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Abstract
Segmentation of a complete set of teeth from three-dimensional (3D) intra-oral scanner images is a crucial step in
tooth identification procedures. In large-scale disasters with many victims, teeth are often the preferred and reliable
source for victim identification due to their hard and non-deformable characteristics. In this paper we present a
study on the automatic segmentation of a complete set of teeth from intra-oral scanner images. We propose a tooth
segmentation method based on an improved PointNet++ architecture. To address the problem of inadequate
segmentation capability of the teeth-gingival boundary of PointNet++, we introduce a single-point preliminary
feature extraction (SPFE) module to better preserve the subtle details that may be overlooked by the original
PointNet++ model. In addition, a weighted-sum local feature aggregation (WSLFA) mechanism is proposed to
replace the max pooling in PointNet++ to better perform feature aggregation. The experimental results on 52
testing datasets using the network trained on 160 annotated 3D intra-oral scanner images demonstrate that our
improved PointNet++ method achieves a segmentation accuracy of 97.68%, and performs well under different
dental conditions.
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1 Introduction
Three-dimensional (3D) intra-oral scanning (IOS) is a
small-sized optical scanning technology that allows clin-
icians to use digital intro-oral scanners to obtain relevant
information about teeth, mucosa, and the associated soft
and hard tissues, generating a 3D model of the oral cavity.
It is commonly used to assist in oral examinations, teeth
alignment, restoration, and treatment. Compared to cone
beam computerized tomography (CBCT), 3D IOS has
many advantages, such as no radiation exposure and easy
acquisition. With the development of medical technol-
ogy and peoples’ increasing attention to their oral health,
the IOS technology is being widely used by orthodontists
for significantly improving treatment efficiency in modern
dentistry.
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The tooth part segmented from the intra-oral scanner
images serves as a personalized structure that can be used
for personal identification. Tooth identification is of great
significance in the identification of victims of natural disas-
ters or crimes because teeth, as one of the hardest tissues
in the human body, are not easily deformed, highly indi-
vidualized and can be well-preserved after severe disasters
or violent crimes. The percentage of identified victims us-
ing tooth identification methods in some large-scale disas-
ters ranges from 60.63% to 100% [1]. As soft tissues such as
gums are prone to deformation and decay, tooth identifica-
tion requires tooth segmentation technology to accurately
segment the entire set of teeth from the intra-oral scanner
images. Therefore, we study the accurate segmentation of
the entire set of teeth from the intra-oral scanner images
for tooth identification purposes.

Automated segmentation of teeth from intra-oral scan-
ner images is a challenging task due to the complex bound-
ary between teeth and gingiva, as well as the significant
variations in tooth shapes and appearances among differ-

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1007/s44267-023-00026-7
https://crossmark.crossref.org/dialog/?doi=10.1007/s44267-023-00026-7&domain=pdf
mailto:m.god@yeah.net
http://creativecommons.org/licenses/by/4.0/


Yuan et al. Visual Intelligence            (2023) 1:21 Page 2 of 11

ent subjects, such as missing or misaligned teeth. Early
tooth segmentation methods often relied on hand-crafted
features, including curvature-based methods [2], skeleton-
based methods [3], and harmonic field-based methods [4].
However, these methods lack robustness and are difficult
to adapt to the diverse tooth arrangements of different
individuals, often requiring human interaction to com-
plete the segmentation. With the development of 3D deep
learning techniques, many deep learning-based tooth seg-
mentation methods have been proposed. One approach
is to transform the unorganized 3D intra-oral scanner
images (point cloud or mesh data) into two-dimensional
(2D) images [5] or octree grids [6], and then use 2D or
3D convolutional neural network (CNN) for segmenta-
tion. However, these methods generate additional compu-
tational load and cause some information loss due to the
conversion of data. Another approach is to directly apply
deep learning networks to point cloud or mesh models for
segmentation. PointNet [7] and PointNet++ [8] are repre-
sentative methods for point cloud segmentation that use
multi-layer perceptron (MLP) and max pooling for feature
extraction. To extract features at different scales, Point-
Net++ also employs a multi-scale local feature extraction
strategy. However, PointNet++ uses a strategy where the
point cloud model is divided into overlapping local re-
gions, and the most distinctive features within each re-
gion are extracted using max pooling. This approach may
not accurately capture important features at the gingival
boundary of each individual tooth, leading to a coarse seg-
mentation result. Lian et al. [9] designed MeshSegNet for
tooth segmentation based on the mesh structure of 3D
intra-oral scanner images. This model uses a graph neural
network (GNN) to process the mesh structure, which op-
erates on the graph representation of the mesh. However,
MeshSegNet does not have the encoder-decoder structure
of PointNet++, which means that the resolution of the in-
put mesh model is not compressed throughout the net-
work and leads to a higher number of parameters com-
pared with PointNet++. Simplification of the input mesh
model is usually necessary for this network to be used.
Some studies attempt to simplify the structure of such net-
works as CNN and Transformer. Li et al. [10] used dy-
namic networks to reduce computational redundancy by
automatically adjusting their architectures for different in-
puts, and they made further improvements to dynamic
networks by pre-defining dense weight slices of varying
importance in a dynamic super-net using nested residual
learning.

