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Abstract
Intelligent video coding (IVC), which dates back to the late 1980s with the concept of encoding videos with
knowledge and semantics, includes visual content compact representation models and methods enabling
structural, detailed descriptions of visual information at different granularity levels (i.e., block, mesh, region, and
object) and in different areas. It aims to support and facilitate a wide range of applications, such as visual media
coding, content broadcasting, and ubiquitous multimedia computing. We present a high-level overview of the IVC
technology from model-based coding (MBC) to learning-based coding (LBC). MBC mainly adopts a manually
designed coding scheme to explicitly decompose videos to be coded into blocks or semantic components. Thanks
to emerging deep learning technologies such as neural networks and generative models, LBC has become a rising
topic in the coding area. In this paper, we first review the classical MBC approaches, followed by the LBC approaches
for image and video data. We also discuss and overview our recent attempts at neural coding approaches, which are
inspiring for both academic research and industrial implementation. Some critical yet less studied issues are
discussed at the end of this paper.

1 Introduction
Digital image/video coding has boomed with the digital-
ization of information since the late 1950s, as the data size
of the original digitalized image or video data increases
dramatically and reaches beyond the capability of stor-
age and transmission. During the early stages of image
coding, removing spatial statistical redundancy was the
main means of image compression, such as Huffman cod-
ing [1] and Run-length coding [2]. The concept of trans-
form coding, which transforms the spatial domain into
the frequency domain for compression, was first proposed
in the late 1960s, including the Fourier transform [3] and
Hadamard transform [4]. Later the discrete cosine trans-
form (DCT) was designed for image coding in 1974 by
Ahmed et al. [5]. In the case of video, there is signifi-
cant temporal redundancy in addition to spatial redun-
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dancy, which can be reduced by applying temporal pre-
diction. Several early prediction-based coding techniques
were introduced during the 1970s, including differential
pulse-code modulation (DPCM) [6], frame difference cod-
ing [7], and block-based motion prediction [8]. A proto-
type of a hybrid prediction/transform coding scheme [9]
was first proposed in 1979 by Netravali and Stuller, who
combined motion compensation with transform coding
techniques, commonly referred to as “the first generation”
coding scheme. An overview of the historical development
of the first-generation methods is provided in [10].

After several decades of development, hybrid predic-
tion/transform coding methods have achieved great suc-
cess. Various coding standards have been developed and
are widely used in a variety of applications, such as MPEG-
1/2/4 (Moving Picture Experts Group), H.261/2/3, and
H.264/AVC (Advanced Video Coding) [11], as well as AVS
(Audio and Video Coding Standard in China) [12–15],
H.265/HEVC (High Efficiency Video Coding) [16], and
H.266/VVC (Versatile Video Coding) [17]. In [11, 16–26],
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the traditional hybrid coding methods have been well re-
viewed from the historical pulse code modulation (PCM),
DPCM coding to HEVC, three-dimensional video (3DV)
coding, and VVC.

With the huge number of mobile devices, surveillance
cameras, and other video capture devices, the volume of
video data is increasing significantly. In the coming era of
big data, image and video processing will require more
efficient and effective coding techniques. Nevertheless,
researchers in this field have also acknowledged the dif-
ficulty of further improving performance under the tradi-
tional hybrid coding framework. One reason for the per-
formance improvement limitation is that the traditional
coding methods only consider the signal properties of im-
ages and videos and the room left for improvement is in-
creasingly squeezed with the constraint of objective qual-
ity measurement, e.g. peak signal noise ratio (PSNR). As
such, many novel coding methods that incorporate the
properties of the human visual system (HVS), referred to
as the second-generation coding methods [27–30], have
demonstrated a higher compression ratio over traditional
coding methods while maintaining comparable subjective
image quality. Compared to the first-generation coding
methods, these methods are more dependent on the struc-
tural object-related model than on the source signal. From
Musmann’s viewpoint [31], model-based coding (MBC) is
composed of the first-generation and second-generation
methods, which are based on a signal source or structural
object-related models. MBC arose and attracted the in-
terest of researchers, research has advanced greatly in this
field, and some exciting results have been achieved. For ex-
ample, in [32], a background picture model-based surveil-
lance video coding method shows at least twice the com-
pression ratio on surveillance videos of the AVC high pro-
file. Moreover, other model-based coding methods display
great potential nowadays and achieve obvious improve-
ment over the traditional hybrid coding methods, such as
geometric partition video coding [33] and segmentation-
based coding [34]. Some MBC methods were also intro-
duced into various coding standards, such as MPEG-4/7,
AVS2, HEVC, and VVC. The developments in MBC have
been well reviewed in [35–42].

Although MBC aims to improve coding efficiency, many
challenging problems still limit the effectiveness of the
coding process, such as manually designed coding paradigms
based on expert knowledge. During the last few years,
neural networks, such as convolutional neural networks
(CNNs), have demonstrated considerable potential in a va-
riety of fields, including image and video understanding,
processing, and compression. In terms of the compression
task, neural networks perform transform coding by map-
ping pixel data into quantized latent representations first
and then converting them back again into pixels. Such a
nonlinear transform holds the potential to map pixels to

a more compact latent representation than the transforms
of the preceding codecs. Moreover, the parameters in neu-
ral networks can be well trained based on massive image
and video samples, which facilitates the model to allevi-
ate its reliance on manually designed modules. Consider-
ing these excellent characteristics, learning-based coding
(LBC) has been recognized as a promising solution for im-
age and video coding.

In this paper, we will present an overview of intelli-
gent video coding (IVC) development from MBC to LBC,
in which the two technologies encode videos leveraging
knowledge in different manners. The technical roadmap
of IVC methods is summarized in Fig. 1. The similarity be-
tween MBC and LBC is that similar components, such as
transform, quantization, and entropy coding, are adopted
to construct the framework to exploit the correlation of
textural content and remove redundancy. The difference
lies in that the former relies on manually designed mod-
ules, while the latter relies on a data-driven strategy or
components using machine learning. The rest of the pa-
per is organized as follows. In Sect. 2, a brief introduc-
tion to the history of MBC is provided. Section 3 provides
an overview of recent advancements in learning-based ap-
proaches for visual signal compression, including learned
image compression and learning-based video coding. Sec-
tion 4 introduces our previous attempts and understand-
ing of IVC. In Sect. 5, we discuss the future directions of
IVC, specifically from the perspectives of standardized po-
tentials, data security, and generalization. Section 6 con-
cludes this paper.

