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Abstract

Concealed scene understanding (CSU) is a hot computer vision topic aiming to perceive objects exhibiting
camouflage. The current boom in terms of techniques and applications warrants an up-to-date survey. This can help
researchers better understand the global CSU field, including both current achievements and remaining challenges.
This paper makes four contributions: (1) For the first time, we present a comprehensive survey of deep learning
technigues aimed at CSU, including a taxonomy, task-specific challenges, and ongoing developments. (2) To allow
for an authoritative quantification of the state-of-the-art, we offer the largest and latest benchmark for concealed
object segmentation (COS). (3) To evaluate the generalizability of deep CSU in practical scenarios, we collected the
largest concealed defect segmentation dataset termed CDS2K with the hard cases from diversified industrial
scenarios, on which we constructed a comprehensive benchmark. (4) We discuss open problems and potential
research directions for CSU.

Keywords: Concealed scene understanding, Segmentation, Detection, Survey, Introductory, Taxonomy, Deep
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1 Introduction

Concealed scene understanding (CSU) aims to recognize
objects that exhibit different forms of camouflage, as in
Fig. 1. By its very nature, CSU is clearly a challenging prob- e
lem compared with conventional object detection [1, 2]. It (a) Crab T (c) Frogmouth
has numerous real-world applications, including search- : 'v
and-rescue work, rare species discovery, healthcare (e.g.,
automatic diagnosis of colorectal polyps [3, 4] and lung le-
sions [5]), agriculture (e.g., pest identification [6] and fruit : .
ripeness assessment [7]), and content creation (e.g., recre- (d) Toad (e) Human

= ¥
“Lion”

®

ational art [8]). In the past decade, both academia and in-
dustry have widely studied CSU, and various types of im- Figure 1 Sample gallery of concealment cases. (a)-(d) show images
ages with camouflaged objects have been handled with of animals in their natural habitat, selected from [20]. (e) depicts a

concealed human in art from [21]. (f) features a synthesized “lion”

traditional computer vision and pattern recognition tech- by [22]

niques, including hand-engineered patterns (e.g., motion
cues [9, 10] and optical flow [11, 12]), heuristic priors (e.g.,
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Full list of author information is available at the end of the article bination of techniques [17-19].

. © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ Sprlnger permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
— to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1007/s44267-023-00019-6
https://crossmark.crossref.org/dialog/?doi=10.1007/s44267-023-00019-6&domain=pdf
https://orcid.org/0000-0002-5245-7518
https://orcid.org/0000-0001-7092-2877
https://orcid.org/0000-0002-6431-1110
https://orcid.org/0000-0001-5550-8758
https://orcid.org/0000-0003-1127-8887
https://orcid.org/0000-0002-3445-5711
mailto:dengpfan@gmail.com
http://creativecommons.org/licenses/by/4.0/

Fan et al. Visual Intelligence (2023) 1:16

In recent years, thanks to benchmarks becoming avail-
able (e.g., COD10K [20, 23] and NC4K [24]) and the rapid
development of deep learning, this field has made im-
portant strides forward. In 2020, Fan et al. [20] released
the first large-scale public dataset - COD10K - geared to-
wards the advancement of perception tasks having to deal
with concealment. This has also inspired other related
disciplines. For instance, Mei et al. [25, 26] proposed a
distraction-aware framework for the segmentation of cam-
ouflaged objects, which can be extended to the identifi-
cation of transparent materials in natural scenes [27]. In
2023, Ji et al. [28] developed an efficient model that learns
textures from object-level gradients, and its generalizabil-
ity has been verified through diverse downstream appli-
cations, e.g., medical polyp segmentation and road crack
detection.

Although multiple research teams have addressed tasks
concerned with concealed objects, we believe that stronger
interactions between the ongoing efforts would be bene-
ficial. Thus, we mainly review the state and recent deep
learning-based advances in CSU. Meanwhile, we con-
tribute a large-scale concealed defect segmentation dataset
termed CDS2K. This dataset consists of hard cases from
diverse industrial scenarios, thus providing an effective
benchmark for CSU.

Previous surveys and scope To the best of our knowl-
edge, only a few survey papers have been published in
the CSU community, which [29, 30] mainly reviewed non-
deep learning techniques. There are some benchmarks
[31, 32] with narrow scopes, such as image-level segmen-
tation, where only a few deep learning methods were eval-
uated. In this paper, we present a comprehensive sur-
vey of deep learning CSU techniques, thus widening the
scope. We also offer more extensive benchmarks with a
more comprehensive comparison and with an application-
oriented evaluation.

Contributions Our contributions are summarized as fol-
lows: (1) We represent the initial effort to thoroughly ex-
amine deep learning techniques tailored towards CSU
thoroughly. This includes an overview of its classifica-
tion and specific obstacles, as well as an assessment of its
advancement during the era of deep learning, achieved
through an examination of existing datasets and tech-
niques. (2) To provide a quantitative evaluation of the cur-
rent state-of-the-art, we have created a new benchmark for
concealed object segmentation (COS), which is a crucial
and highly successful area within CSU. It is the most up-
to-date and comprehensive benchmark available. (3) To
assess the applicability of CSU with deep learning in real-
world scenarios, we have restructured the CDS2K dataset
— the largest dataset for concealed defect segmentation —
to include challenging cases from various industrial set-
tings. We have utilized this updated dataset to create a
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comprehensive benchmark for evaluation. (4) Our discus-
sion delves into the present obstacles, available prospects,
and future research areas for the CSU community.

2 Background

2.1 Task taxonomy and formulation

2.1.1 Image-level CSU

In this section, we introduce five commonly used image-
level CSU tasks, which can be formulated as a mapping
function F : X > Y that converts the input space X into
the target space Y.

e Concealed object segmentation (COS) [23, 28] is a class-
agnostic dense prediction task that segments concealed re-
gions or objects with unknown categories. As presented in
Fig. 2(a), the model Fcos : X — Y is supervised by a binary
mask Y to predict a probability p € [0, 1] for each pixel x
of image X, which is the confidence level that the model
determines whether x belongs to the concealed region.

e Concealed object localization (COL) [24, 33] aims to
identify the most noticeable region of concealed objects,
which is in line with human perception psychology [33].
This task is to learn a dense mapping function Fcop : X
Y. The output Y is a non-binary fixation map captured by
an eye tracker device, as illustrated in Fig. 2(b). Essentially,
the probability prediction p € [0, 1] for a pixel x indicates
how conspicuous its camouflage is.

e Concealed instance ranking (CIR) [24, 33] ranks dif-
ferent instances in a concealed scene based on their de-
tectability. The level of camouflage is used as the basis for
this ranking. The objective of the CIR task is to learn a
dense mapping Fcir : X — Y between the input space X
and the camouflage ranking space Y, where Y represents
per-pixel annotations for each instance with correspond-
ing rank levels. For example, in Fig. 2(c), there are three
toads with different camouflage levels, and their ranking
labels are from [24]. To perform this task, one can replace
the category ID for each instance with rank labels in in-
stance segmentation models such as Mask R-CNN [34].

o Concealed instance segmentation (CIS) [35, 36] is a
technique that aims to identify instances in concealed sce-
narios based on their semantic characteristics. Unlike gen-
eral instance segmentation [37, 38], where each instance is
assigned a category label, CIS recognizes the attributes of
concealed objects to distinguish between different entities
more effectively. To achieve this objective, CIS employs a
mapping function Fcis : X > Y, where Y is a scalar set
comprising various entities used to parse each pixel. This
concept is illustrated in Fig. 2(d).

e Concealed object counting (COC) [39] is a newly emerg-
ing topic in CSU that aims to estimate the number of in-
stances concealed within their surroundings. As illustrated
in Fig. 2(e), the COC estimates the center coordinates for
each instance and generates their counts. Its formulation
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Figure 2 lllustration of the representative CSU tasks. Five of these are image-level tasks: (a) concealed object segmentation (COS), (b) concealed
object localization (COL), (c) concealed instance ranking (CIR), (d) concealed instance segmentation (CIS), and (e) concealed object counting (COC).
The remaining two are video-level tasks: (f) video concealed object detection (VCOD) and (g) video concealed object segmentation (VCOS). Each
task has its own corresponding annotation visualization, which is explained in detail in Section 2.1
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can be defined as Fcoc : X — Y, where X is the input im-
age and Y represents the output density map that indicates
the concealed instances in scenes.

Overall, the image-level CSU tasks can be categorized
into two groups based on their semantics: object-level
(COS and COL) and instance-level (CIR, COC, and CIS).
Object-level tasks focus on perceiving objects while
instance-level tasks aim to recognize semantics to distin-
guish different entities. Additionally, COC is regarded as a
sparse prediction task based on its output form, whereas
the others belong to dense prediction tasks. Among the
literature reviewed in Table 1, COS has been extensively
studied while research on the other three tasks is gradu-
ally increasing.

2.1.2 Video-level CSU

Given a video clip {X;}L, containing T concealed frames,
the video-level CSU can be formulated as a mapping
function F : {X/}L, — {Y,}L, for parsing dense spatial-
temporal correspondences, where Y, is the label of frame
X;.

e Video concealed object detection (VCOD) [40] is simi-
lar to video object detection [41]. This task aims to iden-
tify and locate concealed objects within a video by learning
a spatial-temporal mapping function Fycop : {X;}1, —
{Y;}, that predicts the location Y; of an object for each
frame X;. The location label Y, is provided as a bounding

box (see Fig. 2(f)) consisting of four numbers (x, y, w, &) in-
dicating the target’s location. Here, (x, y) represents its top-
left coordinate, while w and / denote its width and height,
respectively.

e Video concealed object segmentation (VCOS) [42] orig-
inated from the task of camouflaged object discovery [40].
Its goal is to segment concealed objects within a video.
This task usually utilizes spatial-temporal cues to drive the
models to learn the mapping Fycos : {X;}Z, — {Y,}L, be-
tween input frames X; and corresponding segmentation
mask labels Y;. Figure 2(g) shows an example of its seg-
mentation mask.