In this paper, we propose an improved network structure
based on PointNet++ for the full-set tooth segmentation of
3D intra-oral scanner images. To address the problem of
inadequate segmentation capability of the teeth-gingival
boundary of PointNet++, a single-point preliminary fea-
ture extraction (SPFE) module is added to better preserve

the subtle details that may be overlooked by the original
PointNet++ model. In addition, inspired by Li et al. [10]
using dynamic weights to adjust network architectures, we
use dynamic weights to aggregate features and propose a
weighted-sum local feature aggregation (WSLFA) mecha-
nism to replace the max pooling in PointNet++, thus en-
abling better feature aggregation. The proposed method
can achieve an accuracy of 97.68% for tooth segmentation.

2 Related works
2.1 Point cloud deep learning
A point cloud is a collection of points in space used to
represent a 3D shape. Due to the unordered and non-
structural nature of point clouds, it is difficult to directly
apply standard CNNs in the task of tooth segmentation.
The PointNet series utilizes symmetry operations to han-
dle the disorder and non-structure of point clouds for clas-
sification and segmentation tasks. Specifically, PointNet
[7] made groundbreaking work by using MLP to extract
features from each point and aggregating features using
max pooling. Since MLP and max pooling are both sym-
metric operations, they help to handle the permutation in-
variance of point clouds. PointNet++ [8] divides the point
cloud into hierarchical groups and uses the same MLP and
max pooling as PointNet does to extract features at differ-
ent levels. Features learned from multiple scales and lay-
ers are combined to obtain better robustness. Other meth-
ods attempt to apply convolution on point clouds, such as
PointCNN [11], which uses MLP to learn a transforma-
tion matrix, normalizes the point cloud with this matrix,
and then extracts features using CNN. In addition, some
graph-based methods treat each point in a point cloud as
a vertex in a graph and establish edges between these ver-
tices to create a graph structure. For example, edge condi-
tioned convolution (ECC) [12] performs convolution-like
operations on graph-structured data in spatial domains.
DGCNN [13] constructs directed graphs in both the origi-
nal point cloud and feature space, and dynamically updates
features after each layer in the network. EdgeConv, which
was proposed in DGCNN, captures local geometric struc-
tures and is dynamically implemented in each layer of the
network. Furthermore, to improve performance and re-
duce model size, LDGCNN [14] removes the transforma-
tion network learned from different layers in DGCNN and
links hierarchical features learned from different layers in
DGCNN to improve performance and reduce model size.

2.2 3D intra-oral scanner images segmentation
The traditional method for segmenting 3D intra-oral scan-
ner images usually involves pre-defining geometric stan-
dards to separate teeth from the intra-oral scanner images.
For example, Zou et al. [4] used a harmonic field defined on
a triangular mesh to iteratively annotate teeth on the tooth
surface model. Kumar et al. [2] adopted curvature to seg-
ment teeth. Wu et al. [3] defined the morphologic skeleton
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of the scanned teeth grid and used region growing opera-
tions to segment teeth from the intra-oral scanner images
iteratively. Although these methods are intuitive, they typ-
ically depend on expert prior knowledge and require te-
dious manual operations, leading to sensitivity to changes
in surface appearance. To fully automate tooth segmenta-
tion and improve segmentation robustness, an increasing
number of deep learning methods are being applied to pre-
cise segmentation of teeth from 3D intra-oral scanner im-
ages. Xu et al. [5] developed a two-stage tooth segmenta-
tion model that includes teeth-gingival segmentation and
inter-teeth segmentation. The method first extracts 600-
dimensional geometric features (coordinates, curvature,
principal component analysis (PCA), etc.) for each facet of
intra-oral scanner images and packs them into a 20 × 30
image, and then performs segmentation using the two-
stage CNN network. However, this method ignores the
disorder and different packing orders of the hand-designed
geometric features, which affects the segmentation results.
Tian et al. [6] applied sparse octree methods to voxelize un-
ordered 3D meshes and then used 3D CNN for tooth seg-
mentation, but voxelization can cause loss of model infor-
mation. Lian et al. [9] designed MeshSegNet, which uses
the characteristics of mesh models to combine PointNet
with graphs and a multi-scale graph-constrained learn-
ing module for simulating CNN multi-scale feature extrac-
tion. Li et al. [15] established a multi-scale bilateral en-
hancement network and adopted a bilateral enhancement
module for multi-scale feature extraction. However, these
two methods produce a large number of model param-
eters. As highly accurate intra-oral scanner images may
have a large number of mesh grids, simplification of the in-
put mesh model is usually necessary. Other scholars have
used instance segmentation methods to segment individ-
ual teeth to avoid the problem of uncertain semantic num-
bers caused by different numbers of teeth. For example,
Zanjani et al. [16] presented Mask-MCNet, which for the
first time applies instance segmentation to 3D intra-oral
scanner images. The network first predicts 3D bounding
boxes of teeth, and then performs segmentation of the
points that belong to each individual tooth instance. Tian
et al. [17] introduced a point cloud-based 3D tooth in-
stance segmentation method and used an instance-aware
module based on attention mechanisms to extract local
and global features to better distinguish different tooth in-
stances. Cui et al. [18] proposed TSegNet, which repre-
sents tooth segmentation as two sub-problems: tooth cen-
troid prediction and individual tooth segmentation in or-
der to segment 3D tooth models quickly and accurately.
These works segment single tooth from intra-oral scan-
ner images, and the segmented models are primarily used
for orthodontics, dental diagnosis, etc. Multi-modal learn-
ing such as utilizing visual content from videos in unsu-
pervised machine translation [19] has also been applied to

