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Abstract
Stochastic simulation is an essential method for modeling complex geological structures in geosciences. Evaluating
the uncertainty of the realizations of stochastic simulations can better describe real phenomena. However,
uncertainty evaluation of stochastic simulation methods remains a challenge due to the limited data from geological
surveys and the uncertainty in reliability estimation with stochastic simulation models. In addition, understanding
the sensitivity of the parameters in stochastic simulation models is invaluable when exploring the parameters with a
higher influence on the uncertainty associated with predictions generated from stochastic simulation. To facilitate
uncertainty evaluation in stochastic simulation methods, we use the circular treemap as an interactive workflow to
explore prediction uncertainty in and the parameter sensitivity of multiple-point geostatistical (MPS) stochastic
simulation methods. In this work, we present a novel visualization framework for assessing the uncertainty in MPS
stochastic simulation methods and exploring the parameter sensitivity of the MPS methods. We present a new
indicator to integrate multiple metrics that characterize geospatial features and visualize these metrics to assist
domain experts in making decisions. Parallel coordinates-scatter matrix plots and multi-dimensional scaling (MDS)
plots are used to analyze the parametric sensitivity of MPS stochastic simulation methods. The realizations and
parameters of two MPS stochastic simulation methods are used to test the applicability of the proposed visualization
workflow and the visualization methods. The results demonstrate that our workflow and the visualization methods
can assist experts in finding the model with less uncertainty and improve the efficiency of parameter adjustment
using different MPS stochastic simulation methods.

Keywords: Uncertainty evaluation, Stochastic simulations, Multiple-point geostatistics, Circular treemap, Parallel
coordinates-scatter matrix plots

1 Introduction
Uncertainty is a significant factor in stochastic simulation,
as ignoring uncertainty often affects the realization gener-
ated by using the stochastic simulation methods. Stochas-
tic simulation methods can automatically characterize ge-
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ological structures and multivariate properties, thereby fa-
cilitating our understanding of complex geological phe-
nomena [1]. As a significant branch of stochastic simula-
tion methods, multiple-point geostatistics (MPS) has been
applied in many fields in geosciences, such as reservoir
characterization [2–4], hydrological facies modeling [5],
reconstruction of subsurface structures [6, 7], and qual-
ity improvement of remote sensing images [8]. MPS-based
simulation methods aim to extract spatial patterns from
training images (TIs) to characterize spatially heteroge-
neous structures. Subsurface observations are difficult to
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obtain, so the known data are very sparse. The observa-
tions are regarded as the conditioning data in stochastic
simulation processes. Based on the limited conditioning
data, stochastic simulation methods can generate multi-
ple sets of possible realizations to approximate complex
geological structures. In addition, most MPS-based simu-
lation methods are performed along a random simulation
path during stochastic simulations. The simulated values
obtained by the Monte Carlo method are statistical values.
This leads to inherent uncertainty in the simulated val-
ues. Since the simulated values are regarded as condition-
ing data in the subsequent simulation progress, the uncer-
tainty will gradually increase as the sequential simulation
proceeds.

Many different types of parameters are employed in MPS
approaches. Different parameters can affect the perfor-
mance of generated realizations in various ways. Among
these input parameters, there are multiple parameters that
interact with each other. This ultimately contributes to
the diversity and uncertainty in these realizations. In the
presence of non-linear interactions when performing a
stochastic simulation, the input parameter analysis and
the uncertainty quantification of output realizations are of
great significance. Even using the same parameters and the
same experimental data, we obtain different realizations
with uncertainty, especially when the conditioning data are
sparse. It remains difficult to evaluate and analyze MPS
approaches because such MPS simulation parameters and
uncertainty in the simulation process may lead to different
realizations. Thus, an interactive uncertainty visualization
and visual analysis method is required for good quality re-
alization in stochastic simulations.