In general, compared to image-level CSU, video-level
CSU is developing relatively slowly, because collecting
and annotating video data is labor-intensive and time-
consuming. However, with the establishment of the first
large-scale VCOS benchmark on MoCA-Mask [42], this
field has made fundamental progress while still having am-
ple room for exploration.

2.1.3 Task relationship

Among image-level CSU tasks, the CIR task requires the
highest level of understanding as it may not only involve
four subtasks, e.g., segmenting pixel-level regions (ie.,
COS), counting (i.e., COC), or distinguishing different in-
stances (i.e., CIS), but also ranking these instances accord-
ing to their fixation probabilities (i.e., COL) under differ-
ent difficulty levels. Additionally, regarding two video-level
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Table 1 Essential characteristics of reviewed image-based methods. This summary outlines the key characteristics, including:
Architecture Design (Arc.): The framework used, which can be multi-stream (MSF), bottom-up & top-down (BTF), or branched (BF)
frameworks. Multiple Cues (M.C.): Whether an auxiliary cue is supplied. Supervision Level (S.L.): Whether fully-supervised () or
weakly-supervised (<) learning is used. Task Level (TL.): The specific tasks addressed by the method, including COS (e), CIS (o), COC (OJ),
and multi-task learning (M). N/A indicates that the source code is not available. For more detailed descriptions of these characteristics,

please refer to Section 3.1 on image-level CSU models

# Model Pub. Core component Arc. MC. SL TL Code
1 ANet[21] CVIUqg Classification & segmentation streams BF v % e https//sites.google.com/view/Itnghia/research/camo
2 SINet [20] CVPRyg Search and identification modules BTF - % e https//github.com/DengPingFan/SINet
3 MirrorNet [110] Access,;  Fuse input and mirror data streams MSF - * e https//sites.google.com/view/Itnghia/research/camo
4 DCE[111] arXivy, Depth contribution exploration, confidence-aware  BF ~ v* % e  https//github.com/JingZhang617/RGBD-COD
loss
5 D2CNet[112] TIEy Dual-branch, dual-guidance & cross-refine BTF - * e https//github.com/MS-KangWang/COD-D2Net
6 C2FNet[113] 1JCAly; Context-aware cross-level fusion BTF - * e https//github.com/thograce/C2FNet
7 UR-COD[114] MMAsiay; - Uncertainty of pseudo-edge labels MSF - * e https//github.com/nobukatsu-kajiura/UR-COD
8 TINet[115] AAAI; Texture perception & feature interaction guidance  BF  v* % e N/A
9 JSCOD[108] CVPRy Uncertainty-aware adversarial learning MSF - % e https//github.com/JingZhang617/Joint_COD_SOD
10 LSR[24] CVPR;; Localizing, segmenting, & ranking objects BF v s W https//github.com/JingZhang617/COD-Rank-Localize-and-Segment
simultaneously
11 MGL[116] CVPRy Mutual graph learning BF v % e https//github.com/fanyang587/MGL
12 PFNet [25] CVPRy Distraction mining, positioning and focus modules ~ BTF - * e https//mhaiyang.github.io/CVPR2021_PFNet/index
13 UGTR[117] ICCVy Uncertainty-guided transformer reasoning BF v Y e https//github.com/fanyang587/UGTR
14 BAS[118] arXivay Residual refinement module, hybrid loss BTF - * e https//github.com/xuebingin/BASNet
15 OSFormer [35] ECCVy, Location-sensing transformer, coarse-to-fine fusion  BF  v* % o  https//github.com/PlLallen/OSFormer
16 CFL[36] TIPy, Camouflage fusion learning BF v Y o https//sites.google.com/view/Itnghia/research/camo_plus_plus
17 NCHIT[119] CVIU,, Neighbor connection, hierarchical information BTF - * o N/A
transfer
18 DTC-Net [120] TMMy, Local bilinear & spatial coherence organization BTF - * o N/A
19 C2FNet-V2[121]  TCSVT,  Context-aware cross-level fusion BTF - * e https//github.com/Ben57882/C2FNet-TSCVT
20 CubeNet [122] PRy, Encoder-decoder framework with X’-connection BF v % e https//github.com/mczhuge/CubeNet
21 ERRNet [123] PRy> Selective edge aggregation, reversible re-calibration BF v % e  https/github.com/GewelsJI/ERRNet
22 TPRNet [124] TVCly, Transformer-induced progressive refinement BTF - * e https//github.com/zhangqiac970914/TPRNet
23 ANSA-Net [125] IJCNN,,  Attention-based neighbor selective aggregation BF v % e N/A
24 BSANet [126] AAAIL Boundary-guided separated attention BF v % e https//github.com/zhuhongweil999/BSA-Net
25 FAPNet [127] TIP,, Boundary guidance, feature aggregation & BF v Y e https//github.com/taozh2017/FAPNet
propagation
26 FindNet [128] TPy Boundary-and-texture cues (extension of [126]) BF v % e N/A
27 PINet [129] ICME;, Cascaded decamouflage module, label reweighting  BTF - * o N/A
28 OCENet [130] WACV,,  Online confidence estimation, dynamic uncertainty BF  v* s e  https//github.com/Carlisle-Liu/OCENet
loss
29 BGNet[131] 1JCAly; Edge-guidance feature & context aggregation BF v Y e https//github.com/thograce/BGNet
modules
30 PreyNet [132] MM, Bidirectional bridging interaction, predator learning  BF  v* % e  https//github.com/sxu1997/PreyNet
31 DTINet [133] ICPR,, Dual-task interactive transformer BF v Y e https//github.com/liuzywen/COD
32 ZoomNet [134] CVPR,, Scale integration & hierarchical mixed-scale units MSF - % e https//github.com/lartpang/ZoomNet
33 FDNet [135] CVPR;; Frequency enhancement & high-order relation MSF - * o N/A
modules
34 SegMaR [136] CVPRy;  Segmenting, magnifying, reiterating in a iterative BTF - * e https//github.com/dlut-dimt/SegMaR
manner
35 SINetV2[23] TPAMI,,  Neighbor connection decoder, group-reversal BTF - * e https//github.com/GewelsJI/SINet-V2
attention
36 MGL-V2[137] TIP3 Multi-source attention recovery (extension of [116]) BF v % e  https/github.com/fanyang587/MGL
37 FBNet[138] TMCCA,3  Frequency-aware context aggregation & attention ~ BTF - * e N/A
38 TANet[139] TCSVTy;  Texture-aware refinement, boundary-consistency BTF - * o N/A
loss
39 LSR+[33] TCSVTy;  Triple task learning (extension of [24]) BF v % W https//github.com/JingZhang617/COD-Rank-Localize-and-Segment
40 SARNet [140] TCSVTy;  Triple-stage refinement (search-amplify-recognize) ~ BTF - * e https//github.com/Haozhe-Xing/SARNet
41 MFFN[141] WACV,;  Co-attention of multi-view, channel fusion unit MSF - * e https//github.com/dwardzheng/MFFN_COD
42 CRNet [142] AAAL3 Feature-guided and consistency losses MSF - <& e https://github.com/dddraxxx/Weakly-Supervised-Camouflaged-
Object-Detection-with-Scribble-Annotations
43 HitNet [143] AAAL3 High-resolution iterative feedback BTF - * e https//github.com/HUuxiaobin/HitNet
44 DGNet [28] MIR23 Gradient-based texture learning, efficient network ~ BF v % e  https//github.com/GewelsJI/DGNet
45 FSPNet [144] CVPRy3 Feature shrinkage pyramid with transformer BTF - * e https//github.com/ZhouHuang23/FSPNet
46 FEDER [145] CVPRy3 Deep wavelet-like decomposition BTF - * e https//github.com/ChunmingHe/FEDER
47 DCNet [146] CVPRy3 Pixel-level decoupling, instance-level suppression BF v % o https//github.com/USTCL/DCNet
48 10CFormer [39] CVPRy3 Unify density- and regression-based strategies BF v % O https//github.com/GuoleiSun/Indiscernible-Object-Counting
49 PFNet+ [26] SCIS,3 Extension of PFNet [25] BTF - * e https//github.com/Mhaiyang/PFNet_Plus
50 DQnet[147] arXivys Cross-model detail querying, relation-based MSF - * e https//github.com/CVPR23/DQnet
querying
51 CamoFormer [148] arXiv,s Masked separable attention BTF - * https://github.com/HVision-NKU/CamoFormer
52 PopNet [149] arXivys Source-free depth, object pop-out prior MSF - % e https//github.com/Zongwei97/PopNet
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tasks, VCOS is a downstream task for VCOD since the seg-
mentation task requires the model to provide pixel-level
classification probabilities.