tooth segmentation. Jang et al. [20] used both 2D and 3D
images for tooth segmentation and developed a hierarchi-
cal multi-step model that first generates regions of interest
from 2D images and then performs segmentation on 3D
models.

In order to facilitate the use of teeth for identification in
forensic medicine, our paper aims to segment the full set
of teeth from the intra-oral scanner images to retain the
holistic identification features. Therefore, we do not con-
duct experiments on the segmentation of a single tooth,
but instead conduct experiments on the segmentation of
the full set of teeth.

3 Full-set tooth segmentation model based on
improved PointNet++

The network structure of the proposed model is illus-
trated in Fig. 1. Similar to PointNet++, our network has
an encoder-decoder structure. In the encoder part, the in-
put intra-oral scanner images are gradually down-sampled
and local features are extracted, with the block responsible
for down-sampling and local feature extraction called the
set abstraction (SA) layer. In the decoder part, up-sampling
is performed to restore the original model resolution, with
the block responsible for up-sampling and feature back-
propagation called the feature propagation (FP) layer. In
this paper, we propose the following two improvements
based on PointNet++:

1) A single-point preliminary feature extraction (SPFE)
module is added to address the problem of directly ex-
tracting local region features and ignoring subtle details
in PointNet++, allowing detailed information to be better
preserved.

2) A weighted-sum local feature aggregation (WSLFA)
mechanism is proposed to better balance the fusion of var-
ious useful information in the local region, and to retain
important features of teeth-gingival boundaries that are
more useful for segmentation, which receive better preser-
vation under the proposed aggregation mechanism.

Let N be the number of points in the input intra-oral
scanner images. Before down-sampling, a SPFE module is
applied to extract N × 64 dimensional features. The en-
coder part includes three SA layers. As demonstrated in
Fig. 2, the SA layer first constructs local regions, which
include down-sampling Ni center points on the basis of
the previous layer and constructing a spherical neighbor-
hood with a radius of r for each center point. Then, for
each point in the local region, the network learns a feature
vector and a weight. These feature vectors and weights are
then used to obtain a weighted sum of the features for all
points in the region, resulting in a global feature that repre-
sents the entire spherical region. After one SA layer, the Ni
feature vectors obtained are sent to the next SA layer for
further down-sampling and feature extraction, including
three SA layers in total. The decoder part includes three
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Figure 1 Network structure of the improved PointNet++. SA represents set abstraction, FP represents feature propagation, and MLP denotes
multiple layer perceptron

Figure 2 Structure of the set abstraction (SA) layer and the feature propagation (FP) layer. MLP denotes multiple layer perceptron

FP layers to gradually reconstruct the original number of
points of the input model. As presented in Fig. 2, the FP
layer first interpolates to restore the point number of the
previous SA layer, and then makes a skip connection with
this SA layer. Next, MLP is applied to learn a new feature
vector that is sent to the next FP layer. Finally, MLP com-
presses the feature dimension to two categories (teeth and
gingiva), outputs the probability of each category, and pre-
dicts the category label for each point after restoring the
original number of points.

3.1 Network input and single-point preliminary feature
extraction

The input of the network is the point cloud data of the
intra-oral scanner images, which can be represented as an

N × 9 matrix. Here, N represents the number of points
in the point cloud model, and each point is represented
by a 9-dimensional vector, including 3D coordinates, 3D
normal vectors, and 3D zero-mean coordinates. In Point-
Net++, the input point cloud model directly enters the
SA layer for down-sampling and extracting features repre-
senting local regions. This approach ignores the detailed
information of the point cloud, which reduces the accu-
racy of PointNet++ in tooth segmentation. Therefore, we
add a SPFE module before the SA layer. In this module, the
9-dimensional vector of each point is sent to the MLP for
preliminary feature extraction, and a new 64-dimensional
feature vector is obtained, which then enters the SA layer
for local feature extraction. Due to the extraction of 64
dimensional features from each point, more detailed in-
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formation can be mined. Every point in our method con-
tributes to the segmentation while only the points that
are sampled and in the designated local areas are used in
PointNet++; thus our method solves the problem of inac-
curate segmentation in detailed area.