In addition, the optimal parameter configuration is es-
sential for MPS-based methods. Selecting the optimal pa-
rameters can accurately characterize the subsurface struc-
tures and reduce uncertainty. To obtain the optimal pa-
rameter configuration, one of the most commonly used
strategies is to simulate a large number of realizations and
record the optimal input parameters. Under the condition
that the common parameter setting range is known, it is
still time-consuming to obtain these large numbers of re-
alizations. Thus, there is an urgent need for an intuitive
parameter analysis and visualization method to select the
optimal parameters in MPS simulations.

In this study, uncertainty evaluation metrics were used
to examine the realization’s uncertainty and parameter
sensitivity in MPS stochastic simulations. This paper fo-
cuses on two main issues. First, uncertainty evaluation is
more beneficial for realiztions of the conditional MPS sim-
ulations. Second, there is no intuitive visualization method
to represent uncertainty and parameter sensitivity for MPS
stochastic simulations. To address these issues, we first
performed a series of simulations using different MPS al-
gorithms with different parameters. The simulation real-
izations were then used to generate an ensemble dataset

with different structural features according to different in-
put parameters. For such a high-dimensional dataset, visu-
alization and visual analysis can help us better understand
the data. Therefore, we proposed a workflow for exploring
integrated datasets with geospatial structures to facilitate
the exploration of uncertainty in the realizations and pa-
rameter sensitivity in MPS simulations. In summary, the
proposed visualization framework makes three main con-
tributions to the literature.

(1) We proposed a visualization framework of uncer-
tainty evaluation for MPS stochastic simulations.

(2) We integrated the uncertainty assessment metrics for
the realizations and TIs and proposed a composite indica-
tor to assist in model optimization.

(3) We presented the parallel coordinates-scatter matrix
plot to efficiently analyze the parameter configurations of
MPS methods and the uncertainty of the realizations.

2 Related work
2.1 Multiple-point geostatistical stochastic simulation
Multiple-point geostatistics (MPS)-based methods are a
meaningful branch of stochastic simulation methods in
geosciences. In recent years, the continuous development
of its basic theory and various algorithms has made dis-
tinct contributions to the 3D reconstruction of subsur-
face structures. MPS-based approaches are derived from
reservoir modeling and incorporate the advantages of two-
point geostatistical and object-based simulation methods
[9, 10]. MPS-based stochastic simulations aim to describe
heterogeneous geometric features by extracting spatial
patterns from training images (TIs). A TI is a conceptual
model abstracted from real phenomena and plays a cru-
cial role in stochastic simulation methods. To quickly ex-
tract the probability distribution function of TIs during an
MPS simulation, Strebelle [11] proposed a dynamic data
structure in the SNESIM algorithm: the search tree. The
method uses the structure to save all patterns existent in
the TIs once in advance. Mariethoz et al. [12] presented
the direct sampling (DS) algorithm. To retrieve conditional
probabilities for the DS algorithm, the data event sam-
ples directly TI instead of being stored in a database. The
simulated values obtained by MPS stochastic simulations
are statistical values, which inherit the uncertainty realiza-
tions. The simulated values are regarded as conditioning
data, and the uncertainty in its realizations gradually in-
creases during the MPS stochastic simulation process.

2.2 Uncertainty and ensemble visualization
Since stochastic simulations generate multiple realizations
with equal probability, uncertainty is inevitable. In the field
of uncertainty visualization, Liu et al. [13] represented un-
certainty implicitly by directly displaying a carefully cho-
sen subset of the prediction set. It not only preserves the
spatial statistical information of the original set but also
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prevents the elements in the set from being obscured.
Yang et al. [14] derived an independent realization through
Monte Carlo sampling and visualized the uncertainty of
geological surfaces in terms of smoothed movies by us-
ing the level sets and Markov chain Monte Carlo (MCMC)
methods. In a broad sense, ensemble data are a subset of
uncertainty data. To mitigate uncertainty and investigate
parameter sensitivity, ensemble datasets are generated by
MPS simulations. Since ensemble data are often multiple-
variate, multiple-valued, time-varying and intricate, these
properties bring challenges in the analysis and visualiza-
tion of uncertainty. For spatial ensemble data visualization,
the Gaussian mixture model was introduced by Jarema
et al. [15]. The model quickly identifies the most similar
members of the ensemble by clustering and lobular glyphs.
Hazarika et al. [16] employed the parallel coordinates plots
to express the sequel statistics of ensemble data. Wang et
al. [17] used a heatmap and treemap to present an overview
of the member similarity in multiple-resolution climate
ensemble data. Despite these efforts, uncertainty evalua-
tion and sensitivity analysis of ensemble data in stochastic
simulations still lack an intuitive visualization method.