2.2 Related topics

Next, we will briefly introduce salient object detection
(SOD), which, like COS, requires extracting properties of
target objects, but one focuses on saliency while the other
on the concealed attribute.

e Image-level SOD aims to identify the most attractive
objects in an image and extract their pixel-accurate sil-
houettes [43]. Various network architectures have been
explored in deep SOD models, e.g., multi-layer percep-
tron [44-47], fully convolutional [48-52], capsule-based
[53-55], transformer-based [56], and hybrid [57, 58] net-
works. Meanwhile, different learning strategies are also
studied in SOD models, including data-efficient meth-
ods (e.g., weakly-supervised with categorical tags [59-63]
and unsupervised with pseudo masks [64—66]), multi-task
paradigms (e.g., object subitizing [67, 68], fixation predic-
tion [69, 70], semantic segmentation [71, 72], edge detec-
tion [73-77], image captioning [78]), and instance-level
paradigms [79-82]. To learn more about this field compre-
hensively, readers can refer to popular surveys or represen-
tative studies on visual attention [83], saliency prediction
[84], co-saliency detection [85-87], RGB SOD [1, 88-90],
RGB-D (depth) SOD [91, 92], RGB-T (thermal) SOD [93,
94], and light-field SOD [95].

e Video-level SOD. The early development of video
salient object detection (VSOD) originated from introduc-
ing attention mechanisms in video object segmentation
(VOS) tasks. At that stage, the task scenes were relatively
simple, containing only one object moving in the video.
As moving objects tend to attract visual attention, VOS
and VSOD were equivalent tasks. For instance, Wang et
al. [96] used a fully convolutional neural network to ad-
dress the VSOD task. With the development of VOS tech-
niques, researchers introduced more complex scenes (e.g.,
with complex backgrounds, object movements, and two
objects), but the two tasks remained equivalent. Thus, later
works have exploited semantic-level spatial-temporal fea-
tures [97—-100], recurrent neural networks [101, 102], or
offline motion cues such as optical flow [101, 103-105].
However, with the introduction of more challenging video
scenes (containing three or more objects, simultaneous
camera, and object movements), VOS and VSOD were
no longer equivalent. However, researchers continued to
approach the two tasks as equivalent, ignoring the issue
of visual attention allocation in multi-object movement in
video scenes, which seriously hindered the development of
the field. To address this issue, in 2019, Fan et al. [106] in-
troduced eye trackers to mark the changes in visual atten-
tion in multi-object movement scenarios, for the first time
posing the scientific problem of attention shift in VSOD
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tasks, and constructed the first large-scale VSOD bench-
mark — DAVSOD,! as well as the baseline model SSAYV,
which propelled VSOD into a new stage of development.

o Remarks. COS and SOD are distinct tasks, but they
can mutually benefit via the CamDiff approach [107]. This
has been demonstrated through adversarial learning [108],
leading to joint research efforts such as the recently pro-
posed dichotomous image segmentation [109]. In Section
6, we will explore potential directions for future research
in these areas.

3 CSU models with deep learning

This section systematically reviews CSU with deep learn-
ing approaches based on task definitions and data types.
We have also created a GitHub base? as a comprehensive
collection to provide the latest information in this field.

3.1 Image-level CSU models

We review the existing four image-level CSU tasks: con-
cealed object segmentation (COS), concealed object local-
ization (COL), concealed instance ranking (CIR), and con-
cealed instance segmentation (CIS). Table 1 summarizes
the key features of these reviewed approaches.

3.1.1 Concealed object segmentation

This section discusses previous solutions for camouflage
object segmentation (COS) from two perspectives: net-
work architecture and learning paradigm.

e Network architecture. Generally, fully convolutional
networks (FCNs [150]) are the standard solution for image
segmentation because they can receive the input of a flexi-
ble size and undergo a single feed-forward propagation. As
expected, FCN-shaped frameworks dominate the primary
solutions for COS, which fall into three categories:

(1) Multi-stream framework, shown in Fig. 3(a), con-
tains multiple input streams to learn multi-source rep-
resentations explicitly. MirrorNet [110] was the first at-
tempt to add an extra data stream as a bio-inspired attack,
which can break the camouflaged state. Several recent
works have adopted a multi-stream approach to improve
their results, such as supplying pseudo-depth generation
[149], pseudo-edge uncertainty [114], adversarial learn-
ing paradigm [108], frequency enhancement stream [135],
multi-scale [134] or multi-view [141] inputs, and multiple
backbones [147]. Unlike other supervised settings, CRNet
[142] is the only weakly-supervised framework that uses
scribble labels as supervision. This approach helps allevi-
ate overfitting problems on limited annotated data.

Lhttps://github.com/DengPingFan/DAVSOD.
2https://github.com/Gewels]I/SINet«VZ/blob/main/A\X/ESOME_COD_LIST.

md.
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Figure 3 Network architectures for COS at a glance. We present four types of frameworks from left to right: (a) multi-stream framework, (b)
bottom-up/top-down framework and its variant with deep supervision (optional), and (c) branched framework. See Section 3.1.1 for more details

(2) Bottom-up and top-down framework, as shown in
Fig. 3(b), uses deeper features to enhance shallower fea-
tures gradually in a single feed-forward pass. For exam-
ple, C2FNet [113] adopts this design to improve concealed
features from coarse-to-fine levels. In addition, SegMaR
[136] employs an iterative refinement network with a sub-
network based on this strategy. Furthermore, other stud-
ies [20, 23, 25, 26, 112, 118-121, 124, 125, 129, 138-140,
143-145, 148] utilized a deeply-supervised strategy [151,
152] on various intermediate feature hierarchies using this
framework. This practice, also utilized by the feature pyra-
mid network [153], combines more comprehensive multi-
context features through dense top-down and bottom-up
propagation and introduces additional supervision signals
before final prediction to provide more dependable guid-
ance for deeper layers.

(3) Branched framework, shown in Fig. 3(c), is a single-
input-multiple-output architecture, consisting of both
segmentation and auxiliary task branches. It should be
noted that the segmentation part of this branched frame-
work may have some overlap with previous frameworks,
such as single-stream [21] and bottom-up and top-down
[24, 28, 33, 108, 111, 115-117, 122, 123, 125-128, 130—
133, 137] frameworks. For instance, ERRNet [123] and
FAPNet [127] are typical examples of jointly learning con-
cealed objects and their boundaries. Since these branched
frameworks are closely related to the multi-task learning
paradigm, we will provide further details.

o Learning paradigm. We discuss two common types of
learning paradigms for COS tasks: single-task and multi-
task.

(1) Single-task learning is the most commonly used
paradigm in COS, which involves only a segmentation
task for concealed targets. Based on this paradigm, most
current works [20, 23, 121] focus on developing attention
modules to identify target regions.

(2) Multi-task learning introduces an auxiliary task to
coordinate or complement the segmentation task, lead-
ing to robust COS learning. These multi-task frameworks
can be implemented by conducting confidence estimation
[108, 117, 130, 132], localization/ranking [24, 33], category
prediction [21] tasks and learning depth [111, 149], bound-
ary[116,122,123,126,127, 131], and texture [28, 115] cues
of camouflaged objects.

3.1.2 Concealed instance ranking

There has been limited research conducted on this topic.
Lv et al. [24] observed for the first time that existing COS
approaches could not quantify the difficulty level of cam-
ouflage. Regarding this issue, they used an eye tracker to
create a new dataset, called CAM-LDR [33], that contains
instance segmentation masks, fixation labels, and ranking
labels. They also proposed two unified frameworks, LSR
[24] and its extension LSR+ [33], to simultaneously learn
triple tasks, i.e., localizing, segmenting, and ranking cam-
ouflaged objects. The insight behind it is that discrimina-
tive localization regions could guide the segmentation of
the full scope of camouflaged objects, and then, the de-
tectability of different camouflaged objects could be in-
ferred by the ranking task.

3.1.3 Concealed instance segmentation

This task advances the COS task from the regional to
the instance level, a relatively new field compared with
the COS. Then, Le et al. [36] built a new CIS bench-
mark, CAMO++, by extending the previous CAMO [21]
dataset. They also proposed a camouflage fusion learn-
ing strategy to fine-tune existing instance segmentation
models (e.g., Mask R-CNN [34]) by learning image con-
texts. Based on instance benchmarks such as in COD10K
[20] and NC4K [24], the first one-stage transformer frame-
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work, OSFormer [35], was proposed for this field by intro-
ducing two core designs: a location-sensing transformer
and coarse-to-fine fusion. Recently, Luo et al. [146] pro-
posed segmenting camouflaged instances with two de-
signs: a pixel-level camouflage decoupling module and an
instance-level camouflage suppression module.

3.1.4 Concealed object counting

Sun et al. [39] recently introduced a new challenge for
the community called indiscernible object counting (I0C),
which involves counting objects that are difficult to distin-
guish from their surroundings. They created IOCfish5K,
a large-scale dataset containing high-resolution images of
underwater scenes with many indiscernible objects (focus-
ing on fish) and dense annotations to address the lack of
appropriate datasets for this challenge. They also proposed
a baseline model called IOCFormer by integrating density-
based and regression-based methods in a unified frame-
work.

Based on the above summaries, the COS task is expe-
riencing a rapid development period, resulting in numer-
ous contemporary publications each year. However, very
few proposed solutions have been proposed for the COL,
CIR, and CIS tasks. This suggests that these fields remain
under-explored and offer significant room for further re-
search. Notably, many previous studies are available as ref-
erences (such as saliency prediction [84], salient object
subitizing [68], and salient instance segmentation [82]),
providing a solid foundation for understanding these tasks
from a camouflaged perspective.
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3.2 Video-level CSU models

There are two schools of thought for the video-level CSU
task, including detecting and segmenting camouflaged ob-
jects from videos. Refer to Table 2 for details.

3.2.1 Video concealed object detection

Most works [156, 158] formulated this topic as the degra-
dation problem of the segmentation task due to the scarcity
of pixel-wise annotations. They, as usual, were trained on
segmentation datasets (e.g., DAVIS [161] and FBMS [162])
but evaluated the generalizability performance on a video
camouflaged object detection dataset, MoCA [40]. These
methods consistently opt to extract offline optical flow as
motion guidance for the segmentation task, but they diver-
sify over the learning strategies, such as fully-supervised
learning with real [40, 157, 160] or synthetic [155, 158]
data and self-supervised learning [156, 159].

3.2.2 Video concealed object segmentation

Xie et al. [154] proposed the first work on camouflaged
object discovery in videos. They used a pixel-trajectory
recurrent neural network to cluster foreground motion
for segmentation. However, this work is limited to a
small-scale dataset, CAD [163]. Recently, based upon the
localization-level dataset MoCA [40] with bounding box
labels, Cheng et al. [42] extended this field by creating
a large-scale VCOS benchmark MoCA-Mask with pixel-
level masks. They also introduced a two-stage baseline
SLTNet to implicitly utilize motion information.

