field and an appearance network. Tang
et al. [86] used an explicit parametric face model for better
control of the generated faces. Volux-GAN [87] incorpo-
rates lighting in 3D face synthesis by using an environment
map and decomposing the material, achieving relighting
in the synthesized models. AnifaceGAN [88] generates a
movable 3D face, using different codes to generate tem-
plate and deformation fields and an imitation loss. EVA3D
[82] introduces the SMPL human body prior, segments
the human body into multiple bounding boxes, and subse-
quently generates radiance fields inside them. MetaHead
[89] and GANHead [90] introduce additional priors such
as semantic labels and FLAME representations to gener-
ate 3D human heads. GeneFace [91] and GeneFace++ [92]
control talking faces directly with audio by controlling fa-
cial landmarks, and then the landmarks are used to control
3D faces.
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3.2.2 Diffusion models
Recently, diffusion models have rapidly gained popularity
since the proposal of LDM [15]. However, it is not easy to
directly apply DMs to generate radiance fields: as a func-
tion, it is difficult to directly add noise to the RF. One of
the methods for applying DMs is to use voxel-based radi-
ance fields [67]. It utilizes the base NeRF model following
the voxel-grid-based representations such as DVGO [98].
Voxel-based radiance field representations are fast to ren-
der, and 3D UNets can be used to implement the diffusion
process. Holodiffusion [68] also adopts voxel grid repre-
sentation for diffusion. They use a single 2D image as a
prior and utilize a diffusion model to generate 3D shapes.
Another type of diffusion model for RFs involves diffu-
sion on latent vectors and the use of a conditional NeRF
that maps a latent code to 3D shapes. 3D-CLFusion [69]
combines the CLIP encoder and diffusion model. This ap-
proach enables the model to use both images and text as
input conditions. Neuralfield-LDM [70] modifies the dif-
fusion model to be “hierarchical”, taking 1D, 2D, and 3D la-
tent features simultaneously. It also trains an autoencoder
to obtain these features from NeRFs.

3.2.3 2D-to-3D
2D-to-3D models are a “special” category of models, which
basically take advantage of the publicly available large pre-
trained diffusion models. All of these methods can inherit
all the features of the large DMs such as multi-modal in-
formation and generate almost all types of objects. The pi-
oneering work of 2D-to-3D models is Dreamfusion [14].
To distill 2D generation models to 3D, Dreamfusion needs
to train a NeRF for every generated object by minimizing
the SDS loss. The SDS loss takes the gradient of the U-Net
out of the original diffusion loss, which is proven to be ef-
fective. However, multiple problems associated with SDS
loss have been observed: 1) The method needs to optimize
a NeRF every time it generates a shape, limiting the gen-
eration speed. 2) The underlying stable diffusion does not
have pose priors, introducing ambiguity to the generated
geometry. This may cause multiple artifacts such as the
“Janus Problem”, low-detailed geometry, or over-smooth
geometry. 3) The appearance problem. In order to make
the network with SDS loss converge, the guidance weight
of the SDS is set high. This can lead to overly saturated
colors in the generated shapes, making them look “car-
toonish” and unrealistic. To address these problems, sev-
eral improvements have been proposed. Latent-NeRF [71]
uses a feature space NeRF instead of an image space to
better connect stable-diffusion [15], which is the state-of-
the-art guidance model used in 2D-to-3D methods. Perp-
Neg [99] attempts to solve the “Janus problem” by using
negative prompts in the diffusion model to make it faith-
fully produce images with desired views. SJC [72] has pro-
posed another loss term that is similar but not identical