2 Model-based coding
MBC focuses on modeling and coding the structural visual
information in the images and videos. The history of MBC
can be traced back to the 1950s [43]. In [43], Schreiber
et al. proposed a Synthetic Highs coding scheme, where
the image content is divided into textures and edges, and
they are coded by different approaches, e.g. using statis-
tical coding methods for textures and visual model-based
coding methods for edges, which was the predecessor of
the current HVS model-based perceptual coding methods.
In [38], Pearson clarified the term “model” in MBC, which
is explained as object-related models and developed from
the source model in signal processing, as shown in Fig. 2.
A video sequence containing one or more moving objects
is analyzed to yield information about the size, location,
and motion of the objects, which is employed to synthesize
a model of each object as animation data. The animation
data are coded and transmitted to the decoder. Moreover,
the residual pixel data, comprising the difference between
the original video sequence and the sequence derived from
the animated model, are also transmitted to the decoder.
The decoder adopts the animation data to synthesize the
model, which is subsequently accompanied by the residual
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Figure 1 The technical roadmap of intelligent video coding methods including model-based and learning-based compression algorithms

pixel data to reconstruct the image sequence. From Mus-
mann’s viewpoint [31], MBC includes pixel MBC, block
motion MBC, and object MBC, i.e. the first-generation and
second-generation methods. In this paper, we would fol-
low Musmann’s viewpoint and provide MBC classification
to present the historical development of the model from
the signal source to the object and the content understand-

ing of the objects, as summarized in Table 1. From Table 1,
it is observed that the evolution of MBC, from the statis-
tical pixel and block to the geometric partition and struc-
tural segmentation, and from the content-aware object to
the understanding of the content including knowledge, se-
mantics, and the knowledge of HVS. Moreover, many cod-
ing standards based on MBC have been developed, such as
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Figure 2 Principle of model-based coding (MBC) from [38]

Table 1 Classification of MBC approaches

Model-based coding Example of manually designed models Example of coding schemes

Pixel-based coding Markov signal model, Gaussian model PCM
Block-based coding Block-based translation model MPEG-x, H.26x series of standards
Geometric partition coding Triangle, mesh-based model Mesh-based coding
Segmentation-based coding Region-based motion model Contour coding
Object-based coding Object-based motion model MPEG-4 object-based coding
Knowledge-based coding Facial model Facial model-based image coding
Semantic-based coding Facial expression model Model-based facial expression coding
Perceptual coding HVS model Texture analysis and synthesis

MPEG-4/7. In this section, we will give a brief introduction
to the methods and standards based on MBC.

2.1 Model-based coding methods
In the historical evolution of MBC, pixel model-based
video coding, e.g. PCM [44], was later ever used for early
memory and computation resource-limited applications,
and it was replaced with block-based motion model coding
later [45–48]. However, the rectangular partition of block-
based coding is rigid and inefficient for modeling irregu-
lar visual signals. As a variation of the block-based motion
model, more flexible geometric partitions were proposed
for motion compensation, including deformable blocks
[49], meshes [50, 51] and triangles [52], and they were
also studied for H.264/AVC [53, 54], HEVC [55] and VVC
[33]. Although geometric partitions are flexible, they are
also constrained by their fixed patterns. Therefore, a more
flexible and finer-grained partition is based on the in-
put signal itself, such as contour and segmentation, rather
than pre-defined geometric partitions. Graham proposed
a two-dimensional contour coding in [56], which can be
viewed as a predecessor of segmentation coding, and Big-
gar first formally utilized a segmented image coder with
better performance than the transform coder in [57]. Since
then, a variety of studies on segmentation-based coding
have been performed, including segmentation-based cod-
ing [34, 58–62] and segmentation methods [63, 64].

MBC methods mentioned above explore flexible and
fine-grained partitions without considering the knowledge
of objects or scenes in the world. Since different classes
of objects or scenes always exhibit different kinds of ap-
pearance and motion patterns, modeling such patterns

as knowledge and combining them into coding can fur-
ther improve the compression ratio for particular image
classes. The higher performance also comes with costs
that modeling and combining knowledge require consid-
erable manpower for manual design, and knowledge of an
object or a scene cannot always be transferred to that of
others, resulting in potential limitations on wild scenarios.
In the following part of our paper, we review the devel-
opment of MBC methods using knowledge. Accompany-
ing the emergence of segmentation-based coding, object-
based coding is a further prolongation of segmentation
coding, where the segmentation may represent one identi-
fied object [65–67]. In [65], three parameter sets were used
to define the motion, shape, and color of an object, which
can be used to reconstruct an image by the model-based
image synthesis method. In [66], a generic object-based
coding algorithm was proposed relying on the definition
of a spatial and temporal segmentation of the sequences.
Moreover, object-based coding is further applied to special
videos, such as surveillance video or 3D video [68, 69], and
motion compensation for codecs [70]. Based on the knowl-
edge of the known objects, knowledge and semantic-based
coding methods were developed, such as parameterized
modeling for the facial animation [71–76]. Modeling the
scene or image content directly is difficult and restricted
in wild scenarios; in contrast, perceptual coding [77–86]
attempts to incorporate the vision model into the coder
by using the knowledge of HVS [87]. In [87], a nonlinear
mathematical HVS model was proposed for image com-
pression, which was developed from the psycho-visual and
physiological characteristics of the HVS, and a reduced
achromatic model was developed as a nonlinear filter fol-
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Figure 3 Diagram of the texture analysis and synthesis (TAS) encoder,
and texture synthesis (TS) decoder

lowed by a bandpass spatial filter. Texture analysis and syn-
thesis coding, as described in Fig. 3, as cross research of
perceptual coding and segmentation coding [79, 88–92],
incorporates a texture analyzer in the encoder and a tex-
ture synthesizer in the decoder to incorporate the texture
information into the coding process.