From what we have reviewed above, the current ap-
proaches for VCOS tasks are still in a nascent state of de-
velopment. Several concurrent works in well-established
video segmentation fields (e.g., self-supervised correspon-
dence learning [164—168], unified framework for different

Table 2 Essential characteristics of reviewed video-level methods. Optical flow (O.F): whether pre-generating optical flow map.
Supervision level (S.L.): full-supervision with real data (¥) or synthetic data (&), and self-supervision (Q). Task level (T.L.): video
camouflaged object detection (A) and segmentation (A). For further details, refer to Section 3.2

#  Model Pub. Core components OF SL TL  Project

1 FMC[154] CVPRyg Pixel trajectory recurrent neural network v * A N/A
and clustering

2 VRS [40] ACCVyo Video registration and motion v * A https://github.com/hlamdouar/MoCA/
segmentation network

3 SIMO[155]  BMVCy Dual-head architecture, synthetic v &» A https://www.robots.ox.ac.uk/~vgg/research/simo/
dataset

MG [156] ICCVy, Self-supervised motion grouping v Q A https://github.com/charigyang/motiongrouping

5 RCF[157] arXivyy Rotation-compensated flow, camera v * A N/A
motion estimation

6  OCLR[158] NeurlPS,,  Object-centric layered representation, v &» A N/A
synthetic dataset

7 OFS[159] TPAMI;; Expectation-maximization method, v V) A https://github.com/Etienne-Meunier-Inria/EM-Flow-
motion augmentation Segmentation

8  QSDI[160] CVPRy; Quantifying the static and dynamic v * A https://yorkucvil.github.io/Static-Dynamic-
biases Interpretability/

9 SLTNet[42]  CVPRy Implicit motion handling, short- and - * A https://github.com/XuelianCheng/SLT-Net

long-term modules



https://github.com/hlamdouar/MoCA/
https://www.robots.ox.ac.uk/~vgg/research/simo/
https://github.com/charigyang/motiongrouping
https://github.com/Etienne-Meunier-Inria/EM-Flow-Segmentation
https://github.com/Etienne-Meunier-Inria/EM-Flow-Segmentation
https://yorkucvil.github.io/Static-Dynamic-Interpretability/
https://yorkucvil.github.io/Static-Dynamic-Interpretability/
https://github.com/XuelianCheng/SLT-Net
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motion-based tasks [169-171]) points the way to further
exploration. In addition, considering high-level semantic
understanding has a research gap that merits being sup-
plied, such as semantic segmentation and instance seg-
mentation in the camouflaged scenes.

4 CSU datasets

In recent years, various datasets have been collected for
both image- and video-level CSU tasks. In Table 3, we sum-
marize the features of the representative datasets.

4.1 Image-level datasets

o CAMO-COCO [21] is tailor-made for COS tasks with
2500 image samples across eight categories, divided into
two sub-datasets, i.e., CAMO with camouflaged objects
and MS-COCO with non-camouflaged objects. Both
CAMO and MS-COCO contain 1250 images with a split
of 1000 for training and 250 for testing.

e NC4K [24] is currently the largest testing set for eval-
uating COS models. It consists of 4121 camouflaged im-
ages sourced from the Internet and can be divided into two
primary categories: natural scenes and artificial scenes. In
addition to the images, this dataset also provides localiza-
tion labels that include both object-level segmentation and
instance-level masks, making it a valuable resource for re-
searchers working in this field. In a recent study by Lv et al.
[24], an eye tracker was utilized to collect fixation informa-
tion for each image. As a result,a CAM-FR dataset of 2280
images was created, with 2000 images used for training and
280 for testing. The dataset was annotated with three types
of labels: localization, ranking, and instance labels.

e CAMO++ [36] is a newly released dataset that con-
tains 5500 samples, all of which have undergone hierarchi-
cal pixel-wise annotation. The dataset is divided into two
parts: camouflaged samples (1700 images for training and
1000 for testing) and non-camouflaged samples (1800 im-
ages for training and 1000 for testing).

e CODIOK [20, 23] is currently the largest-scale dataset,
featuring a wide range of camouflaged scenes. It contains
10,000 images from multiple open-access photography
websites, covering 10 super-classes and 78 sub-classes.
Of these images, 5066 are camouflaged, 1934 are non-
camouflaged pictures, and 3000 are background images.
The camouflaged subset of COD10K is annotated using
different labels such as category labels, bounding boxes,
object-level masks, and instance-level masks, providing a
diverse set of annotations.

e CAM-LDR [33] comprises of 4040 training and 2026
testing samples. These samples were selected from
commonly-used hybrid training datasets (i.e., CAMO with
1000 training samples and COD10K with 3040 training
samples), along with the testing dataset (i.e., COD10K with
2026 testing samples). CAM-LDR is an extension of NC4K
[24] that includes four types of annotations: localization la-
bels, ranking labels, object-level segmentation masks, and
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instance-level segmentation masks. The ranking labels are
categorized into six difficulty levels — background, easy,
medium1, medium2, medium3, and hard.

e S-COD [142] is the first dataset designed specifically
for the COS task under the weakly-supervised setting. The
dataset includes 4040 training samples, with 3040 sam-
ples selected from COD10K and 1000 from CAMO. These
samples were re-labeled using scribble annotations that
provide a rough outline of the primary structure based on
first impressions, without pixel-wise ground-truth infor-
mation.

e JOCfish5K [39] is a distinct dataset that focuses on
counting instances of fish in camouflaged scenes. This
COC dataset comprises 5637 high-resolution images col-
lected from YouTube, with 659,024 center points anno-
tated. The dataset is divided into three subsets, with 3137
images allocated for training, 500 for validation, and 2000
for testing.

Remarks In summary, three datasets (CAMO, COD10K,
and NC4K) are commonly used as benchmarks to evaluate
camouflage object segmentation (COS) approaches, with
the experimental protocols typically described in Section
5.2. For the concealed instance segmentation (CIS) task,
two datasets (COD10K and NC4K) containing instance-
level segmentation masks can be utilized. The CAM-
LDR dataset, which provides fixation information and
three types of annotations collected from a physical eye
tracker device, is suitable for various brain-inspired ex-
plorations in computer vision. Additionally, there are two
new datasets from CSU: S-COD, designed for weakly-
supervised COS, and IOCfish5K, focused on counting ob-
jects within camouflaged scenes.

4.2 Video-level datasets

e CAD [163] is a small dataset comprising nine short video
clips and 836 frames. The annotation strategy used in this
dataset is sparse, with camouflaged objects being anno-
tated every five frames. As a result, there are 191 segmen-
tation masks available in the dataset.

e MoCA [40] is a comprehensive video database from
YouTube that aims to detect moving camouflaged ani-
mals. It consists of 141 video clips featuring 67 categories
and comprises 37,250 high-resolution frames with corre-
sponding bounding box labels for 7617 instances.

o MoCA-Mask [42], an extension of the MoCA dataset
[40], provides human-annotated segmentation masks ev-
ery five frames based on the MoCA dataset [40]. MoCA-
Mask is divided into two parts: a training set consisting
of 71 short clips (19,313 frames with 3946 segmentation
masks) and an evaluation set containing 16 short clips
(3626 frames with 745 segmentation masks). To label those
unlabeled frames, pseudo-segmentation labels were syn-
thesized using a bidirectional optical flow-based strategy
[172].
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Remarks The MoCA dataset is currently the largest col-
lection of videos with concealed objects, while it only of-
fers detection labels. As a result, researchers in the com-
munity [156, 158] typically assess the performance of well-
trained segmentation models by converting segmenta-
tion masks into detection bounding boxes. Recently, there
has been a shift towards video segmentation in concealed
scenes with the introduction of MoCA-Mask. Despite
these advancements, the quantity and quality of data anno-
tations remain insufficient for constructing a reliable video
model that can effectively handle complex concealed sce-
narios.

5 CSU benchmarks

In this investigation, our benchmarking is built on COS
tasks since this topic is relatively well-established and of-
fers a variety of competing approaches. The following sec-
tions will provide details over the evaluation metrics (Sec-
tion 5.1), benchmarking protocols (Section 5.2), quanti-
tative analyses (Section 5.3, Section 5.4, Section 5.5), and
qualitative comparisons (Section 5.6).

5.1 Evaluation metrics
As suggested in [23], there are five commonly used met-
rics® available for COS evaluation. We compare a predic-
tion mask P with its corresponding ground-truth mask G
at the same image resolution.

e MAE (mean absolute error, M) is a conventional pixel-
wise measure, which is defined as:

1 W H
M= WXHXx:Xy]P(xJ)—G(x»J’) ) (1)

where W and H are the width and height of G respectively,
and (x,y) are pixel coordinates in G.
e F-measure can be defined as:

(1 + B?)Precision x Recall

Fy = (2)

B?Precision + Recall

where 8% = 0.3 is used to emphasize the precision value

over the recall value, as recommended in [90]. Two other

metrics are derived from:
IP(T) NG

Precision = ————, Recall
[P(T)]

_IP(DNG

G @

where P(T') is a binary mask obtained by thresholding the
non-binary predicted map P with a threshold value T €
[0,255]. The symbol | - | calculates the total area of the
mask inside the map. Therefore, it is possible to convert a
non-binary prediction mask into a series of binary masks

3https://github.com/DengPingFan/CSU/tree/main/cos_eval_toolbox.
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with threshold values ranging from 0 to 255. By iterating
over all thresholds, three metrics are obtained with max-
imum (FE“X), mean (Fgm), and adaptive (ng) values of the
F-measure.

e Enhanced-alignment measure (Ey) [180, 181] is a
recently proposed binary foreground evaluation metric,
which considers both local and global similarity between
two binary maps. Its formulation is defined as follows:

1 W H
2> #[PG3). G )], @
x oy

Ey=

where ¢ is the enhanced-alignment matrix. Similar to Fg,
this metric also includes three values computed over all the
thresholds, i.e., maximum (E3™), mean (E}'"), and adaptive
(E;‘)d) values.

o Structure measure (S,) [182, 183] is used to measure
the structural similarity between a non-binary prediction
map and a ground-truth mask:

Sy = (1-a)S,(P,G) +aS,(P,G), (5)

where o balances the object-aware similarity S, and
region-aware similarity S,. As in the original paper, we use
the default setting for « = 0.5.