2.3 Uncertainty analysis and sensitivity analysis
To explore the uncertainty of MPS realizations, uncer-
tainty analysis and sensitivity analysis are two commonly
used tools. Uncertainty analysis is a quantitative assess-
ment of the uncertainty in the model due to model param-
eters, model methods, and structure. Sensitivity analysis
is a method to select the optimal parameters from a set of
parameters. Uncertainty analysis addresses the question of
how to measure the uncertainty of multiple MPS realiza-
tions, while sensitivity analysis answers the source of the
uncertainty.

The main methods of uncertainty analysis include fuzzy
theory [18], interval theory [19], and probabilistic analy-
sis [20]. Probabilistic analysis is most commonly used to
assess the uncertainty of geospatial objects. It is adopted
to construct the probability distribution of a model based
on conditioning data. Yang et al. [14] used Monte Carlo
to obtain independent realizations to evaluate uncertainty.
In addition, using the MCMC method sampled the uncer-
tainty of a model and gradually evolved geological surfaces
for visualization [21]. Sensitivity analysis increases the un-
derstanding between the model’s input and output. It is
able to provide more credible, understandable, and con-
vincing recommendations for scientists. Sensitivity analy-
sis has two main types: global sensitivity and local sensi-
tivity. Local sensitivity analysis is concerned with a point
of interest in a model space. It typically computes impor-
tant feature points of a model, such as the mean and the
standard deviation. Local sensitivity analysis [22–24] was
popular in the early period and was also applied to geolog-
ical simulations. Compared with local sensitivity analysis,

Figure 1 A schematic overview of our workflow

global sensitivity [25–28] takes into account all dimensions
in a model. Neumann et al. [29] compared these two types
of methods and noted that global sensitivity produces bet-
ter performance in terms of accuracy in theory and prac-
tice. Although uncertainty analysis and sensitivity analysis
have evolved considerably in stochastic simulations, both
of them are relatively obscure, and there is a lack of vi-
sual representation for them. As a result, there is an urgent
need for a visual framework to analyze uncertainty based
on sensitivity analysis.

3 Methodology
3.1 Uncertainty evaluation framework in MPS simulations
Figure 1 shows a schematic overview of our workflow.
We propose a framework for evaluating the uncertainty
of the realizations and exploring parameter sensitivity in
stochastic simulations. Based on the integration datasets
generated by MPS stochastic simulations, there are two
types of visualization exploration: the exploration of un-
certainty and the exploration of parameter sensitivity.

In uncertainty exploration, we use a multiple-point his-
togram (MPH), connectivity function, and semi-variogram
to compute spatial features. To obtain a more accurate re-
sult, we propose a composite indicator, which is a weighted
metric of MPH, connectivity, and semi-variogram. The
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Figure 2 Workflow of the uncertainty evaluation of multiple realizations and the analysis of parameter sensitivity in MPS simulations: (a) Data
pre-processing; (b) Circular diagram; (c) and (e) Exploring uncertainty of multiple realizations; (d) Exploring parameter sensitivity

weight of each uncertainty indicator can be freely selected
and explored. Based on the composite indicator, a new cir-
cular treemap and a hierarchy dataset can be constructed.
The circular treemap is a vital interaction component be-
tween the exploration of uncertainty in realizations and
the parameter sensitivity in MPS simulations. Based on
the dataset with different levels of hierarchy, we can choose
to visualize the uncertainty at different layers: the bottom
layer is an individual realization of an MPS simulation, and
the top layer represents multiple realizations generated by
an MPS simulation under the same parameters. For an in-
dividual realization, we visualize the uncertainty of the re-
alization using line plots and MPH plots. The variogram
map shows the variance in each direction, and the chart
is a vital visual representation of spatial structures. The
bar_3D chart and Etype plot visualize the uncertainty of
multiple realizations.