To achieve higher efficiency compression of audio-visual
information with a relatively low bit rate, significant efforts
have been devoted by some standardization organiza-
tions. MPEG started to develop the international standard
MPEG-4 in 1993 [93]. MPEG-4 is based on object-based
coding, which concentrates on analyzing and synthesizing
the objects in an image [66], which has several advantages
over block-oriented schemes, e.g. adaptation to the local
image characteristics and object motion compensation as
opposed to blockwise motion compensation. In MPEG-
4, each picture is considered to be consisting of tempo-
ral instances of objects that undergo a variety of changes.
Therefore, the concepts of video objects, as well as their
temporal instances of video object planes, are introduced
in MPEG-4. Specifically, in MPEG-4, each video object is
encoded separately and multiplexed into a single bitstream
that can be accessed by the users. The encoder sends the
video objects and the information about the scene compo-
sition for storage and transmission. On the decoder side,
the coded data are de-multiplexed and decoded separately,
and then the reconstructed objects fuse to the final de-
coded frame.

MPEG-7 [94] is another standardized attempt at content
description representation, which is a multimedia content
description standard and was released in 2001. It is differ-
ent from the previous formats MPEG-1/2/4 in that it does
not deal with the coding of moving pictures and audios.
MPEG-7 addresses how humans expect to interact with
computer systems for it develops rich descriptions that re-
flect those expectations. It uses XML Schema as the lan-
guage of choice for content description, allowing fast and
efficient searching for material that is of user interest.

Except for MPEG-4/7, some novel MBC methods are
explored in other video coding standards, such as screen
video coding in HEVC [95] and scene video coding in
AVS2 [96]. Screen video refers to the consecutive im-
ages generated or rendered by computers or some other

electronic devices, and the video may contain computer-
generated screen content and natural images/videos. In
[95], two new coding tools, residual scalar quantization
(RSQ) and base colors and index map (BCIM) were pro-
posed for screen video coding. RSQ directly quantizes
the intraprediction residual without applying a transform
since screen content often has high contrast and sharp
edges. In BCIM, a base color table is created first by
clustering. Then, each sample in the block will be quan-
tized to the nearest base color and recorded in the in-
dex map. The scene video is captured in specific scenes,
such as surveillance video and videos from classrooms,
homes, and courts, which are characterized by tempo-
rally stable backgrounds. Regarding scene video coding,
background modeling schemes [32, 97] were proposed
to achieve more accurate prediction without dependence
on foreground segmentation. Based on these methods,
AVS2 proposed a background-picture-model-based cod-
ing method to achieve higher compression performance
[96].

3 Learning-based coding
MBC relies on manually designed modules where the com-
ponents are heavily engineered to fit together. Such a de-
sign results in the structure of the signal being manually
engineered and thus the capability of MBC to eliminate
the redundancy is limited. The motivation of LBC is that
with similar components to MBC, LBC models are trained
using the massive image and video samples to determine
the coding strategy automatically and alleviate the depen-
dence on manually designed coding paradigms based on
expert knowledge. With an automatic coding strategy, LBC
enables the structure to be automatically discovered to
eliminate redundancy more efficiently, which displays the
great potential to achieve a better coding performance.
In general, the similarity between MBC and LBC is that
they share similar components to remove the redundancy
in the signal, and the difference is that the former relies
on manually designed modules and the latter relies on a
data-driven strategy or modules using machine learning.
In the literature, numerous LBC approaches have been
proposed for coding. LBC can be grouped into three cat-
egories, namely statistical learning, sparse representation,
and deep learning-based methods.

Statistical learning is incorporated into image/video
compression to reduce coding complexity or improve the
compression performance, such as support vector ma-
chine (SVM) [98], Bayesian decision [99], random for-
est [100], decision tree [101], and AdaBoost [102]. SVM
was used as a classifier to determine the early splitting
or pruning of a coding unit (CU) [103]. In [104], the
Bayesian decision rule was employed with skip states to
early terminate the binary-tree (BT) and extended quad-
tree (EQT) partition. In [105], a random forest classifier
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was used to determine the most likely partition modes.
A fast intra-coding scheme was proposed in [106], where
a low complexity coding tree unit (CTU) structure was
derived with a decision tree, and the optimal intra mode
was decided with the gradient descent principle. AdaBoost
is incorporated in [107] as a classifier for CU partition
determination. Although these methods are data-driven
to discover the best strategy for compression, they are
adopted as complex classifiers using manually designed
features for coding standards and thus are limited to the
scarcity of generalization caused by manually designed
features.

A sparse representation of a signal consists of a linear
combination of relatively few base elements in a basis or
an overcomplete dictionary. Signals that are represented
sparsely are termed compressible under the learnable dic-
tionary. Some research efforts were dedicated to learning
dictionaries to adapt to a signal class for image compres-
sion [108–110]. Bryt and Elad employed a K-SVD (sin-
gular value decomposition) dictionary-based facial image
codec. They trained K-SVD dictionaries for predefined im-
age patches. The encoding is based on sparse coding of
each image patch with the trained dictionary, and the de-
coding is a simple reconstruction of the patches by the
linear combination of atoms. Sezer et al. [109] adopted a

concatenation of orthogonal bases as the dictionary, where
each basis is selected to encode any given image block of
fixed size. Zepeda et al. [110] proposed an iteration-tuned
and aligned dictionary (ITAD)-based image [111] codec
for particular image classes, such as facial images. ITAD
is used as a transform to code image blocks taken over
a regular grid. Although some encouraging results were
achieved, sparse representation-based coding is designed
for particular image classes due to the nature of sparse rep-
resentation, and thus hard to generalize to wild images en-
countered in practical scenarios.

Recently, neural networks have been widely explored in
image/video coding, which is termed deep learning-based
coding. Deep learning-based coding has some advantages
over statistical learning and sparse representation-based
coding. First, neural networks can mine the underlying
characteristics of data and exploit the spatial correlation of
textural content, and learn the features adaptively rather
than manually designed features. Second, with massive
training data, deep learning-based coding can be general-
ized to wild images and videos. In the following part of this
article, we introduce the history of deep learning-based
image and video coding methods, which mainly originated
in the late 1980s and are based on neural network tech-
niques. Some representative works are listed in Table 2.