5.2 Experimental protocols

As suggested by Fan et al. [23], all competing approaches
in the benchmarking analysis were trained on a hybrid
dataset comprising the training portions of the COD10K
[20] and CAMO [21] datasets, totaling 4040 samples. The
models were then evaluated on three popular used bench-
marks: COD10K’s testing portion with 2026 samples [20],
CAMO with 250 samples [21], and NC4K with 4121 sam-
ples [24].

5.3 Quantitative analysis of CAMO

As reported in Table 4, we evaluated 36 deep learning-
based approaches on the CAMO testing dataset [21]
using various metrics. These models were classified into
two groups based on the backbones they used: 32
convolutional-based and four transformer-based models.
For those models using convolutional-based backbones,
several interesting findings are observed and summarized
as follows.

e CamoFormer-C [148] achieved the best performance
on CAMO with the ConvNeXt [176] based backbone, even
surpassing some metrics produced by transformer-based
methods, such as S, value: 0.859 (CamoFormer-C) vs.
0.856 (DTINet [133]) vs. 0.849 (HitNet [143]). However,
CamoFormer-R [148] with the ResNet-50 backbone was
unable to outperform competitors with the same back-
bone, such as using multi-scale zooming (ZoomNet [134])
and iterative refinement (SegMaR [136]) strategies.
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Table 4 Quantitative comparison on the CAMO [21] testing set. We classify the competing approaches based on two aspects: those
using convolution-based backbones such as ResNet [173], Res2Net [174], EffNet [175], and ConvNext [176]; and those using
transformer-based backbones such as MiT [177], PVTv2 [178], and Swin [179]. We test two efficiency metrics, model parameters (Para)

and multiply-accumulate operations (MACs), in accordance with the preset input resolution in the original paper. In addition, nine

evaluation metrics are reported, and the best three scores are highlighted in red, green, and blue, respectively, with 4/, indicating

that higher/lower scores are better. If the results are unavailable since the code has not been made public, we use a hyphen (-) to

denote it. We will follow these notations in subsequent tables unless otherwise specified

Model Pub/Year Backbone  Input Para. MACs So b F;;V r MY Eg;j b E(’;” b E(;”X 4 F;';d 0 Fg” 1 FEX b
o Convolution-based Backbone

SINet [20] CVPR2o ResNet-50 3522 4895M  1942G 0745 0644 0092 0825 0804 0829 0712 0702 0.708
D2CNet [112] TIEy; Res2Net-50 3207 - - 0.774 0683 0087 0844 0818 0838 0747 0.735 0743
C2FNet [113] 1JCAl; Res2Net-50 3522 2841M  13.12G 0796 0719 0080 0865 0854 0864 0764 0762 0.771

TINet [115] AAAIY, ResNet-50 3522 28.56M 858G 0.781 0678 0087 0847 0836 0848 0729 0.728 0.745
JSCOD [108] CVPRy; ResNet-50 3522 12163M  2520G 0800 0728 0073 0872 0859 0873 0779 0772 0779
LSR [24] CVPRy; ResNet-50 3522  5790M 2521G 0787 0696 0080 0859 0838 0854 0756 0744 0753
R-MGL [116] CVPRy; ResNet-50 4732 67.64M 24989G 0775 0673 0088 0848 0812 0842 0738 0726 0.740
S-MGL [116] CVPRy; ResNet-50 4732 6360M 23660G 0772 0664 0089 0850 0807 0842 0733 0721 0739
PFNet [25] CVPRy; ResNet-50 4162 46.50M  2654G 0782 0695 0.085 0855 0841 0855 0751 0746 0.758
UGTR[117] ICCVq ResNet-50 4732 4887M 127.12G 0785 0686 0086 0861 0823 0854 0749 0738 0754
BAS [118] arXivo ResNet-34 2882 87.06M 161.19G 0749 0646 009 0808 0796 0808 0696 0692 0.703

NCHIT [119] CVIUy;, ResNet-50 2882 - - 0784 0652 0088 0841 0805 0840 0723 0707 0739
C2FNet-V2 [121] TCSVTy,  Res2Net-50 3522 4494M  1810G 0799 0730 0077 0869 0859 0869 0777 0770 0779
CubeNet [122] PR22 ResNet-50 3522 - - 0788 0682 0085 0852 0838 0860 0734 0732 0750
ERRNet [123] PR2> ResNet-50 3522 69.76M  20.05G 0779 0679 0085 0855 0842 0858 0731 0729 0742
TPRNet [124] TVC), Res2Net-50 3522 3295M  1298G 0807 0725 0074 0880 0861 0883 0777 0772 0785

FAPNet [127] TIP2, Res2Net-50 3522 2952M  29.69G 0815 0.734 0076 0877 0865 08380 0776 0776 0792
BSANet [126] AAAlL Res2Net-50 3842  3258M  29.70G 0794 0717 0079 0866 0851 0867 0768 0763 0.770
OCENet [130] WACV2,  ResNet-50 4802 6031TM  59.70G 0802 0723 0.080 0866 0852 0865 0776 0766 0.777
BGNet [131] 1JCAl,;, Res2Net-50 4162  7985M  5845G 0812 0749 0073 0876 0870 0882 078 0789 0.799
PreyNet [132] MMa, ResNet-50 4482 3853M  58.10G 0790 0.708 0077 0856 0842 0857 0763 0757 0.765

ZoomNet [134] CVPRy;,  ResNet-50 3842  3238M  9550G 0820 0752 0066 0883 0877 0892 0792 0794 0805

FDNet [135] CVPR22 Res2Net-50 4162 - - 0.841 0.775 0.063 0.901 0.895 0908 0.803 0.807 0.826
SegMaR [136] CVPRy,  ResNet-50 3522  5621M  3363G 0815 0753 0071 0881 0874 0884 0795 0795 0803

SINetV2 [23] TPAMIy;  Res2Net-50 3522 2698M  12.28G 0820 0.743 0070 0884 0882 0895 0779 0782 0.801

CamoFormer-C [148]  arXivas ConvNeXt-B 3842 96.69M 50.77G 0.859 0.812 0.050 0.919 0.913 0.920 0.842 0.842 0.855
CamoFormer-R [148]  arXivys3 ResNet-50 3842 5425M  7885G 0816 0712 0076 0863 0874 0916 0735 0745 0813

PopNet [149] arXivys Res2Net-50 5122 18805M 15488G 0808 0744 0077 0871 0859 0874 0790 0784 0792

CRNet [142] AAAlL3 ResNet-50 3202 3265M  11.83G 0735 0641 0092 0829 0815 0830 0709 0701 0.707

PFNet+ [26] SCISy3 ResNet-50 4802 - - 0791 0713 0080 0862 0850 0865 0764 0761 0770
DGNet-S [28] MIR3 EffNet-B1 3522 7.02M 277G 0826 0754 0.063 0896 0.893 0907 0786 0792 0810
DGNet [28] MIR3 EffNet-B4 3522 19.22M 120G 0.839 0.769 0.057 0.906 0.901 0.915 0.804 0.806 0.822
o Transformer-based Backbone

DTINet [133] ICPRy, MiT-B5 256 26633M 14468G 0.856 0796 0.050 0.918 0.916 0.927 0821 0823 0.843
CamoFormer-S [148]  arXivas Swin-B 3842 9727M  64.13G 0.876 0.832 0.043 0.935 0.930 0.938 0.856 0.856 0.871
CamoFormer-P [148]  arXivys3 PVTv2-B4 3842 7140M 39.74G 0.872 0.831 0.046 0.931 0.929 0.938 0.853 0.854 0.868
HitNet [143] AAAl3 PVTv2-B2 7042 2573M  5595G 0849 0.809 0.055 0910 0906 0.910 0.833 0.831 0.838

o For those Res2Net-based models, FDNet [135] achieved

e Interestingly, CRNet [142] — a weakly-supervised

the top performance on CAMO with high-resolution in-
put of 4162, In addition, SINetV2 [23] and FAPNet [127]
also achieved satisfactory results using the same backbone
but with a small input size of 3522.

e DGNet [28], is an efficient model that stands out with
its top-3 performance compared to heavier models such as
JSCOD [108] (121.63M) and PopNet [149] (181.05M), de-
spite having only 19.22M parameters and 1.20G compu-
tation costs. Its performance-efficiency balance makes it
a promising architecture for further exploration of its po-
tential capabilities.

model — competes favorably with the early fully-supervised
model SINet [20]. This suggests that there is room for de-
veloping models to bridge the gap towards better data-
efficient learning, e.g., self-/semi-supervised learning.