To visualize the results of SPFE, the 64-dimensional fea-
tures extracted are reduced to one-dimensional features by
PCA. Figure 3(a) and Fig. 3(b) show two feature maps of
different intra-oral scanner images after dimension reduc-
tion. It is noted that the feature maps indicate that the SPFE
module retains more detailed information of the teeth-
gingival boundary, dental groove and dental gap, thus im-
proving the network’s ability to extract features from point
clouds. Moreover, the SPFE module makes preliminary
distinctions between different regions of teeth (Fig. 3, the
front teeth are red and the upper jaw is blue), which is ben-
eficial for subsequent segmentation.

Figure 4(a) demonstrates the features extracted by the
SA1 layer after using the SPFE module, while Fig. 4(b)
shows the features extracted by the SA1 layer directly us-
ing the original 9-dimensional vector. Similarly, these 128-
dimensional features are visualized after PCA dimensional
reduction to one dimension. It is observed that the features

Figure 3 Visualization of feature maps of the SPFE module

Figure 4 Comparison of feature maps of the SA1 layer: (a) Using
SPFE; (b) Directly using the original 9-dimensional vector

of teeth and gingiva after using the SPFE module are more
distinguishable compared with directly using the original
9-dimensional vector, so the SPFE module can enhance the
effectiveness of subsequent SA1 layer feature extraction.

3.2 Local region construction
In the SA layer, local region construction is first performed
to divide the point cloud into overlapping local regions
as presented in Fig. 5, preparing for subsequent feature
extraction. The input point cloud coordinates are down-
sampled to obtain the center point of each local region;
then, a sphere with a certain radius is constructed around
these points. The number of sampled points Ni and the
sphere radius r in each SA layer are adjustable parameters.
The sampling algorithm used is farthest point sampling
(FPS) [6], ensuring that the sampling points are uniformly
distributed. The sampled center points and their spherical
neighborhoods constitute a local region, and representa-
tive features are extracted for each region.

3.3 Local feature extraction and weighted-sum local
feature aggregation

The local feature extraction and aggregation module is il-
lustrated in Fig. 6. Let N be the number of input points.
After local region construction, the set of center points
Pcenter = {p1, p2, . . . pN ′ } contains a total of N ′ sampled cen-
ter point coordinates, where each center point pi has a
neighborhood point set Pi

local = {pi1, pi2, . . . pik} consisting
of k neighboring point coordinates. Each point pij has a
feature vector f ij extracted from the previous layer, where
the coordinate dimension is d and the feature dimension
is C. The input size of this module is N ′ × k × (d + C).
Local feature extraction first extracts C′-dimensional new

Figure 5 Local region construction. FPS represents farthest point
sampling

Figure 6 Local feature extraction and aggregation using the
weighted-sum local feature aggregation (WSLFA) mechanism. MLP
denotes multiple layer perceptron
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features f ′
ij for each point pij in the set Pi

local:

f ′
ij = MLP

(
(pij – pi) ⊕ f ij

)
, (1)

where pij – pi represents the neighborhood point coordi-
nates minus the corresponding center point coordinates,
that is, in each spherical neighborhood, the coordinates of
the points are standardized relative to the center point.

After extracting features f ′
ij, it is necessary to aggregate

these point features into global features representing the
local regions. The PointNet series adopts the method of
max pooling; however, max pooling can only capture the
most distinctive feature in the region and cannot retain
more internal details of the region. Therefore, we pro-
pose an adaptive method to learn the weight of each fea-
ture in a sub-network, and then perform weighted summa-
tion, called weighted-sum local feature aggregation named
WSLFA, thereby preserving the internal details of the re-
gion. Our method can adaptively adjust weights during the
training process, effectively weighting the features of each
part based on their contribution to segmentation. By com-
parison, PointNet++ does not distinguish the contribution
of each part’s features, thus causing the effective features to
be ignored and resulting in poor segmentation results.