Table 2 Representative works of deep learning-based image and video coding

Category Technique Method Highlights Venue

Image coding MLP NNTIC [115] Neural network IJCTA 1988
ICBP [116] Image patches ACS 1989
IDC [117] Dimension reduction, entropy coding JCNN 1989

RNN ICRNN [118] Scaled-additive coding CVPR 2017
SAIC [119] Spatially adaptive prediction ICIP 2017

VAE EIC [120] End-to-end training arxiv 2016
NTIC [121] Transform & quantize method PCS 2016
IDCNN [122] Context model of entropy coding NIPS 2018
LIC [123] Hyperprior ICLR 2018
VAIC [124] Pyramidal feature fusion CVPRW 2018
GMLA [125] Gaussian mixture model CVPR 2020

GAN RAIC [126] Generative network ICML 2017
LFIC [127] Light field TCS 2018
TCC [128] Conceptual compression NIPS 2016
ELIC [129] Extreme compression CVPRW 2018

Video coding VAE DeepCoder [130] Feature prediction VCIP 2017
LVC [131] Predictive coding TCSVT 2019
LVR [132] LSTM predictor ICML 2015
RDAVC [133] R-D Autoencoder ICCV 2019
DGVC [134] Local & global feature NIPS 2019
CSRVC [135] Spatiotemporal RNN TCSVT 2021
HMC [136] Compound spatiotemporal representation TCSVT 2022

GAN ADLVC [137] Feature prediction CVPRW 2020
LSVC [135] ConvLSTM CVPR 2021
NTHSVC [138] 3D keypoint extractor CVPR 2021
DHBC [139] Contrastive learning ICME 2022
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Figure 4 The frameworks of the typical end-to-end learned image coding and conceptual coding, as well as the exemplar texture modeling and
image synthesis process of conceptual coding

Interested readers may refer to existing reviews for related
literature [112–114].

3.1 Learning to compress still images
Multilayer perceptron (MLP) [140] includes an input layer
of neurons, several hidden layers of neurons, and an out-
put layer of neurons. This structure provides evidence for
scenarios such as dimension reduction and data compres-
sion. Chua et al. [115] proposed an end-to-end image com-
pression framework based on the compact representation
of the neural network and leveraging high parallelism. The
following work [116] trained a fully connected network to
compress each 8 × 8 patch of the input image with back
propagation. Sonehara et al. [117] proposed a dimension-
reduction network to compress the image. In addition, the
framework used quantization and entropy coding as in-
dividual modules. Furthermore, the MLP-based predic-
tive image coding algorithm [141] was used to exploit the
spatial context information. To reduce training time, the
nested training algorithm (NTA) was proposed for image
compression [142] with an MLP-based hierarchical neural
network. A new class of random neural networks [143] was
introduced in 1989. Different from MLP, signals in random
neural network methods are in the spatial domain. Some
researchers have considered the combination of the ran-
dom neural network and image compression. Gelenbe et
al. [144] applied a random neural network in the image
compression task, which was further improved in [145] by
integrating the wavelet domain of images.

The recurrent neural network (RNN) includes a class
of neural networks with memory modules to store re-
cent information. Toderici et al. [118] proposed an RNN-
based image compression framework by utilizing a scaled-
additive module for coding. Minnen et al. [119] presented

a spatially adaptive image compression framework that di-
vided the image into tiles for better coding efficiency.

With the development of CNNs, many deep learning-
based frameworks outperform traditional algorithms in
both low-level and high-level computer vision tasks [146].
Under the scalar quantization assumption, Ballé et al. [120,
121] introduced an end-to-end optimized neural frame-
work for image compression based on CNNs in 2016.
A typical end-to-end learned image coding is illustrated
in Fig. 4 (a). During training, Ballé et al. added an i.i.d uni-
form noise to simulate the quantized operation and replace
the stochastic gradient descent approach to avoid zero
derivatives. The joint rate-distortion optimization prob-
lem can be cast in the context of variational auto-encoders
(VAE) [147]. The following work extended the compres-
sion model by using scale hyperpriors for entropy esti-
mation [122], which achieved better performance com-
pared with HEVC. Minnen et al. [123] enhanced the con-
text model of entropy coding for end-to-end optimized im-
age compression. Cheng et al. [125] proposed discretized
Gaussian mixture likelihoods and attention modules to
further improve the performance.

Generative adversarial networks (GAN) are developing
rapidly in the application of deep neural networks. Rip-
pel and Bourdev [126] proposed an integrated and well-
optimized GAN-based image compression. Inspired by
the advances in GAN-based view synthesis, light field (LF)
image compression can achieve significant coding gain by
generating the missing views using the sampled context
views in LF [119]. In addition, Gregor et al. [148] intro-
duced a homogeneous deep generative model DRAW to
their coding framework. Different from previous works,
Gregor et al. aimed at conceptual compression by gener-
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ating the image semantic information as much as possi-
ble [128]. Agustsson et al. [129] built an extreme image
compression system using unconditional and conditional
GANs, outperforming all other codecs under low bit-rate
conditions. Agustsson et al. [149] proposed using learned
perceptual image patch similarity (LPIPS) [150] as the met-
ric for generator training, which further improves the sub-
jective quality of the reconstructed image.

3.2 Learning-based video coding
In this section, we review the development of learning-
based video coding. First, we introduce pure learning-
based video coding methods. Second, a combination of
deep learning and the hybrid video coding framework is
presented. Third, we compare these two coding architec-
tures.

Similar to learning-based image coding frameworks,
many novel video coding frameworks are built on neu-
ral network models to reduce temporal redundancies. As
a natural extension of learning-based image coding meth-
ods, 3D auto-encoders are proposed to encode the quan-
tized spatiotemporal features with an embedded tempo-
ral conditional entropy model. Chen et al. [130] proposed
DeepCoder, which combines several CNN networks with
a low-profile x264 encoder for video compression. Wu et
al. [151] later applied an RNN-based video interpolation
module and combined it with a residual coding module for
inter-frame coding. Inspired by the prediction for future
frames of generative models [152], Srivastava et al. [132]
proposed utilizing the long short-term memory (LSTM)
encoder-decoder framework to learn video representa-
tions, which can be utilized to predict future video frames.
Different from Ranzato’s work [152] which predicts one fu-
ture frame, this model can predict a long future sequence
into the future. Agustsson et al. [153] further presented a
scale-space flow generation and trilinear warping method
for motion compensation. Habibian et al. [133] utilized the
rate-distortion auto-encoder to directly exploit spatiotem-
poral redundancy in a group of pictures (GoP) with a tem-
poral conditional entropy model. Lombardo et al. [134]
followed the VAE-based image compression framework
and encoded this representation according to predictions
of the sequential network. With the emergence of GANs,
using an auto-encoder combined with adversarial train-
ing has been regarded as a promising method. Wang et
al [138] demonstrated the use of a novel subject-agnostic
face reenactment method for video conferencing, achiev-
ing an order of magnitude bandwidth savings over the
H.264 standard. With the advantage of adversarial train-
ing, at a lower bitrate, different from VAE-based video cod-
ing methods that tend to reconstruct blurry videos, GAN-
based coding models reconstruct the video with a pleasing
perceptual quality.