to SDS and provides a clearer deduction of the loss. Pro-
lificDreamer [73] replaces the SDS loss with the variational
score distillation (VSD) loss and proves that the VSD loss
is more generic and produces high-quality shapes. This
modified version of SDS loss can partially solve the low-
detail or over-smooth problem of dreamfusion. Magic3D
[74] extends Dreamfusion to a two-stage coarse-to-fine
approach using a mesh prior, improving the generation
quality. Fantasia3D [75] also leverages a mesh prior and
a two-stage pipeline, and further decomposes the material
into PBR components. The two-stage methods can serve
as a solution to the unrealistic appearance problem men-
tioned earlier, as they can individually optimize the ap-
pearance, reducing the need for 3D guidance. It can also
potentially solve the geometry problem since the extracted
mesh can serve as a template and a strong prior, mak-
ing it easy for the diffusion model of refinement stages to
guide optimization. Apart from the pure text-guided ver-
sion, a single image or a few images’ prior conditions can
be applied. NeRDi [76] generates 3D shapes from diffusion
prior and single image, but it relies on an “inverse process”
by narrowing priors from visual cues and textual descrip-
tions. Dream3D [77] uses both CLIP and diffusion model
priors for generation. Dreambooth3D [78] uses a three-
stage strategy that combines text-to-image and text-to-3D
methods to gradually refine the generated NeRF. Zero-
1-to-3 [79] tries to solve the ambiguity pose problem by
controlling the camera pose of generated views via diffu-
sion models. Make-It-3D [100] also uses a two-step strat-
egy: First, it transforms the single image with an estimated
depth predicted by off-the-shelf methods into a radiance
field and then uses a diffusion model prior to refine the ge-
ometry. 3DFuse [80] improves the 3D consistency of gen-
erated shapes by feeding the diffusion model with a gen-
erated depth map. Apart from generating a single shape,
scenes containing multiple shapes can be generated by 2D-
to-3D methods. Po and Wetzstein [95] considered the text
input and bounding boxes of multiple objects at the same
time. The bounding boxes are used as masks in render-
ing, and every object is “merged” using the masks, and the
whole image is used to compute the SDS loss. CompoN-
eRF [96] also utilizes a bounding-box-based scene com-
position convention, but it applies SDS loss to both the
local (inside bounding box) and global geometry. The lo-
cal radiance fields are “projected” to a global MLP in the
joint training process. Other works have focused on gen-
erating dynamic scenes or human avatars using 2D-to-3D
methods. DreamTime [81] generates dynamic scenes using
timestep sampling with non-increasing functions when
optimizing NeRF from the SDS. DreamAvatar [83] utilizes
SMPL [101] parameters and text input, and uses SDS loss
for both canonical space and observation space to generate
a NeRF model.
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3.2.4 Summary
The NeRF algorithm was the origin of the recent “explo-
sion” of 3D shape generation work. It is easy to see that
NeRF can fuse the geometry and appearance of objects
into neural networks while preserving quality. Due to its
simplicity, one can combine NeRF with various generator
architectures and obtain decent results. However, NeRF
also has some disadvantages. Even with multiple acceler-
ation methods such as instant-ngp [102], it is still diffi-
cult to render NeRF completely as a mesh in real time,
which affects the performance of various 2D-to-3D gen-
eration methods. The all-MLP architecture of NeRF also
poses challenges in the case of editing, filtering, and post-
processing. This difficulty also prevents subtle control
when generating them. Finally, the relatively high dimen-
sionality (5D) of the NeRF input can cause artifacts like
floaters due to overfitting.

3.3 Triplane-based shape generation
As a representation, triplanes are newly introduced by
EG3D [13], which is dedicated to the generation of high
quality human head geometry. EG3D proves that the 3D
data of radiance fields can be effectively compressed into
three 2D feature maps, which can be directly generated by
StyleGAN [22]. During rendering, three features from the
maps are sampled from feature planes, concatenated, and
fed into downstream networks. Exploring the potential of
triplane representation has recently been a popular topic.
In Table 3, we briefly categorize shape-generating methods
based on triplanes according to the generating architecture
and types of the generated results.

3.3.1 GANs, VAEs and 2D-to-3D
In the pioneering work on triplanes, EG3D [13] uses a
StyleGAN [22] structure to generate the triplane and stan-
dard NeRF-like volume rendering techniques. Noguchi
[115] extends EG3D and its GAN+triplane method to ar-
ticulated humans. Avatargen [116] leverages SMPL [101]
prior to generate controllable humans. EpiGRAF [103] re-
moves the upsampler of EG3D and trains the GAN in
patches to improve the fidelity of generation. IDE-3D [118]
extends EG3D by utilizing different geometry and texture
codes, and employs a sophisticated generator, encoder, and
GAN inversion techniques. NeRFFaceEditing [119] fur-
ther enhances IDE-3D. This approach enables fine-grained

Table 3 Overview of works based on triplanes according to the
generator and the generated results