Our method first uses the coordinates of each point pij
in the local region and its learned new feature f ′

ij to learn a
weight vector αij of the same dimension as f ′

ij:

αij = MLP
(
(pij – pi) ⊕ (

f ′
ij – f ′mean

i
))

, (2)

where, pij – pi represents the coordinate difference be-
tween the neighbor points and the corresponding center
point. f ′mean

i is the mean of all features f ′
ij in the region,

that is:

f ′mean
i =

∑k
j=1 f ′

ij

k
. (3)

The global feature f ′
i of the region is obtained by weighted

summation of the point features f ′
ij and weight vectors αij,

expressed as:

f ′
i =

k∑

j=1

αij � f ′
ij, (4)

where f ′
i is the Hadamard product of the weight vectors

and the point features.
The weight vectors learned by the aforementioned pro-

cess in the SA1 layer is illustrated in Fig. 7. The 128-
dimensional weight vectors are shown after PCA dimen-
sionality reduction to one dimension, and Fig. 7(a) and
Fig. 7(b) show two different intra-oral scanner images.
Weights at the teeth-gingival boundary are larger (green),

Figure 7 Weight vectors learned in the SA1 layer using the
weighted-sum local feature aggregation (WSLFA) mechanism

highlighting the features of the finer details. The larger
weights of dental crown also enhance the contrast between
teeth and gingival features. This helps to better retain use-
ful feature information.

After one layer of local feature extraction and aggrega-
tion, a global feature is extracted for each local region, re-
sulting in N ′ feature vectors representing different regions.
These features and N ′ center point coordinates Pcenter =
{p1, p2, . . . pN ′ } form a new point cloud with N ′ points of
the size N ′ × (d + C′), which will be used for the next layer
of local feature extraction and aggregation. Our network
includes a total of three layers of local feature extraction
and aggregation.

3.4 Feature backpropagation
In the feature backpropagation stage, the locally aggre-
gated features are gradually restored to the original size of
the point cloud for segmentation prediction. This includes
three steps: interpolation, skip connection, and MLP. The
first step is to restore the output point number of the (l–1)-
th SA layer from the l-th SA layer through interpolation.
Let the original point set be Pl , and the restored point set
be Pl–1. Each point in Pl contains a 3D coordinate pl

i and
a feature vector f l

i , and the restored coordinate pl–1
i is the

same as the coordinate of the (l – 1)-th SA layer. The re-
stored feature f l–1

i can be represented as the weighted av-
erage of the features of its three nearest original points:

f l–1
i =

3∑

j=1

1/‖pl–1
i – pl

j‖
∑3

j=1(1/‖pl–1
i – pl

j‖)
f l

j . (5)

Feature f l–1
i obtained after interpolation is concatenated

with the feature obtained from the (l – 1)-th SA layer
through skip connection, and the concatenated features
obtained are then compressed by MLP to reduce the fea-
ture dimension. The above mentioned operations are re-
peated until the original number of points N is restored.
Finally, the N × 2 segmentation prediction score matrix is
output by MLP, which predicts the probabilities of teeth
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and gingiva categories, and the maximum predicted prob-
ability is selected as the final segmentation category for
each point.

3.5 Loss function
The loss function used in our model is the negative log-
likelihood (NLL) loss function. When the model outputs
the probability distribution of two classes (teeth and gin-
giva) for each point, the probability distribution is used to
measure the difference between the predicted results and
true labels. Specifically, it measures the error by taking the
negative log of the probability of the true class label for
each point, and averaging the negative log errors within
a batch. NLL loss for one point can be expressed as:

NLL =
1

batch_size

batch_size∑

i=1

–a log(p1) – (1 – a) log(p2),

(6)

where p1 and p2 represent the probabilities of the point be-
ing teeth or gingiva, respectively. a takes the value of 0 or
1, where a = 1 means the true label of the point is teeth and
a = 0 means the true label is gingiva. When the predicted
values and the true labels are not consistent, the corre-
sponding probability will be small, resulting in a larger neg-
ative log probability for that class, thus increasing the NLL
loss value. Therefore, by minimizing the NLL loss value,
the model can predict the labels of the input samples more
accurately.

4 Experimental results and analysis
4.1 Datasets
Our experimental data consist of 212 3D intra-oral scanner
images that are manually labeled as either teeth or gingiva.
A total of 160 of these examples are used for training, while
the remaining 52 are used for testing. Specifically, we select
13 intra-oral scanner images with poor dental conditions
(missing teeth, uneven dentition, etc.) as shown in Fig. 8
and use a total of 52 testing datasets to discuss the gen-
eralization and robustness of our method. Each model is

Figure 8 Intra-oral scanner images with poor dental condition

sampled to contain 32,768 points, with each point contain-
ing 3D positional information (x, y, z) and a correspond-
ing 3D normal vector. Additionally, the training data are
augmented with the following operations: (1) random ro-
tations and (2) random translations in coordinates. Each
training example undergoes these two operations before
participating in network training.

4.2 Implementation details
The network is implemented using PyTorch, with a GPU
version of Tesla V100 and an Ubuntu operating system.
The Adam optimizer is used during training, with the NLL
loss function and an initial learning rate of 0.001. The
learning rate is reduced by a factor of 0.7 every 20 epochs,
with a minimum learning rate of 0.00001. The batch size
is set to 4 during training, and the network is trained for a
total of 100 epochs.