Following hybrid video coding systems, recent studies
have demonstrated the effectiveness of deep learning mod-
els from five main modules, i.e. intra-prediction, inter-
prediction, quantization, entropy coding, and loop filter-
ing. For intra-prediction, Cui et al. [154] proposed an
intra-prediction convolutional neural network (IPCNN)
to improve the intra-prediction efficiency. Instead of using
CNN, Li et al. [155] proposed a fully connected network
(IPFCN) for intra-prediction. In [156], Li et al. explored
CNN-based down/up-sampling techniques as a new intra-
prediction mode for HEVC. To alleviate the effects of com-
pression noise on the upsampling CNN, Feng et al. [157]
designed a dual-network-based superresolution strategy
by bridging the low-resolution image and upsampling net-
work using an enhancement network. Inter-prediction is
realized by motion estimation on previously coded frames
against the current frame in hybrid video coding. Huo
et al. [158] utilized variable-filter-size residue-learning
CNN (VRCNN) to refine motion compensation for inter-
prediction improvement [159]. Yan et al. [160] proposed
a fractional pixel reference generation CNN (FRCNN) to
predict the fractional pixels for fractional-pixel motion
compensation in inter-prediction. Instead of dealing with
fractional pixels, some works [161, 162] have directly ex-
plored the inter-prediction block generation using CNN-
based frame rate up conversion (FRUC). In addition to
FRUC, the two nearest bi-directional reference frames in
the reference list are utilized as input for the network in
[163]. Regarding the limitation of the traditional bidirec-
tional prediction using a simple average of two prediction
hypotheses, [161, 164] further improved its efficiency by
leveraging a six-layer CNN with a 13 x 13 receptive field
size to infer the inter-prediction block in a nonlinear fash-
ion. Utilizing compressed optical flows to directly specify
motion is also effective for inter-frame prediction. In addi-
tion, bi-directional motion was studied in [165, 166] by ad-
ditionally exploring the future frames. Both long-term and
bi-directional predictions attempt to better characterize
complex motion to improve the coding efficiency. Liu et al.
[135] used a pyramid optical flow decoder for multi-scale
compressed optical flow estimation and applied a progres-
sive refinement strategy with joint feature and pixel do-
main motion compensation. Zhao et al. [167] adopted pre-
viously reconstructed frames, optical flow-based predic-
tion, and a background reference frame to infer the fore-
ground objects of the frame to be coded. In video coding,
quantization and entropy coding are the lossy and loss-
less compression procedures, respectively. In [168], Alam
et al. proposed a two-step quantization strategy using
neural networks. After quantization, the syntax elements
including coding modes and transform coefficients will
be fed into the entropy coding engine to further remove
their statistical redundancy. Song et al. [169] improved the
performance of context-adaptive binary arithmetic cod-
ing (CABAC) on compressing the syntax elements of 35
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intra-prediction modes by leveraging CNN to directly pre-
dict the probability distribution of intra modes instead of
the manually designed context models, where CABAC is
adopted in HEVC as entropy coding. Loop filtering was
proposed to remove compression artifacts. Zhang et al.
[170] established a residual highway convolutional neural
network (RHCNN) for loop filtering in HEVC. By leverag-
ing the coherence of the spatial and temporal adaptations,
Jia et al. [171] improved the performance of a CNN-based
loop filter, and designed a spatial-temporal residue net-
work (STResNet)-based loop filter. Moreover, Jia et al. fur-
ther improved the filtering performance by introducing a
content-aware CNN-based loop filter in [172]. More in-
loop filters that work with neural networks can be found
in [173, 174]. Beyond in-loop filters, some post-filtering
algorithms [175, 176] have been proposed to improve the
quality of decoded video and images by reducing compres-
sion artifacts.

Pure learning-based video coding methods and com-
bined deep learning and hybrid video coding methods
have their advantages and disadvantages. The current per-
formance of pure learning-based video coding is develop-
ing rapidly and is competitive with traditional video cod-
ing. There still exists room for performance improvement.
However, the decoding complexity is relatively high, differ-
ent models are relatively independent, and the bitstreams
cannot be interconnected. Combined deep learning and
hybrid video coding methods are built upon the traditional
hybrid video coding, which has been well developed for
several decades, and thus, the performance starting point
is relatively higher than that of pure learning-based video
coding, which is trained from scratch. However, the com-
bined video coding only replaces some modules by deep
learning from hybrid video coding, resulting in different
modules that cannot be optimized jointly to achieve higher
performance.

3.3 Learning-based coding standards
To enable interoperability between devices manufactured
and services provided by different companies, a series
of standards targeting intelligent visual data coding have
been investigated in the past several years. Several stan-
dardization organizations including ISO/IEC (Interna-
tional Organization for Standardization/International
Electrotechnical Commission), JPEG (Joint Photographic
Experts Group)/MPEG, ITU-T (International Telecom-
munication Union Telecommunication Standardization
Sector), VCEG (Video Coding Experts Group), JVET
(Joint Video Experts Team), AVS, IEEE DCSC (Data Com-
pression Standard Committee), MPAI (Moving Picture,
Audio and Data Coding by Artificial Intelligence), and oth-
ers have been creating these standards with many contri-
butions from academia and industry. While most of these
visual coding standards have been very successfully de-
ployed in many applications, there are many challenges

currently, especially to accommodate the large volume of
visual data in limited storage and limited bandwidth trans-
mission links. Compression efficiency improvements are
still needed, especially considering emerging data repre-
sentation formats, from 8K/HDR (high dynamic range)
image/video to rich plenoptic formats.