To explore parameter sensitivity, MDS and parallel
coordinates -scatter matrix plots show the diversity and
uncertainty of the realizations and the parameter sensitiv-
ity in MPS simulations. We propose parallel coordinate-
scatter matrix plots to visualize the ensemble data uncer-

tainty and perform the global sensitivity analysis of the
used parameters. Parallel coordinates can show each un-
certainty indicator in the realizations, and a scatter matrix
can express the potential characteristics among the uncer-
tainty indicators. Parallel coordinates and a scatter matrix
are combined into a new visualization approach. It is an
intuitive and efficient diagram to visualize the parameter
sensitivity and uncertainty in the ensemble dataset. MDS
plots facilitate the understanding of the realization uncer-
tainty under different parameter configurations.

Figure 2 shows the detailed process of the uncertainty
evaluation framework in MPS simulations proposed in this
work.

3.2 Exploration of uncertainty evaluation in MPS
simulations

3.2.1 Uncertainty evaluation indicator
To evaluate the uncertainty of MPS realizations, we select
three representative uncertainty assessment metrics: con-
nectivity function, semi-variogram and MPH.

Connectivity functions have been widely used in the field
of subsurface characterization to depict spatial connectiv-
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ity characteristics. Renard et al. [30] have demonstrated
how lag distance connectivity function τ (h) and global per-
colation volume �(p) are able to represent the connectiv-
ity of categorical and continuous properties. Let us define
a variable X and a distance h. The lag distance connectivity
function τ (h) is defined as the probability of connectivity
of two h-distance points: s and s + h. We can calculate the
lag distance connectivity function τ (h) as follows:

τ (h) = Prob
(
s ↔ s + h|X(s) = X(s + h)

)
. (1)

In the generated realizations, two regions are connected
if there are paths with the same properties X(s) = X(s + h).
The global percolation volumes �(p) express the propor-
tion of pairs connected in the realizations:

�(p) =
N(xp)∑

i=1

p2
i , (2)

where pi indicates the proportion of connected compo-
nents, N(xp) is the number of attributes in the realizations,
and xp means distinct connected components. To convert
the uncertainty into a scalar value, Pirot et al. [31] calcu-
lated the difference between two realizations using lag dis-
tance and global percolation volumes.

Dconn(real 1, real 2)

=
NC∑

i=1

1
NC

[

lτ

(Nlag∑

h=1

‖τ1(h) – τ2(h)‖
Nlag

)

+ (1 – lτ )
∥
∥�1(i) – �2(i)

∥
∥
]

, (3)

where lτ represents the indicator that can be selected be-
tween connectivity functions τ and �. NC refers to the
number of the considered classes’ values and Nlag repre-
sents the number of configured lags. The semi-variance
function measures the variability of the values taken by a
random variable in different positions [32]. It represents
the anisotropy of the realizations. Using the Monte Carlo
method, the space V is divided into lag distances, and
then a semi-variogram over h lags is calculated. The semi-
variance function can be written as:

γ̂ (V ) =
1

2n(h)

n(V )∑

s=1

[
x(s) – x(s + V )

]2, (4)

where s is a sample point, x(s) is the value of point s, and
n(V ) is the number of pairs of points at a distance of V .
γ̂ (V ) is the mean square error between the attributes of
the sample point s and the points at distance h from it. To
compare the semi-variance functions of two realizations,

we select n regions and compare the semi-variance func-
tions of two realizations, which can be defined as Eq. (5):