4.3 Experimental results
This section includes two experiments. Section 4.3.1 tests
the effectiveness of our method on datasets with differ-
ent dental conditions and compares it with other methods.
Section 4.3.2 tests the effectiveness of our method under
different sampling points compared with PointNet++.

4.3.1 Comparison of experimental results with other
methods

Table 1 presents the experimental results of our method
and other methods (PointNet, PointNet++ and PointCNN)
on the whole dataset, while Table 2 shows the experi-
mental results on the dataset with only poor tooth con-
ditions. The training loss curve is demonstrated in Fig. 9.
The number of points sampled for each layer in the model
is 1024/512/256, and the radius of the spherical neigh-
borhood for each layer is 0.05, 0.1, and 0.2 (normalized),
respectively. Compared with PointNet++, our method
achieves significantly higher segmentation accuracy and
mean intersection over union (mIoU), and the loss curve
decreases more rapidly. Our method performs equally well
on datasets with different dental conditions, demonstrat-
ing its robustness. The visualization of the segmentation
results with different dental conditions is presented in
Fig. 10, and our method achieves more accurate segmenta-
tion of the teeth-gingival boundary with smoother bound-
ary curves regardless of the condition of the teeth. Due to
the effects of SPFE and WSLFA, our method significantly
eliminates jagged edges and mis-segmentation compared
with the original PointNet++.

Although our method has achieved good segmentation
results on most of the teeth-gingival boundaries, it strug-
gles to predict the wisdom teeth. This is because the de-
gree of wisdom tooth germination varies among individ-
uals, and the intra-oral scanner images are more blurry
and may be incomplete in the area of wisdom teeth and
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Table 1 Experimental results of PointNet, PointCNN and PointNet++ on the whole dataset

Model Accuracy mIoU IoU Precision Recall F1

Teeth Gingiva Teeth Gingiva Teeth Gingiva Teeth Gingiva

PointNet 0.9274 0.8644 0.863 0.866 0.936 0.919 0.918 0.937 0.927 0.928
PointCNN 0.9390 0.8856 0.882 0.889 0.966 0.915 0.910 0.968 0.937 0.941
PointNet++ 0.9585 0.9201 0.919 0.921 0.969 0.949 0.947 0.970 0.958 0.959
Our method 0.9768 0.9547 0.954 0.955 0.984 0.970 0.969 0.985 0.976 0.977

Table 2 Experimental results of PointNet, PointCNN and PointNet++ on the dataset with poor dental condition

Model Accuracy mIoU IoU Precision Recall F1

Teeth Gingiva Teeth Gingiva Teeth Gingiva Teeth Gingiva

PointNet 0.9259 0.8644 0.859 0.865 0.946 0.908 0.904 0.948 0.925 0.928
PointCNN 0.9258 0.8615 0.855 0.868 0.971 0.888 0.878 0.974 0.922 0.929
PointNet++ 0.9549 0.9139 0.913 0.915 0.967 0.943 0.942 0.968 0.954 0.955
Our method 0.9735 0.9586 0.948 0.949 0.983 0.964 0.964 0.983 0.973 0.973

Figure 9 Loss curves of our method and PointNet++

nearby gingiva. Therefore, our method sometimes mistak-
enly identifies a portion of the gingiva as wisdom teeth as
shown in Fig. 11. To avoid this issue, branch networks can
be used to first predict the center points of each tooth, and
then perform semantic segmentation, which is the next di-
rection of our work. In addition, the intra-oral scanner im-
ages only include the crown portion of the teeth and can-
not reveal the root portion beneath the gingiva, and us-
ing CBCT and intra-oral scanner images for multimodal
learning can compensate for this deficiency.

4.3.2 Segmentation performance comparison under
different sampling points

Due to limitations in computational load, some devices
find it difficult to use large sampling points for segmen-
tation, which results in a decrease in segmentation ac-
curacy. To test the robustness of our method under dif-
ferent sampling points, we change the points’ number

and compare our method with PointNet++. The exper-
imental results show that our method is less sensitive
to changes in the number of sampled points compared
with PointNet++. Figure 12 illustrates the comparison
of mIoU for tooth segmentation using PointNet++ and
our method under different sampled point numbers. The
number of sampled points in the first, second, and third
layers are 4096/1024/512, 1024/512/256, 512/256/128, and
256/128/64, respectively. When the number of sampled
points decreases, PointNet++ shows a faster decline in
mIoU, while our method is less sensitive to this varia-
tion, because SPFE and WSLFA can make better use of
detailed information. When the number of sampled points
decreases from 4096/1024/512 to 256/128/64, the mIoU of
our method decreases by less than 2%. Figure 13 demon-
strates the segmentation results of an intra-oral scanner
image under different sampling points using our method
and PointNet++. It can be observed that our method out-
performs PointNet++ and has better robustness to the de-
crease in sampling points, especially on the teeth-gingival
boundary.