To improve compression efficiency, machine learning
technologies, such as deep neural network-based tech-
nologies, have shown great potential for many types of vi-
sual data. Thus, new standardization activities that exploit
this potential are ongoing, some more mature than others,
such as learning-based image and video coding, learning-
based point cloud coding, and learning-based light-field
coding. These standardization efforts attracted significant
attention in the aforementioned standardization organiza-
tions. The IEEE 1857.11 and JPEG AI group are prepar-
ing neural image coding standards in recent years. The
MPAI end-to-end video project and enhanced video cod-
ing project are also trying to explore neural network-based
video coding solutions. The JVET NNVC (neural network-
based video coding) and AVS intelligent coding ad-hoc
group have released reference models by integrating neu-
ral networks into the conventional hybrid framework. All
of the above-mentioned standards are advancing neural
network-based video coding for future use cases.

4 Our attempts at intelligent coding
LBC compresses the signal data into the compact latent
representation containing the non-interpretable knowl-
edge. Moreover, such a mechanism is not analysis-friendly
enough to assist downstream machine analysis tasks.
A novel LBC paradigm that incorporates more inter-
pretable representation with powerful neural networks
may achieve better coding performance, and the inter-
pretable representation may also be beneficial for machine
analysis. In this section, we introduce our attempts at such
a paradigm, including conceptual image coding, generative
video coding, and cross-modal coding.

Inspired by the human visual system (HVS) [177] which
perceives visual contents by processing and integrating
manifold information into abstract high-level concepts
(e.g., structure, texture, and semantics) to form the ba-
sis of subsequent cognitive processes [178], conceptual
compression has been an active research area in recent
years [128, 179–182], following the insights of Marr [183]
and Guo et al. [184]. Conceptual coding aims to encode
images into compact, high-level interpretable represen-
tations for high visual quality reconstruction, allowing a
more efficient and analysis-friendly compression architec-
ture. At present, multi-layer decoded representations are
integrated to synthesize target images in a deep generative
fashion. Herein, the main challenges for conceptual cod-
ing include how to achieve efficient representation disen-
tanglement, and how to devise effective generative models
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for high visual-quality reconstruction. Gregor et al. [128]
introduced convolutional deep recurrent attentive writer
(DRAW) [148], which extends VAE [147] by using RNNs
as encoder and decoder, to transform an image into a series
of increasingly detailed representations. However, the in-
terpretability of the learned representations for the image
is still insufficient and the models in [128] only worked on
datasets of small resolutions. Neural video compression
also suffers from similar constraints. Typical video com-
pression methods [134] share the same VAE architecture
with image compression methods [128] and transform the
original sequence into a lower-dimensional representa-
tion. However, the interpretability of the learned represen-
tations for video still lacks exploration. Therefore, based
on the conventional neural network-based image/video
compression in Sect. 3, in this section, we introduce in-
terpretable representations, such as structure information
or high-level semantic information, into the compression
process to enhance the interpretability of the representa-
tions for both images and videos.

4.1 Conceptual image coding
We propose encoding images into two complementary vi-
sual components [179, 180] as a milestone for conceptual
coding of images. The structure and texture representa-
tions are disentangled, as demonstrated in Fig. 4 (b), where
a typical texture modeling process is illustrated in Fig. 4 (c).
The typical image synthesis process is depicted in Fig. 4
(d). A stylized illustration of disentangled structure and
texture representations in domain spaces is proposed in
our earlier study in Fig. 5. In our proposed dual-layered
model of [179, 180], the structure layer is represented by
edge maps, and the texture layer is extracted with the vari-
ational auto-encoder in the form of low-dimensional la-
tent variables. To reconstruct the original image from the

Figure 5 Stylized illustration of the typical conceptual coding

compressed layered features, our other attempt is to in-
tegrate the texture layer and structure layer with adaptive
instance normalization adopted using a hierarchical fusion
GAN method [180]. The benefits of the proposed concep-
tual compression framework in [180] have been demon-
strated through extensive experiments with extremely low
bitrates (<0.1 bpp) and high visual reconstruction quality,
as well as content manipulation and analysis tasks through
extensive experiments. Nevertheless, it is very challeng-
ing to model complex textures of the whole image using
only a set of variables. In addition, how to build effective
entropy models for visual representations has not been
explored for joint rate-distortion optimization. In our re-
cent study in [181], the semantic prior modeling for con-
ceptual coding was proposed. Effective texture representa-
tion modeling and compression at semantic granularity are
explored for high-quality image synthesis and promising
coding efficiency. Moreover, we developed a cross-channel
entropy model in [181] for joint texture representation
compression and reconstruction optimization. Structural
modeling was further introduced in our work [185], which
proposed a consistency-contrast learning method to opti-
mize the texture representation space by aligning the rep-
resentation space with the source pixel space, resulting
in higher compression performance. Our proposed mod-
els in [181, 185] have achieved superior visual reconstruc-
tion quality at ultra-low bitrate (<0.1 bpp) compared to the
state-of-the-art VVC in the specific application domain.

Since the conceptual coding methods pursue visually
convincing reconstruction results with minimal bitrate
consumption, the LPIPS metric [150] is usually selected
as the quantitative perceptual distortion measure except
for user study. In our previously established benchmark
[186], this metric has been proven to be highly correlated
with human visual perception instead of signal fidelity. For
performance comparison, the rate-distortion performance
in terms of LPIPS of VVC, the typical end-to-end learned
image coding method [123] (E2E), our proposed typical
conceptual coding methods LCIC [180] and SPM [181] at
low bit-rate range over FFHQ [187] and ADE20K [188]
outdoor testing sets are displayed in Table 3. The results
demonstrate that conceptual coding methods are capable
of achieving higher visual reconstruction results at specific
domains compared to signal-based compression methods
at extremely low bitrates. Moreover, as observed, LCIC
behaves less effectively at the more challenging content
of ADE20K compared to FFHQ, which consists of regu-
lar facial semantic regions. In contrast, SPM achieves re-
markable improvements in reconstruction quality on chal-
lenging scenes with diverse semantic regions and textures,
verifying the effectiveness of the proposed semantic prior
modeling mechanism. Moreover, in terms of LPIPS over
the ADE20K outdoor testing set, the rate-distortion curves
of VVC, SPM [181] and the most recent work CCL [185]
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Table 3 The quantitative results of VVC, E2E [123], and our proposed conceptual coding methods LCIC [180] and SPM [181] on the
FFHQ, and ADE20K outdoor testing sets. The LPIPS is selected as the distortion metric