Furthermore, transformer-based methods can signifi-
cantly improve performance due to their superior long-
range modeling capabilities. Here, we test four
transformer-based models on the CAMO testing dataset,
yielding three noteworthy findings:

e CamoFormer-S [148], utilizes a Swin transformer de-
sign to enhance the hierarchical modeling ability on con-



Fan et al. Visual Intelligence (2023) 1:16

Table 5 Quantitative comparison on the NC4K [24] testing dataset
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Model Pub/Year Backbone Se t F;}V b

M 1 E(?)d 1 Fmn 1 Fmx 1 Fad 1 Fmn 1 Fmx 1

[ [ B B B

e Convolution-based Backbone

SINet [20] CVPRyo ResNet-50 0.808 0.723 0.058 0.883 0.871 0.883 0.768 0.769 0.775
C2FNet [113] 1JCAly; Res2Net-50 0.838 0.762 0.049 0.901 0.897 0.904 0.788 0.795 0.810
TINet [115] AAAI, ResNet-50 0.829 0.734 0.055 0.882 0.879 0.890 0.766 0.773 0.793
JSCOD [108] CVPRy ResNet-50 0.842 0.771 0.047 0.906 0.898 0.907 0.803 0.806 0816
LSR [24] CVPRy1 ResNet-50 0.840 0.766 0.048 0.904 0.895 0.907 0.802 0.804 0.815
R-MGL [116] CVPRy; ResNet-50 0.833 0.740 0.052 0.890 0.867 0.893 0.778 0.782 0.800
S-MGL [116] CVPRy1 ResNet-50 0.829 0.731 0.055 0.885 0.863 0.893 0.771 0.777 0.797
PFNet [25] CVPRy; ResNet-50 0.829 0.745 0.053 0.894 0.887 0.898 0.779 0.784 0.799
UGTR [117] ICCVy ResNet-50 0.839 0.747 0.052 0.889 0.874 0.899 0.779 0.787 0.807
BAS [118] arXivys ResNet-34 0817 0.732 0.058 0.868 0.859 0.872 0.767 0.772 0.782
NCHIT [119] CVIUy, ResNet-50 0.830 0.710 0.058 0.872 0.851 0.894 0.751 0.758 0.792
C2FNet-V2 [121] TCSVTy, Res2Net-50 0.840 0.770 0.048 0.900 0.896 0.904 0.799 0.802 0814
ERRNet [123] PRy ResNet-50 0.827 0.737 0.054 0.892 0.887 0.901 0.769 0.778 0.794
TPRNet [124] TVCy) Res2Net-50 0.846 0.768 0.048 0.901 0.898 0911 0.798 0.805 0.820
FAPNet [127] TPy, Res2Net-50 0.851 0.775 0.047 0.903 0.899 0910 0.804 0.810 0.826
BSANet [126] AAAlL Res2Net-50 0.841 0.771 0.048 0.906 0.897 0.907 0.805 0.808 0.817
OCENet [130] WACV, ResNet-50 0.853 0.785 0.045 0.908 0.902 0913 0.812 0.818 0.831

BGNet [131] 1JCAIl Res2Net-50 0.851 0.788 0.044 0911 0.907 0916 0813 0.820 0.833
PreyNet [132] MMy> ResNet-50 0.834 0.763 0.050 0.899 0.887 0.899 0.805 0.803 0811

ZoomNet [134] CVPRy ResNet-50 0.853 0.784 0.043 0.907 0.896 0912 0814 0.818 0.828
FDNet [135] CVPRy, Res2Net-50 0.834 0.750 0.052 0.895 0.893 0.905 0.774 0.784 0.804
SegMaR [136] CVPR22 ResNet-50 0.841 0.781 0.046 0.905 0.896 0.907 0.821 0.821 0.826
SINetV2 [23] TPAMI; Res2Net-50 0.847 0.770 0.048 0.901 0.903 0914 0.792 0.805 0.823

CamoFormer-C [148] arXivys ConvNeXt-B 0.883 0.834 0.032 0.937 0.933 0.940 0.851 0.857 0.870
CamoFormer-R [148] arXivos ResNet-50 0.855 0.788 0.042 0.913 0.900 0914 0.820 0.821 0.830
PopNet [149] arXivys Res2Net-50 0.861 0.802 0.042 0.915 0.909 0.919 0.830 0.833 0.843
DGNet-S [28] MIR3 EfficientNet-B1 0.845 0.764 0.047 0.902 0.902 0913 0.789 0.799 0.819
DGNet [28] MIR23 EfficientNet-B4 0.857 0.784 0.042 0910 0.911 0.922 0.803 0.814 0.833
e Transformer-based Backbone

DTINet [133] ICPR: MIT-B5 0.863 0.792 0.041 0.914 0917 0.926 0.809 0.818 0.836
CamoFormer-S [148] arXivys Swin-B 0.888 0.840 0.031 0.941 0.937 0.946 0.857 0.863 0.877
CamoFormer-P [148] arXivos PVTv2-B4 0.892 0.847 0.030 0.941 0.939 0.946 0.863 0.868 0.880
HitNet [143] AAAIlL3 PVTv2-B2 0.875 0.834 0.037 0.928 0.926 0.929 0.854 0.853 0.863

cealed content, resulting in superior performance across
the entire CAMO benchmark. We also observed that the
PVT-based variant CamoFormer-P [148] achieved com-
parable results but with fewer parameters, i.e., 71.40M
(CamoFormer-P) vs. 97.27M (CamoFormer-R).

e DTINet [133] is a dual-branch network that utilizes the
MiT-B5 semantic segmentation model from SegFormer
[177] as backbone. Despite having 266.33M parameters, it
has not delivered impressive performance due to the chal-
lenges of balancing these two heavy branches. Neverthe-
less, this attempt defies our preconceptions and inspires
us to investigate the generalizability of semantic segmen-
tation models in concealed scenarios.

e We also investigated the impact of input resolution
on the performance of different models. HitNet [143]
uses a high-resolution image of 7042, which can improve
the detection of small targets, but at the expense of in-
creased computation costs. Similarly, convolutional-based
approaches such as ZoomNet [134] achieved impressive
results by taking multiple inputs with different resolu-
tions (the largest being 576%) to enhance segmentation

performance. However, not all models benefit from this
approach. For instance, PopNet [149] with a resolution
of 4802 failed to outperform SINetV2 [23] with 3522 in
all metrics. This observation raises two critical questions:
should high-resolution be used in concealed scenarios, and
how can we develop an effective strategy for detecting con-
cealed objects of varying sizes? We will propose poten-
tial solutions to these questions and present an interesting
analysis of the COD10K in Section 5.5.

5.4 Quantitative analysis of NC4K
Compared to the CAMO dataset, the NC4K [24] dataset
has a larger data scale and sample diversity, indicating sub-
tle changes may have occurred. Table 5 presents quantita-
tive results on the current largest COS testing dataset with
4121 samples. The benchmark includes 28 convolutional-
based and four transformer-based approaches. Our obser-
vations are summarized as follows.

e CamoFormer-C [148] still outperformed all methods
on NC4K. In contrast to the awkward situation observed
on CAMO as described in Section 5.3, the ResNet-50
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based CamoFormer-R [148] now performed better than
two other competitors (i.e., SegMaR [136] and ZoomNet
[134]) on NC4K. These results confirm the effectiveness of
CamoFormer’s decoder design in mapping latent features
back to the prediction space, particularly for more compli-
cated scenarios.

e DGNet [28] shows less promising results on the chal-
lenging NC4K dataset, possibly due to its restricted mod-
eling capability with small model parameters. Neverthe-
less, this drawback provides an opportunity for modifica-
tion since the model has a lightweight and simple architec-
ture.

e While PopNet [149] may not perform well on small-
scale CMAO datasets, it has demonstrated potential in the
challenging NC4K dataset. This indicates that using an ex-
tra network to synthesize depth priors would be helpful for
challenging samples. When compared to SINetV2 based

Table 6 Quantitative comparison on COD10K [20] testing set
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on Res2Net-50 [23], PopNet has a heavier design (188.05M
vs. 26.98M) and larger input resolution (5122 vs. 3522), but
only improves the E3*" value by 0.6%.

o Regarding the CamoFormer [148] model, there is now
a noticeable difference in performance between its two
variants. Specifically, the CamoFormer-S variant based
on Swin-B lags behind while the CamoFormer-P variant
based on PVTv2-B4 performs better.

5.5 Quantitative analysis of COD10K
In Table 6, we present a performance comparison of
36 competitors, including 32 convolutional-based mod-
els and four transformer-based models, on the COD10K
dataset with diverse concealed samples. Based on our eval-
uation, we have made the following observations.

o CamoFormer-C [148], which has a robust backbone,
remains the best-performing method among all

Model Pub/Year  Backbone Su t g1 M E;;i 1 e A F;;ﬂ 0 Rt At
e Convolution-based Backbone

SINet [20] CVPRyo ResNet-50 0.776 0.631 0.043 0.867 0.864 0.874 0.667 0.679 0.691

D2CNet [112] TIEy, ResNet-50 0.807 0.680 0.037 0.879 0.876 0.887 0.702 0.720 0.736
C2FNet [113] 1JCAly; Res2Net-50 0.813 0.686 0.036 0.886 0.890 0.900 0.703 0.723 0.743
TINet [115] AAAlY; ResNet-50 0.793 0.635 0.042 0.848 0.861 0.878 0.652 0.679 0.712
JSCOD [108] CVPR2o ResNet-50 0.809 0.684 0.035 0.882 0.884 0.891 0.705 0.721 0.738
LSR [24] CVPRy; ResNet-50 0.804 0673 0.037 0.883 0.880 0.892 0.699 0.715 0.732
R-MGL [116] CVPRy; ResNet-50 0.814 0.666 0.035 0.865 0.852 0.890 0.681 0.711 0.738
S-MGL [116] CVPRy; ResNet-50 0.811 0.655 0.037 0.851 0.845 0.889 0.667 0.702 0.733

PFNet [25] CVPRy; ResNet-50 0.800 0.660 0.040 0.868 0.877 0.890 0.676 0.701 0.725

UGTR[117] ICCVqy ResNet-50 0818 0.667 0.035 0.850 0.853 0.891 0.671 0.712 0.742
BAS [118] arXivyy ResNet-34 0.802 0.677 0.038 0.869 0.855 0.870 0.707 0.715 0.729
NCHIT [119] CVIU, ResNet-50 0.792 0.591 0.046 0.794 0.819 0.879 0.596 0.649 0.698
C2FNet-V2 [121] TCSVTy, Res2Net-50 0.811 0.691 0.036 0.890 0.887 0.896 0.718 0.725 0.742
CubeNet [122] PR22 ResNet-50 0.795 0.643 0.041 0.862 0.865 0.883 0.669 0.692 0.715