4.4 Ablation study
We conduct ablation experiments on the SPFE and the
WSLFA mechanism, as displayed in Table 3. The number
of sampling points used by the model is 1024/512/256 for
each layer, and the radius of each layer’s spherical neigh-
borhood is 0.05, 0.1, and 0.2 (normalized). Models 1, 2, 3,
and 4 represent the model with neither SPFE nor WSLFA,
the model with only WSLFA, the model with only SPFE,
and the model with both SPFE and WSLFA, respectively.
Models 1 and 3 use max pooling instead of WSLFA. Com-
paring models 1 and 2, 3 and 4, it can be found that the
addition of WSLFA improved the segmentation effect of
Models 1 and 3, with the mIoU increasing by approxi-
mately 1%, because WSLFA makes better use of the infor-
mation inside each local region. Comparing Models 1 and
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Figure 10 Visualization of the segmentation results

Figure 11 Segmentation results of an intra-oral scanner image that
mistakenly identifies a portion of the gingiva as wisdom teeth

Figure 12 Comparison of mIoU for tooth segmentation using
PointNet++ and our method under different sampled point numbers

3, 2 and 4, it can be seen that the addition of SPFE has im-
proved both Models 1 and 2, with the mIoU increasing by

Figure 13 Segmentation results of an intra-oral scanner image under
different sampling points using our method and PointNet++

more than 2%, because SPFE captures more detailed fea-
ture of the intra-oral scanner images. Using both SPFE and
WSLFA simultaneously increases the mIoU by approxi-
mately 3.5%.

5 Conclusion
In this paper, an improved PointNet++ based method is
proposed for full-set tooth segmentation of 3D intra-oral
scanner images. The method first extracts preliminary fea-
tures from individual points, retaining detailed features
as much as possible. Then, multi-scale local regions are
constructed, and a weighted-sum local feature aggregation
mechanism is proposed to better integrate various use-
ful information in local regions. These two methods ef-
fectively solve the problem of imprecise tooth segmenta-
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Table 3 Ablation experiments

Model SPFE WSLFA Accuracy mIoU

1 - - 0.9585 0.9201
2 - � 0.9672 0.9321
3 � - 0.9726 0.9453
4 � � 0.9768 0.9547

tion, and achieve good segmentation results through clini-
cal data experiments. For future research, adaptive adjust-
ment of feature aggregation radius will be considered to
better adapt to the complex teeth-gingival boundaries and
further improve the accuracy of the method, and branch
networks can be used to improve the accuracy of wisdom
tooth segmentation. In addition, post-processing methods
such as conditional random fields can be added to refine
the boundary curve and improve its smoothness. Based on
the above tooth segmentation work, we will conduct re-
search on identity recognition using the segmented tooth
parts, with the aim of utilizing the tooth model to recog-
nize identity.

Funding
This work was supported by the 2022 Beijing Natural Science Foundation -
Haidian Original Innovation Joint Fund (No. L222110).

Abbreviations
CBCT, cone beam computerized tomography; CNN, convolutional neural
networks; DGCNN, dynamic graph CNN; ECC, edge conditioned convolution;
FP, feature propagation; FPS, farthest point sampling; GNN, graph neural
network; IOS, intra-oral scanning; LDGCNN, linked dynamic graph CNN; mIoU,
mean intersection over union; MLP, multi-layer perceptron; PCA, principal
components analysis; SA, set abstraction; SPFE, single-point preliminary feature
extraction; WSLFA, weighted-sum local feature aggregation.

Availability of data and materials
The data that support the findings of this study are available from the
Department of Stomatology, the Fourth Medical Center, Chinese PLA General
Hospital but restrictions apply to the availability of these data, which were
used under license for the current study, and so are not publicly available. Data
are however available from the authors upon reasonable request and with
permission of the Department of Stomatology, the Fourth Medical Center,
Chinese PLA General Hospital.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
LY and XL performed the data analyses and wrote the manuscript. YL and JY
collected data. All authors read and approved the final manuscript.

Author details
1University of Science and Technology Beijing, Beijing, China. 2Department of
Stomatology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing,
China.

Received: 31 March 2023 Revised: 26 September 2023
Accepted: 26 September 2023

References
1. Hinchliffe, J. (2011). Forensic odontology, part 2. Major disasters. British

Dental Journal, 210, 269–274.

2. Kumar, Y., Janardan, R., Larson, B., & Moon, J. (2011). Improved
segmentation of teeth in dental models. Computer Aided Design, 43(2),
211–224.

3. Wu, K., Chen, L., Li, J., & Zhou, Y. (2014). Tooth segmentation on dental
meshes using morphologic skeleton. Computers & Graphics, 38(1), 199–211.

4. Zou, B. J., Liu, S. J., Liao, S. H., Ding, X., & Liang, Y. (2015). Interactive tooth
partition of dental mesh base on tooth-target harmonic field. Computers in
Biology andMedicine, 56, 132–144.