Generated results Generator architectures

GAN & VAE & 2D-to-3D DM

General objects [103–109] [110–114]
Human bodies [115–117] –
Human faces [13, 118–128] [129]
Scenes [130] –

editing of generation results by utilizing appearance codes
and semantic masks. DATID-3D [120] aims to transfer
EG3D to another domain, e.g., animation. They use a pre-
trained text-to-image model to generate a new dataset and
use the refined dataset to transfer the underlying EG3D
model. PODIA-3D [121] extends DATID-3D. They mod-
ify the diffusion model to make it pose-aware and use
a debiasing module based on text. GET3D [104] gener-
ates a triplane over a GAN and then replaces the MLP to
make it predict texture values, and the geometry is gen-
erated via a tetrahedron-based proxy mesh. Finally, they
use DMTet [18] to extract triangular mesh from the SDF.
SinGRAF [130] generates a 3D shape from the pattern of
a specific scene, providing a single image of the scene.
Next3D [122] extends the EG3D to generate animated
faces. It uses two triplanes, one of which is used to de-
form the static geometry. Moreover, PV3D [123] gener-
ates dynamic videos. It extends triplanes, and separates
appearance codes and motion codes, ensuring consistent
motion. MAV3D [105] extends 2D-to-3D generation to
dynamic scenes. They use the “hexplane” representation,
incorporating the time axis. SDS loss is applied to both
the static image and the dynamic video. TAPS3D [106]
extends GET3D to allow text-to-3D generation via a cap-
tion generation module and CLIP. Geometry and texture
are modeled with different triplanes. Skorokhodov et al.
[107] considered arbitrary cameras and utilized depth pri-
ors. This approach can generate more diverse and chal-
lenging datasets such as ImageNet [131]. LumiGAN [124]
generates geometry and albedo, specular tint, and visibility
at the same time using triplane representation, and uses SH
light to render the head instead of using the original NeRF
method. NeRFFaceLighting [125] uses separate shading,
geometry and albedo triplanes, in which the shading tri-
plane is conditioned on SH lighting. The lighting and ren-
dering are separately fed into discriminators. A regulariza-
tion method is used to enhance generalizability of the al-
gorithm. PanoHead [126] generates 3D human heads from
360° full head images, using a self-adaptive image align-
ment and a tri-grid volume to solve the “mirrored face”
artifact of EG3D. Head3D [127] utilizes a teacher-student
distillation technique and a dual-discriminator structure
to solve the front-back gap for full-head generation present
in EG3D-based methods. GINA-3D [108] decouples rep-
resentation learning and generation, and uses VAE to map
input images to latent feature represented by triplanes us-
ing quantization, cross-attention, and neural rendering.
Trevithick et al [128] generated 3D heads with a single im-
age prior at real-time speed, eliminating the costly gen-
erator at inference time. Additionally, they used encoders
and Vit modules to generate triplanes. AG3D [117] sep-
arately generates canonical humans and poses (via defor-
mation), and uses multiple discriminators of normal and
rendered images (there are also different discriminators of
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whole body and face). Zhu et al [109] based their method
on GET3D with the aim of applying the trained model to
another domain using silhouette images.

3.3.2 Diffusion models
Recently, diffusion models have received considerable at-
tention because of their ability to generate high-quality
2D data. On the other hand, triplanes can compress 3D
data into 2D data, making the combination of DMs and
triplanes natural. RenderDiffusion [110] uses the diffusion
model as the backbone and a single image as a condition.
For every denoising step in the diffusion model, the image
is encoded into a triplane and rendered back to a denoised
image via volume rendering. Rodin [129] is another pio-
neering study that proposes a roll-out diffusion network
that can perform 3D-aware diffusion and take advantage
of multi-modal conditions. 3DGen [111] is an extension
of Rodin that uses a VAE to obtain a latent space and a
diffusion model to generate latent features. NerfDiff [112]
uses a camera-aligned triplane to solve the ambiguity in
depth. The rendered images are fed from the generated tri-
plane back into the diffusion model to improve the gener-
ation quality. SSDNeRF [113] directly applies the diffusion
model to triplane representations. They jointly learn the
diffusion model and a decoder that can render the triplane
into a NeRF, and the joint learning process enables single-
view reconstruction. Gu et al. [114] combined components
of VAE, GAN, and diffusion models, using a GAN to learn
a latent code triplane and train a diffusion model on this
triplane. The model can use both “condition” via the en-
coder and “guidance” via the diffusion model.