Dvario(real1, real2) =
n∑

i=1

∣
∣γ̂1(i) – γ̂2(i)

∣
∣2. (5)

MPH is an essential metric of the spatial structure char-
acteristics in simulated realizations [33]. Priot et al. [31]
proposed classifying all patterns into Nc clusters with each
cluster center defined as the cluster representative. The
distance between two clusters can be computed as follows:

d
(
Ci

1, Cj
2
)

=

( Nk∑

k=1

(
Ci

1(k) – Cj
2(k)

)
) 1

2

, (6)

where Ci
1(k) is defined as the i-th cluster of the first realiza-

tion, and Cj
2(k) is denoted as the j-th cluster of the second

realization. Nk denotes the number of sliding windows in
the pattern. We use MPH to compute the uncertainty of
the two realizations with Eq. (7):

Dmph(real1, real2)

=
Nc∑

i=1

1
Nc

[
(
1 + d

(
Ci

1, Ci
2
))

×
(

1 +
|pi

1 – pi
2|

pi
1 + pi

2

)
– 1

]
. (7)

Here, the proportions of the numbers in clusters Ci
1 and

Ci
2 divided by the total number of patterns in the first and

second realizations are pi
1 and pi

2, respectively. In geologi-
cal applications, connectivity describes the connection de-
gree of the same attribute, which can help us understand
the structure and characteristics of the models well. The
semi-variogram represents the spatial variability of ran-
dom variables. MPH is a method based on pattern recog-
nition to measure the quality of the realizations of MPS
stochastic simulations. These indicators evaluate differ-
ent respects for the characteristics of the realizations of
stochastic simulations. Therefore, we propose a compos-
ite indicator to unify the differences among the indicators
so that the uncertainty in the parameter sequence can be
evaluated straightforwardly. To explore the differences in
the spatial structures more conveniently in MPS realiza-
tions and TI, we give each metric an indicator that ranges
from 0 ∼100. Then, we can obtain a generalized evaluation
index table to represent the uncertainty:

Dtotal =
(
Dmph(real, TI) × w1 + Dvario(real, TI) × w2

+ Dconn(real1, TI) × w3
)

/(w1 + w2 + w3), (8)
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where w1, w2 and w3 are the ranges of each metric to select
freely for individual realization.

3.2.2 Visualization of uncertainty evaluation
To visualize the uncertainty of MPS realizations, we gener-
ated multiple realizations by configuring different param-
eters. As illustrated in Fig. 2(a), the multiple realizations
constitute an ensemble dataset with a hierarchical struc-
ture. The uncertainty of the ensemble dataset cannot be
visualized directly due to its multi-dimensional and multi-
variate characteristics. To facilitate uncertainty visualiza-
tion in the ensemble dataset with a hierarchical structure,
we use a circular treemap as a visual interaction frame-
work to explore the uncertainty and parameter sensitivity
in MPS simulations (Fig. 2(b)). There is a unified aspect
ratio of the area and a clear hierarchy of data, which fits
well with the hierarchal structure of the ensemble dataset.
In addition, the circular treemap provides some interactive
functions, such as a distortion-based contextual view and
drill-down function.

The circular treemap divides the hierarchical ensemble
dataset into three layers. The first layer is the root node,
the second layer is different parameter members of the
ensemble dataset during MPS simulations, and the third
layer represents the individual realization. The compos-
ite indicator determines the size of circles in a circular
treemap. The larger the indicator, the larger the size of the
circles in the circular treemap. The composite indicator
is defined by Eq. (8). On the second level of the circular
treemap, we develop a bar_3D plot and Etype plot to char-
acterize the uncertainty for multiple realizations (Fig. 2(c)).
The bar_3D plot is easy to use to evaluate the uncertainty
among multiple realizations and to observe the indicators
in each realization. To show the uncertainty of multiple re-
alizations with the same parameters, we also provide an
Etype plot. It is a heatmap that clearly presents the de-
gree of uncertainty in terms of the mean and variance of
MPS realizations. The diagram is a detailed presentation
of the realizations under the same parameter configuration
on the second layer. The mean and standard deviation are
calculated separately for each position in a realization by
Eq. (9):