Metric Dataset

FFHQ ADE20K

Bitrate (bpp) LPIPS (10–2↓) Bitrate (bpp) LPIPS (10–2↓)
VVC 0.045 36.9 0.035 58.3

0.067 29.6 0.040 56.3
0.075 27.4 0.047 54.0
0.095 23.1 0.055 51.7

E2E [123] 0.039 33.4 0.016 62.8
0.067 26.3 0.026 60.2
0.071 25.6 0.035 53.3
0.092 24.6 0.052 49.8

LCIC [180] 0.046 27.9 0.036 54.3
0.055 26.8 0.046 52.0
0.064 26.1 0.053 50.9
0.074 25.9 0.061 50.3

SPM [181] 0.049 25.1 0.015 31.0
0.063 24.1 0.018 29.4
0.079 23.4 0.025 28.1
0.110 23.1 0.036 27.8

Figure 6 The rate-distortion curves of SPM [181], CCL [185] and VVC.
A lower LPIPS indicates better quality

are shown in Fig. 6. The comparison results verify the
improvement in reconstruction quality brought by apply-
ing their proposed consistency-contrast learning method.

Compared to previous works, the proposed conceptual
image coding demonstrates the superiority towards effi-
cient visual representation learning, high-efficiency image
compression (<0.1 bpp), better visual reconstruction qual-
ity, and intelligent visual applications (e.g., manipulation
and analysis).

4.2 Generative video coding
Due to the powerful capability of deep generative models,
many approaches [134] map the video sequences into la-
tent representations and formulate the framework through
generative networks to achieve low-bitrate compression.
Based on the image animation model, such as FOMM
[189], Konuko et al. [190] developed a generative com-
pression framework for video conferencing. Wang et al.
[138] also proposed a neural talking-head video synthe-
sis model for video conference by adaptively extracting 3D
keypoints from the input videos, achieving the same vi-
sual quality as the H.264/AVC [191] with only one-tenth
of the bandwidth. Nevertheless, designing a video com-
pression framework targeting high visual quality under ex-
treme compression ratios (e.g., 1000 times) remains un-
solved.

Motivated by recent attempts at layered conceptual im-
age compression, we made the first attempt to utilize dis-
entangled visual representations for extreme human body
video compression, DHVC [139]. On the encoder side, the
input video sequence is disentangled into structure and
texture representations for further efficient compression.
A pre-trained structure encoder is adopted to estimate the
human pose keypoints of each frame. Similar to motion
vectors in traditional video codecs, the displacements of
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each keypoint coordinate are computed as a feature to rep-
resent the motion information between two frames. For
bitrate saving, only the structure code of the first frame
and the motion codes of subsequent frames are transmit-
ted during encoding. On the other hand, a texture encoder
extracts the first frame into a semantic-level texture code
that represents the texture information of the input video
sequence. To ensure texture consistency across all frames,
we introduce contrastive learning [192] for the alignment
of texture representations. On the decoder side, the struc-
ture codes are reconstructed iteratively while the gener-
ator restores the video from texture codes and structure
codes. Finally, entropy estimation of texture codes is intro-
duced to establish rate-distortion optimization together
with contrastive learning for end-to-end training of the
framework, promoting bitrate saving and better recon-
struction.

As depicted in Fig. 7, the main structure information of
the human body can be efficiently represented by human
pose keypoints. A pre-trained pose estimator [193] is em-
ployed as the structure encoder Es to extract the structure
information of each frame as the compact structure code.
The texture encoder Et aims to extract image frames into
texture representations. To better capture the texture de-
tails of each frame, we adopt the decomposed component
encoding (DCE) module [194] for semantic-aware texture
code embedding.

To assure the texture consistency of all frames in the
same video, contrastive learning [192] is introduced for
training the texture encoder Et . Instead of using augmen-
tations for building positive samples, the frames in the
same video are well-suited for constructing positive sam-
ples. Meanwhile, frames in different videos are regarded as
negative samples. Moreover, the framework proposes con-
trastive learning at the semantic level and computes the

semantic-wise infoNCE loss [195] with Eq. (1),

Lcst = –
L∑

i=1

log
exp(ti · t+

i /τ )
∑Q

j=1 exp(ti · t–
ij /τ )

, (1)

where ti, t+
i , t–

i , τ , L, and Q denote semantic-wise texture
parts of an input frame, another frame in the same video,
other frames in different videos, a temperature parame-
ter, the number of semantic regions of the image, and the
length of negative sets, respectively. This technique en-
ables the encoder to utilize both the similarity of the pos-
itive pair (t, t+) and the dissimilarity of the negative pairs
(t, t–). Following MoCo [192], a queue is used for storing
negative samples t–

i of previous input frames. In this way,
the module conducts contrastive learning efficiently with
small batch sizes.

For compression comparisons, the average LPIPS and
DISTS results of the Fashion and TaichiHD datasets are
shown in Table 4. Noticeably, the bitrate of other compared
methods is adjusted slightly above our method. Neverthe-
less, the proposed framework outperforms all other com-
pression frameworks with the lowest LPIPS and DISTS
scores at ultra-low bitrates. Moreover, the quantitative re-
sults in Table 4 further validate that integrating with con-

Table 4 Comparisons with state-of-the-art video compression
methods. Lower scores represent better visual quality. “w/o c.”
denotes the proposed model without the proposed contrastive
learning techniques

Fashion [196] Taichi [189]

LPIPS↓ DISTS↓ LPIPS↓ DISTS↓
VVC 0.2687 0.3009 0.3147 0.2709
ArtAni 0.1777 0.2273 0.3011 0.2491
Proposed (w/o c.) 0.1109 0.1687 0.2153 0.2206
Proposed 0.1028 0.1604 0.2028 0.1987

Figure 7 The proposed pipeline using disentangled visual representation for video compression
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trastive learning facilitates better visual qualities. In gen-
eral, our method achieves superior visual quality com-
pared to previous methods due to its disentangled texture
and structure representations, resulting in sharper results
with more details retained, such as facial features and in-
tricate backgrounds.