3.3.3 Summary
In contrast to the 3D nature of SDF and NeRF, the triplane
compresses 3D data into three 2D planes and proves that
these planes contain most of the information needed to re-
construct high-quality 3D shapes. This approach enables
various methods to leverage 2D generators for 3D data,
increasing generation speed and simplifying the design of
the pipeline. However, in addition to the high quality of
generation in the areas of human faces and avatars, which
come with strong priors, the quality of general objects gen-
erated by triplanes seems slightly lower. There is also a
lack of work dedicated to the generation of large-scale and
multi-object scenes based on triplanes. It may take more
time for researchers to realize the full potential of the tri-
plane as an individual representation.

4 Discussion
After reviewing recent work on implicit representation-
based 3D shape generation, we will now discuss some of
the open problems and future directions in this area.

4.1 3D shape generation with higher quality
Implicit representations of 3D shapes often utilize a lear-
ned function to cover all the details of the geometry. How-
ever, this pipeline still struggles to generate high-fidelity
fine-grained geometry. This is caused by both the limita-
tions of the representation itself (the low-frequency pass
feature of the MLP network and the inherent ambiguity
of implicit representation) and the design of the architec-
ture (the difficulty of designing the discriminator of the
GAN, the “blurry” generation of VAE and the high com-
putational cost of diffusion). Despite the problem of geo-
metric quality, the appearance of the generated shapes also
needs improvement. Radiance fields or 2D-to-3D genera-
tion architectures seem to be good choices for generating
appearances along with geometry, but methods to thor-
oughly control the appearance of generation are still lack-
ing.

4.2 Faster 3D shape generation
Radiance fields have various advantages as a representa-
tion. However, the rendering speed of RFs is not very sat-
isfactory: it takes minutes to render a view of vanilla NeRF.
In terms of generation speed, early work directly generat-
ing RFs or SDFs by using GAN or VAE can perform tasks
at a relatively high speed, but the quality is undesirable. Re-
cent work that is based on a 2D-to-3D generation pipeline
usually needs to optimize a radiance field for each gener-
ated shape, taking approximately 30 minutes for a single
shape. The use of three planes may provide a good balance
between speed and quality, but rendering triplane-based
shapes also rquires ray marching at a high cost. Generat-
ing and rendering implicit 3D shapes at real-time speed is
still an open problem.

4.3 3D shape generation on a larger scale
The difficulty of generating large-scale implicit 3D shapes
is twofold: 1) Implicit representation is obviously not a sat-
isfactory choice for large scenes. They often require some
sort of “range for variables” to make the function easier to
learn, making it difficult to balance between the range and
the scene scale. 2) The generation pipeline for large scenes
is difficult to design, since it requires a holistic understand-
ing of the scene, preventing access to the usual local patch-
based method. It is useful to generate large scenes since
downstream applications such as robotics or autonomous
driving require this type of scene. Splitting the large scenes
into smaller scenes [96] may be a solution, and we believe
that there is research to be done in this area.

4.4 Combination with other representations
This survey focuses on implicit representations, but other
representations such as mesh, point cloud, or structure-
based and “procedural” [132] representations also have
significant advantages. Recently, several studies such as
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Neumesh [133] or DE-NeRF [134] have combined implicit
and explicit representations to improve editing. These
works requires a mesh for input, which can be obtained
by off-the-shelf reconstruction methods [21] or from pri-
ors such as SMPL mesh [101]. This combination can pro-
vide implicit representations with topological priors, and
utilize both higher geometry quality and better local edit-
ing. In the field of 3D shape generation, works like GET3D
[104] also try to utilize traditional “mesh and texture” for
generation and achieve good performance by transform-
ing implicit representations to explicit mesh using differ-
entiable middlewares such as deep marching tetrahedra
[18]. In general, the combination of multiple representa-
tions for 3D content creation is a topic that is well worth
exploration.

5 Conclusion
This survey has reviewed recent advances in 3D shape
generation methods based on implicit representations. We
begin with an introduction to the most commonly used
implicit representations and generation architectures. We
then review the recent work on implicit representation
based 3D shape generation in detail. We categorize these
studies according to the type of 3D representation they
use, including signed distance fields, radiance fields, and
triplanes. We have also included a brief timeline of the de-
velopment of 3D shape generation based on implicit rep-
resentations and highlighted key work in the literature. Fi-
nally, we discuss some of the aspects of current work that
need to be improved in future research. It is hoped that this
survey will provide some insights for other researchers and
inspire future work in this area.
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