ERRNet [123] PRy ResNet-50 0.786 0.630 0.043 0.845 0.867 0.886 0.646 0.675 0.702
TPRNet [124] TVC), Res2Net-50 0817 0.683 0.036 0.869 0.887 0.903 0.694 0.724 0.748
FAPNet [127] TPy, Res2Net-50 0.822 0.694 0.036 0.875 0.888 0.902 0.707 0.731 0.758
BSANet [126] AAAlL Res2Net-50 0.818 0.699 0.034 0.894 0.891 0.901 0.723 0.738 0.753

OCENet [130] WACV, ResNet-50 0.827 0.707 0.033 0.885 0.894 0.905 0.718 0.741 0.764
BGNet [131] 1JCAl,; Res2Net-50 0.831 0.722 0.033 0.902 0.901 0911 0.739 0.753 0.774
PreyNet [132] MM, ResNet-50 0.813 0.697 0.034 0.894 0.881 0.891 0.731 0.736 0.747

ZoomNet [134] CVPRy, ResNet-50 0.838 0.729 0.029 0.893 0.888 0911 0.741 0.766 0.780
FDNet [135] CVPRy, Res2Net-50 0.840 0.729 0.030 0.906 0.919 0.935 0.728 0.757 0.788
SegMaR [136] CVPR;; ResNet-50 0.833 0.724 0.034 0.893 0.899 0.906 0.739 0.757 0.774
SINetV2 [23] TPAMI;; Res2Net-50 0.815 0.680 0.037 0.864 0.887 0.906 0.682 0.718 0.752

CamoFormer-C [148] arXivys ConvNeXt-B 0.860 0.770 0.024 0.926 0.926 0.935 0.778 0.798 0.818
CamoFormer-R [148] arXivys ResNet-50 0.838 0.724 0.029 0.900 0.916 0.930 0.721 0.753 0.786
PopNet [149] arXivys Res2Net-50 0.851 0.757 0.028 0.910 0910 0.919 0.771 0.786 0.802
CRNet [142] AAAl»3 ResNet-50 0.733 0.576 0.049 0.845 0.832 0.845 0.637 0.633 0.636
PFNet+ [26] Ssiso3 ResNet-50 0.806 0677 0.037 0.880 0.884 0.895 0.698 0.716 0.734
DGNet-S [28] MIRy3 EfficientNet-B1 0.810 0.672 0.036 0.869 0.888 0.905 0.680 0.710 0.743

DGNet [28] MIR23 EfficientNet-B4 0.822 0.693 0.033 0.879 0.896 0911 0.698 0.728 0.759

o Transformer-based Backbone

DTINet [133] ICPRy, MIT-B5 0.824 0.695 0.034 0.881 0.896 0911 0.702 0.726 0.754

CamoFormer-S[148] arXivys Swin-B 0.862 0.772 0.024 0.932 0.931 0.941 0.780 0.799 0.818
CamoFormer-P[148] arXivos PVTv2-B4 0.869 0.786 0.023 0.931 0.932 0.939 0.794 0.811 0.829
HitNet [143] AAAl3 PVTv2-B2 0.871 0.806 0.023 0.936 0.935 0.938 0.818 0.823 0.838
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convolutional-based methods. Similar to its performance
on NC4K, CamoFormer-R [148] has once again outper-
formed strong competitors with identical backbones such
as SegMaR [136] and ZoomNet [134].

e Similar to its performance on the NC4K dataset, Pop-
Net [149] achieved consistently competitive results on the
COD10K dataset, ranking second only to CamoFormer-C
[148]. We believe that prior knowledge of the depth of the
scene plays a crucial role in enhancing the understanding
of concealed environments. This insight will motivate us
to investigate more intelligent ways to learn structural pri-
ors, such as incorporating multi-task learning or heuristic
methods into our models.

e Notably, HitNet [143] achieved the highest perfor-
mance on the COD10K benchmark, outperforming mod-
els with stronger backbones such as Swin-B and PVTv2-
B4. To understand why this is the case, we calculated
the average resolution of all samples in the CAMO (W
= 693.89 and H = 564.22), NC4K (W = 709.19 and H
= 529.61), and COD10K (W = 963.34 and H = 740.54)
datasets. We found that the testing set for COD10K has
the highest overall resolution, which suggests that models
utilizing higher resolutions or multi-scale modeling would
benefit from this characteristic. Therefore, HitNet is an ex-
cellent choice for detecting concealed objects in scenarios
where high-resolution images are available.

5.6 Qualitative comparison

This section visually assesses the performance of current
top models on challenging and complex samples that are
prone to failure. We compare qualitative results predicted
by ten groups of top-performing models, including six
convolutional-based models (i.e., CamoFormer-C [148],
DGNet [28], PopNet [149], ZoomNet [134], FDNet [135]
and SINetV2 [23]), two transformer-based models (i.e.,
CamoFormer-S [148] and HitNet [143]), as well as two
other competitors (i.e., the earliest baseline SINet [20] and
a weakly-supervised model CRNet [142]). All samples are
selected from the COD10K testing dataset according to
seven fine-grained attributes. The qualitative comparison
is presented in Fig. 4, revealing several interesting findings.

e The attribute of multiple objects (MO) poses a chal-
lenge due to the high false-negative rate in current top-
performing models. As depicted in the first column of
Fig. 4, only two out of ten models could locate the white
flying bird approximately, as indicated by the red circle in
the GT mask. These two models are CamoFormer-S [148],
which employs a robust transformer-based encoder, and
FDNet [135], which utilizes a frequency-domain learning
strategy.

e The models we tested can accurately detect big objects
(BO) by precisely locating the target’s main part. However,
these models struggle to identify smaller details such as the
red circles highlighting the toad’s claws in the second col-
umn of Fig. 4.
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e The small object (SO) attribute presents a challenge
as it only occupies a small area in the image, typically less
than 10% of the total pixels as reported by COD10K [20].
As shown in the third column of Fig. 4, only two models
(CamoFormer-S and CamoFormer-C [148]) can detect a
cute cat lying on the ground at a distance. Such a diffi-
culty arises for two main reasons. First, models struggle
to differentiate small objects from complex backgrounds
or other irrelevant objects in an image. Second, detectors
may miss small regions due to down-sampling operations
caused by low-resolution inputs.

e The out-of-view (OV) attribute refers to objects par-
tially outside the image boundaries, leading to incomplete
representation. To address this issue, a model should have
a better holistic understanding of the concealed scene. As
shown in the fourth column of Fig. 4, both CamoFormer-
C [148] and FDNet [135] can handle the OV attribute and
maintain the object’s integrity. However, two transformer-
based models failed to do so. This observation has inspired
us to explore more efficient methods, such as local mod-
eling within convolutional frameworks and cross-domain
learning strategies.

e The shape complexity (SC) attribute indicates that an
object contains thin parts, such as an animal’s foot. In the
fifth column of Fig. 4, the stick insect’s feet are a good ex-
ample of this complexity, being elongated and slender and
thus difficult to predict accurately. Only HitNet [143] with
high-resolution inputs can predict a right-bottom foot (in-
dicated by a red circle).

e The attribute of occlusion (OC) refers to the partial oc-
clusion of objects, which is a common challenge in general
scenes [184]. In Fig. 4, for example, the sixth column shows
two owls partially occluded by a wire fence, causing their
visual regions to be separated. Unfortunately, most of the
models presented were unable to handle such cases.

e The indefinable boundary (IB) attribute is difficult to
address due to its uncertainty between the foreground
and background. As shown in the last column of Fig. 4, a
matting-level sample.

o In the last two rows of Fig. 4, we display the predictions
generated by SINet [20], which was our earliest baseline
model. Current models have significantly improved loca-
tion accuracy, boundary details, and other aspects. Addi-
tionally, CRNet [142], a weakly-supervised method with
only weak label supervision, can effectively locate target
objects to meet satisfactory standards.

6 Discussion and outlook
Based on our literature review and experimental analysis,
we discuss five challenges and potential CSU-related di-
rections in this section.

o Annotation-efficient learning. Deep learning tech-
niques have significantly advanced the field of CSU. How-
ever, conventional supervised deep learning is data-hungry
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Figure 4 Qualitative results of ten COS approaches. More descriptions on visual attributes in each column refer to Section 5.6
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and resource-consuming. In practical scenarios, we hope
the models can work on limited resources and have good
generalizability. Thus developing effective learning strate-
gies for CSU tasks is a promising direction, e.g., the
weakly-supervised strategy in CRNet [142].

e Domain adaptation. Camouflaged samples are gen-
erally collected from natural scenes. Thus, deploying the
models to detect concealed objects in auto-driving scenar-
ios is challenging. Recent practice demonstrates that vari-
ous techniques can be used to alleviate this problem, e.g.,
domain adaptation [185, 186], transfer learning [187], few-
shot learning [188], and meta-learning [189].

o High-fidelity synthetic dataset. To alleviate algorithmic
biases, increasing the diversity and scale of data is crucial.
The rapid development of artificial intelligence generated
content (AIGC) [190] and deep generative models, such as
generative adversarial networks [191-193] and diffusion
models [194, 195], is making it easier to create synthetic
data for general domains. Recently, to address the scarcity
of multi-pattern training images, Luo et al. [107] proposed
a diffusion-based image generation framework that gen-
erates salient objects on a camouflaged sample while pre-
serving its original label. Therefore, a model should be ca-
pable of distinguishing between camouflaged and salient
objects to achieve a robust feature representation.

e Neural architecture search. Automatic network archi-
tecture search (NAS) is a promising research direction that
can discover optimal network architectures for superior
performance on a given task. In the context of conceal-
ment, NAS can identify more effective network architec-
tures to handle complex background scenes, highly vari-
able object appearances, and limited labeled data. This can
lead to the development of more efficient and effective net-
work architectures, resulting in improved accuracy and ef-
ficiency. Combining NAS with other research directions,
such as domain adaptation and data-efficient learning, can
further enhance the understanding of concealed scenes.
These avenues of exploration hold significant potential for
advancing the state-of-the-art and warrant further inves-
tigation in future research.

e Large model and prompt engineering. This topic has
gained popularity and has even become a direction for
the natural language processing community. Recently, the
segment anything model (SAM) [196] has revolution-
ized computer vision algorithms, although it has lim-
itations [197] in unprompted settings on several con-
cealed scenarios. One can leverage the prompt engineer-
ing paradigm to simplify workflows using a well-trained
robust encoder and task-specific adaptions, such as task-
specific prompts and multi-task prediction heads. This
approach is expected to become a future trend within
the computer vision community. Large language models
(LLMs) have brought both new opportunities and chal-
lenges to Al, moving towards artificial general intelligence
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further. However, it is challenging for academia to train
the resource-consuming large models. There could be a
promising paradigm in which the state-of-the-art deep
learning CSU models are used as the domain experts, and
the large models could work as an external component to
assist the expert models by providing an auxiliary decision,
representation, etc.