5. Xu, X., Liu, C., & Zheng, Y. (2019). 3D tooth segmentation and labeling
using deep convolutional neural networks. IEEE Transactions on
Visualization and Computer Graphics, 25(7), 2336–2348.

6. Tian, S., Dai, N., Zhang, B., Yuan, F., Yu, Q., & Cheng, X. (2019). Automatic
classification and segmentation of teeth on 3D dental model using
hierarchical deep learning networks. IEEE Access, 7, 84817–84828.

7. Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). PointNet: deep learning on
point sets for 3D classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 77–85).
Piscataway: IEEE.

8. Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). PointNet++: deep hierarchical
feature learning on point sets in a metric space. In I. Guyon, U. Von
Luxburg, & S. Bengio, et al. (Eds.), Advances in neural information processing
systems (Vol. 30, pp. 5099–5108). Red Hook: Curran Associates.

9. Lian, C. F., Wang, L., Wu, T. H., Liu, M., Durán, F., Ko, C.-C., et al. (2019).
MeshSNet: deep multi-scale mesh feature learning for end-to-end tooth
labeling on 3D dental surfaces. In Proceedings of the 22nd international
conference onmedical image computing and computer-assisted intervention
(pp. 837–845). Cham: Springer.

10. Li, C., Wang, G., Wang, B., Liang, X., Li, Z., & Chang, X. (2023). DS-Net++:
dynamic weight slicing for efficient inference in CNNs and vision
transformers. IEEE Transactions on Pattern Analysis andMachine Intelligence,
45(4), 4430–4446.

11. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., & Chen, B. (2018). PointCNN: convolution
on X-transformed points. In S. Bengio, H. Wallach, H. Larochelle, et al. (Eds.),
Advances in neural information processing systems (Vol. 31, pp. 820–830).
Red Hook: Curran Associates.

12. Simonovsky, M., & Komodakis, N. (2017). Dynamic edge-conditioned filters
in convolutional neural networks on graphs. In Proceedings of the IEEE
conference of computer vision and pattern recognition (pp. 29–38).
Piscataway: IEEE.

13. Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & Solomon, J. M.
(2019). Dynamic graph CNN for learning on point clouds. ACM Transactions
on Graphics, 38(5), 1–12.

14. Zhang, K., Hao, M., Wang, J., de Silva, C. W., & Fu, C. (2019). Linked dynamic
graph CNN: learning on point cloud via linking hierarchical features. arXiv
preprint. arXiv:1904.10014.

15. Li, Z., Liu, T., Wang, J., Zhang, C., & Jia, X. (2022). Multi-scale bidirectional
enhancement network for 3D dental model segmentation. In Proceedings
of the 19th IEEE international symposium on biomedical imaging (pp. 1–5).
Piscataway: IEEE.

16. Zanjani, F.G., Pourtaherian, A., Zinger, S., Moin, D.A., Claessen, F., Cherici, T.,
et al. (2021). Mask-MCNet: tooth instance segmentation in 3D point clouds
of intra-oral scans. Neurocomputing, 453, 286–298.

17. Tian, Y., Zhang, Y., Chen, W.-G., Liu, D., Wang, H., Xu, H., et al. (2022). 3D
tooth instance segmentation learning objectness and affinity in point
cloud. ACM Transactions onMultimedia Computing Communications and
Applications, 18(4), 1–16.

18. Cui, Z., Li, C., Chen, N., Wei, G., Chen, R., Zhou, Y., et al. (2020). TSegNet: an
efficient and accurate tooth segmentation network on 3D dental model.
Medical Image Analysis, 69, 101949.

19. Li, M., Huang, P.-Y., Chang, X., Hu, J., Yang, Y., & Hauptmann, A. (2023). Video
pivoting unsupervised multi-modal machine translation. IEEE Transactions
on Pattern Analysis andMachine Intelligence, 45(3), 3918–3932.

http://arxiv.org/abs/arXiv:1904.10014


Yuan et al. Visual Intelligence            (2023) 1:21 Page 11 of 11

20. Jang, T. J., Kim, K. C., Cho, H. C., & Seo, J. K. (2022). A fully automated
method for 3D individual tooth identification and segmentation in dental
CBCT. IEEE Transactions on Pattern Analysis andMachine Intelligence, 44(10),
6562–6568.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	A full-set tooth segmentation model based on improved PointNet++
	Abstract
	Keywords

	Introduction
	Related works
	Point cloud deep learning
	3D intra-oral scanner images segmentation

	Full-set tooth segmentation model based on improved PointNet++
	Network input and single-point preliminary feature extraction
	Local region construction
	Local feature extraction and weighted-sum local feature aggregation
	Feature backpropagation
	Loss function

	Experimental results and analysis
	Datasets
	Implementation details
	Experimental results
	Comparison of experimental results with other methods
	Segmentation performance comparison under different sampling points

	Ablation study

	Conclusion
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