4.3 Cross-modal coding
Conceptual compression frameworks encode images into
representations, such as latent variables extracted from
deep neural networks, which are not human-comprehensi-
ble. Human comprehensible representations, such as text,
sketch, semantic map, and attributions, are significant for
various applications, such as semantic monitoring and
human-centered applications. Semantic monitoring aims
to monitor the semantic information, such as identifica-
tion, human traffic, or car traffic, rather than the raw sig-
nal or latent variables. Human-centered applications aim
to directly convey the human-comprehensible informa-
tion of visual data to human users. Therefore, we proposed
cross-modal compression (CMC) [197] to take a step for-
ward to transform the highly redundant visual data into
a compact, human-comprehensible representation with
ultra-high compression ratios.

We proposed a CMC framework, as illustrated in Fig. 8,
which consists of four submodules: CMC encoder, CMC
decoder, compression domain encoder, and compression
domain decoder. The compressing procedure also consists
of four steps. First, the CMC encoder compresses the raw
signal into a compact and human-comprehensible repre-
sentation. Second, the compression domain encoder en-
codes the representation to a bitstream in a lossless way.
Third, the compression domain decoder reconstructs the
representation from the bitstream in a lossless way. Finally,
the CMC decoder reconstructs the signal from the rep-
resentation with semantic consistency. The bitrate is op-
timized by finding a compact compression domain, while

the distortion is optimized by preserving the semantics in
the CMC encoder and decoder.

Under such a framework, we will further introduce a
paradigm. With the recent advances of image captioning
[198] and text-guided image generation [199], generating
high-quality text from images and generating high-quality
images from the text are more feasible. Therefore, we built
an efficient image-text-image CMC paradigm, where the
images are compressed into the text domain, which is com-
pact, common, and human-comprehensible. Specifically, a
classical CNN-RNN model [198] is adopted as the CMC
encoder to compress the image to text, where the image
feature is extracted from a CNN with the image as in-
put, and fed to an RNN to generate the text in an autore-
gressive way. Huffman coding [1] can be used as the com-
pression domain encoder/decoder to reduce the statisti-
cal redundancy of text in a lossless way. AttnGAN [199]
is used as the CMC decoder to reconstruct images from
the text due to its promising performance on text-to-image
generation. The effectiveness of CMC is verified via var-
ious experiments on several datasets, and the model has
achieved encouraging reconstructed results with an ultra-
high compression ratio (4000-7000 times), showing bet-
ter compression performance than the widely used JPEG
baseline [200].

5 Open discussion
Considering the rapid growth of intelligent video coding,
it is expected that a more advanced and insightful model
will be developed in the near future, further facilitating the
coding and representation efficiency of visual signals. Nev-
ertheless, the field of intelligent video coding poses many
new research challenges. Below are a few evolving and sig-
nificant challenges that need to be addressed.

Domain and profiling There is considerable discussion
in the video coding standards community regarding the

Figure 8 Illustration of the cross-modal compression (CMC) framework
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definition of interoperability and conformance testing.
To enable intelligent-video-coding-compliant terminals
and systems to decode latent representations without am-
biguity, it is necessary to standardize them by defining
the appropriate rules and assigning them to syntax ele-
ments. At the system level, structural, semantic, and tex-
tual representations should be parsed correctly by compat-
ible structural, semantic, or textural decoders. Meanwhile,
intelligent-video-coding-compliant networks should be
able to understand and process the meanings of the latent
representations at the intelligent model level. However, vi-
sualizing or analyzing bitstreams of highly compact latent
representations poses a considerable challenge in assess-
ing the semantic conformance of existing intelligent video
codecs. As such, the introduction of profiles may con-
tribute to defining unambiguous conformance procedures
and ensuring interoperability for intelligent video coding.
Video coding standards have used profiles and levels to
define tools with a restricted level of complexity suitable
for specific applications. Similarly, intelligent video cod-
ing requires different subsets of latent representations for
different applications. Some specialized applications may
also need restrictions or extensions of the latents. In this
regard, it is a critical issue as to how it should support ex-
tensions and specialization in specific domains while at
the same time ensuring unambiguous conformance vali-
dation, requiring a nontrivial effort.

Data security In the context of intelligent video cod-
ing, latent representations derived from networks involv-
ing signal information can be used to reconstruct the en-
tire video stream. Such representations, however, are not
encrypted, and therefore pose the risk of sensitive infor-
mation leakage. As such, trustworthy and robust coding
network design plays a central role in real-world applica-
tions.

Representation interpretability To enhance the support-
ing ability for downstream tasks using the compressed
data, it is important to develop latent representations that
are highly interpretable. By using such representations, it
becomes possible to apply interactive coding techniques,
which can enable a range of novel applications such as
content editing and immersive interaction. This opens up
new opportunities for compression-based approaches to
provide versatile features and functionalities beyond tra-
ditional video compression methods.

Generalization ability When standardized coding meth-
ods and technologies are ready for implementation and
deployment, it becomes crucial to identify the path that
intelligent video coding would follow to gain entry into
practical application domains while satisfying the objec-
tives that such codecs could satisfy versatile requirements.

For example, some intelligent video codecs trained for out-
door scenes might not be an ideal choice for coding facial
images. It is not practical to employ multiple models for
scene adaptation. Furthermore, the active efforts to har-
monize the intelligent video coding standard with other
media data standards will facilitate and expedite its adop-
tion in practical domains (e.g., short video on mobile de-
vices and immersive media applications).

6 Conclusion
Intelligent video compression provides a comprehensive
suite of compactly representing visual media with the ca-
pability of describing intrinsic semantics, which also has
the potential to revolutionize current and future multime-
dia coding applications. In particular, such methods in-
clude latent codes for describing the structure, semantics,
or motion of the visual data, which facilitate efficient edit-
ing, analysis, reconstruction of the decoded data, and ac-
cess to the data. In addition, extracted latent codes can also
describe content preferences and support on-the-fly ma-
nipulation and transfer of customized content and styles.
In this review, the development roadmap for the history
of intelligent video coding has been revisited, along with
the methodology for describing the structure and seman-
tics of video data. Furthermore, the paper presents three
potential research directions in conceptual coding, cross-
modality coding, and generative coding that could poten-
tially provide promising solutions to future visual media
coding utility and application scenarios. As a final point,
a few evolving and significant challenges are discussed
regarding future intelligent video coding deployment in
practical real-world scenarios.
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