7 Defect segmentation dataset

Industrial defects usually originate from the undesirable
production process, e.g., mechanical impact, workpiece
friction, chemical corrosion, and other unavoidable phys-
ical conditions, whose external visual form is usually with
unexpected patterns or outliers, e.g., surface scratches,
spots, holes on industrial devices; color difference, inden-
tation on fabric surface; impurities, breakage, stains on
the material surface, etc. Although previous works have
achieved promising advances in identifying visual defects
by vision-based techniques, such as classification [198—
200], detection [201-203], and segmentation [204—206],
these techniques work on the assumption that defects are
easily detected, but they ignore those challenging defects
that are “seamlessly” embedded in their materials’ sur-
roundings. With this, we elaborately collected a new multi-
scene benchmark, named CDS2K, for the concealed defect
segmentation task, whose samples were selected from ex-
isting industrial defect databases.

7.1 Dataset organization

To create a dataset of superior quality, we established three
principles for selecting data: (1) The chosen sample should
include at least one defective region, which will serve as a
positive example. (2) The defective regions should have a
pattern similar to the background, making them difficult to
identify. (3) We also select normal cases as negative exam-
ples to provide a contrasting perspective with the positive
examples. These samples were selected from the following
well-known defect segmentation databases.

e MVTecAD* [207, 208] contains several positive and
negative samples for unsupervised anomaly detection. We
manually selected 748 positive and 746 negative samples
with concealed patterns from two main categories: (1) ob-
ject category as in the 1st row of Fig. 5: pill, screw, tile,
transistor, wood, and zipper. (2) texture category as in the
2nd row of Fig. 5: bottle, capsule, carpet, grid, leather,
and metal nut. The number of positive/negative samples
is shown with yellow circles in Fig. 5

e NEU® provides three different databases: oil pollu-
tion defect images [209] (OPDI), spot defect images [210]
(SDI), and steel pit defect images [211] (SPDI). As dis-
played in the third row (green circles) of Fig. 5, we selected

*https://www.mvtec.com/company/research/datasets/mvtec-ad.

®http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263270/list/index.htm.
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10, 20, and 15 positive samples from these databases sep-
arately.

o CrackForest® [212, 213] is a densely-annotated road
crack image database for the health monitoring of urban
road surface. We selected 118 samples with concealed pat-
terns from them, and the samples are shown in the third
row (red circle) of Fig. 5.

¢ KolektorSDD? [205] collected and annotated by Kolek-
tor Group, which contains several defective and non-
defective surfaces from the controlled industrial environ-
ment in a real-world case. We manually selected 31 posi-
tive and 30 negative samples with concealed patterns, and
the samples are shown in the third row (blue circle) of
Fig. 5.

o MagneticTile defect® [214] datasets contain six com-
mon magnetic tile defects and corresponding dense anno-
tations. We picked 388 positive and 386 negative examples,
displayed as white circles in Fig. 5.

®https://github.com/cuilimeng/CrackForest- dataset.
7https://www.vicos.si/resources/kolektorsdd/.

8https://github.com/abin24/Magnetic-tile-defect-datasets.

(a) Negative (b) Positive  (c) Bounding box (d) Mask

Figure 6 Visualization of different annotations. We selected a group
of images from the MVTecAD, including a negative (a) and a positive
(b) sample. Corresponding annotations are provided: category
(scratches on wood) and defect locations: bounding box (c) and
segmentation mask (d)

7.2 Dataset description

The CDS2K comprises 2492 samples, consisting of 1330
positive and 1162 negative instances. Three different
human-annotated labels are provided for each sample
— category, bounding box, and pixel-wise segmentation
mask. Figure 6 illustrates examples of these annotations.
The average ratio of defective regions for each category
is presented in Table 7, which indicates that most of the
defective regions are relatively small.
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Table 7 Statistics of positive samples in CDS2K. The region ratio is calculated by r = defective pixels/all pixels for a given image. Of note,

we only count the number of positive samples in five sub-datasets

Category 0%<r<1% 1% <r<10% 10% < r<20% 20% <r<30% 30% < r<40% 40% < r < 50% Total
MVTecAD  Objects-Pill 41 55 0 0 0 0 96
Objects-Screw 71 1 0 0 0 0 72
Objects-Tile 0 30 28 7 2 0 67
Objects-Transistor 1 7 0 0 0 0 8
Objects-Wood 2 26 0 0 0 30
Objects-Zipper 16 102 0 0 0 119
Texture-Bottle 3 39 20 1 0 0 63
Texture-Capsule 17 8 0 0 0 0 25
Texture-Carpet 37 45 0 0 0 0 82
Texture-Grid 39 18 0 0 0 0 57
Texture-Leather 70 21 0 0 0 0 91
Texture-Metal Nut 6 31 1 0 0 0 38
NEU OPDI 10 0 0 0 0 0 10
SDI 20 0 0 0 0 0 20
SPDI 15 0 0 0 0 0 15
CrackForest 28 90 0 0 0 0 118
KolektorSDD 31 0 0 0 0 0 31
MagneticTile defect 216 70 27 27 24 24 388
Total 623 543 79 35 26 24 1330

Table 8 Quantitative comparison of the positive samples of CDS2K

Model Pub/Year  Backbone Su t Fg 1 M E;d tEM B F;,d Ot R
SINetV2 [23] TPAMI; Res2Net-50 0551 0215 0102 0509 0567 0597 0223 0248 0258
HitNet [143] AAAl3 PVTv2-B2 0563 0276 0118 0574 0564 0570 0298 0298 0.299
DGNet [28] MIR23 EfficientNet-B4 0578 0258 0089 0552 0569 0579 0274 0291 0.297
CamoFormer-P[148]  arXiva3 PVTv2-B4 0589 0298 0100 0590 0588 0596 0330 0329 0339

7.3 Evaluation on CDS2K

Here, we evaluate the generalizability of current cutting-
edge COS models on the positive samples of CDS2K. Re-
grading the code availability, we chose four top-performing
COS approaches: SINetV2 [23], DGNet [28], CamoFor-
mer-P [148], and HitNet [143]. As reported in Table 8, our
observations indicate that these models are not effective
in handling cross-domain samples, highlighting the need
for further exploration of the domain gap between natural
scenes and downstream applications.

8 Conclusion

This paper aims to provide an overview of deep learn-
ing techniques tailored for concealed scene understand-
ing (CSU). To help readers view the global landscape of
this field, we have made four contributions. First, we pro-
vide a detailed survey of CSU, which includes its back-
ground, taxonomy, task-specific challenges, and advances
in the deep learning era. To the best of our knowledge, this
survey is the most comprehensive one to date. Second, we
have created the largest and most up-to-date benchmark
for concealed object segmentation (COS), which is a foun-
dational and prosperous direction at CSU. This bench-
mark allows for a quantitative comparison of state-of-the-
art techniques. Third, we collected the largest concealed

defect segmentation dataset, CDS2K, by including hard
cases from diverse industrial scenarios. We have also con-
structed a comprehensive benchmark to evaluate the gen-
eralizability of deep CSU in practical scenarios. Finally, we
discuss open problems and potential directions for this
community. We aim to encourage further research and de-
velopment in this area.

We would conclude from the following perspectives.
(1) Model. The most common practice is based on the
architecture of sharing UNet, which is enhanced by var-
ious attention modules. In addition, injecting extra pri-
ors and/or introducing auxiliary tasks improve the per-
formance, while there are many potential problems to ex-
plore. (2) Training. Fully-supervised learning is the main-
stream strategy in COS, but few researchers have ad-
dressed the challenge caused by insufficient data or la-
bels. CRNet [142] is a good attempt to alleviate this issue.
(3) Dataset. The existing datasets are still not sufficiently
large and diverse. This community needs more concealed
samples involving more domains (e.g., autonomous driv-
ing and clinical diagnosis). (4) Performance. Transformer
and ConvNext based models outperform other competi-
tors by a clear margin. Cost-performance tradeoft is still
under-studied, for which DGNet [28] is a good attempt.
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(5) Metric. There are no well-defined metrics that can con-
sider different camouflage degrees of different data to pro-
vide a comprehensive evaluation. This causes unfair com-
parisons.

Additionally, existing CSU methods focus on the appear-
ance attributes of concealed scenes (e.g., color, texture, and
boundary) to distinguish concealed objects without suffi-
cient perception and output from the semantic perspective
(e.g., relationships between objects). However, semantics
is a good tool for bridging the human and machine intel-
ligence gap. Therefore, beyond the visual space, semantic
level awareness is key to the next-generation concealed vi-
sual perception. In the future, CSU models should incor-
porate various semantic associations, including integrat-
ing high-level semantics, learning vision-language knowl-
edge [215], and modeling interactions across objects.

We hope that this survey provides a detailed overview
for new researchers, presents a convenient reference for
relevant experts, and encourages future research.
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