x =
1

Nc

Nc∑

c=1

xc,

xstd =

(
1

Nc

Nc∑

c=1

(xc – x)2

) 1
2

,

(9)

where xc is the vector in a realization, and Nc is the num-
ber of realizations generated with the parameters. In the
third layer, MPH, connectivity, and semi-variogram func-
tions are all indicators for evaluating the spatial charac-
teristics of the realizations. As demonstrated in Fig. 2(e),
we provide various visualization techniques of these three

indicators to facilitate a detailed evaluation of the uncer-
tainty of an individual realization and TIs.

3.3 Exploration of parameter sensitivity in MPS simulations
Parameter sensitivity analysis answers the uncertainty
sources in MPS simulations. Sensitivity analysis of the
realizations of stochastic simulations poses a significant
challenge. Due to the multi-dimensional and multivariate
characteristics of the ensemble dataset, it is a terrific op-
tion to analyze parameter sensitivity by extracting repre-
sentative features in the ensemble dataset.

A parallel coordinates plot is an efficient multi-
dimensional visualization method that maps datasets onto
a two-dimensional plane. In the diagram, each line repre-
sents a data tuple, and the line shape reflects the character-
istics of the ensemble dataset. If the size of the ensemble
dataset is too large, the lines tend to overlap. Parallel coor-
dinates can present features where two axes are adjacent,
but features that are not adjacent may be helpless for the
use of a parallel coordinate plot.

Scatter matrix plots are a common method for multi-
dimensional visualization. In the ensemble dataset with
multiple dimensions, scatter matrix plots are beneficial for
determining correlations between two selected variables
and discovering different clusters of individuals. Scatter
plots can only describe correlations between two dimen-
sions. To visualize multi-dimensional data, a scatter ma-
trix consisting of N×N

2 permutations has been developed
in this work.

We propose a parallel coordinates-scatter matrix plot
for better analysis of the ensemble dataset from stochas-
tic simulation. The uncertainty indicators generated by
MPS simulations are treated as axes of parallel coordinates
and scatter matrix. Parallel coordinates plots are used as
a global visualization for parameter sensitivity analysis.
This method visualizes multiple spatial characteristics of
ensemble datasets with different parameters and analyzes
the uncertainty of ensemble datasets caused by different
parameters. Scatter matrix plots show a local visualiza-
tion of parameter sensitivity analysis. It is an effective
tool for analyzing uncertainty under different parameters
and identifying correlated features of uncertainty, outliers,
and other characteristics. To avoid overlaps in the paral-
lel coordinates-scatter matrix plot, we provide several fun-
damental functions, such as partial region selection, re-
gion clearing function, and category parameter selection.
When employing these functions to explore the sensitivity
analysis of the ensemble datasets generated by MPS simu-
lations, the efficiency of the exploration increases signifi-
cantly. MDS is also a popular technique for reducing high-
dimensional datasets to two dimensions. Not only does it
preserve the achieved high-dimensional distances in the
lower dimensions, but it is also a non-linear dimensionality
reduction technique. In MDS plots, we can see the projec-
tion of the difference in the distance between TIs and MPS
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realizations in two dimensions. As displayed in Fig. 2(d),
the MDS plot and the parallel coordinates-scatter matrix
plot facilitate us to explore parameter sensitivity in MPS
simulation.

4 Results
SNESIM and DS are two representative MPS simulation
algorithms. Tables 1 and 2 show the range and the descrip-
tion of the parameters for the two algorithms. We used the
two algorithms to generate two ensemble datasets with dif-
ferent parameter configurations: the SNESIM dataset and
DS dataset. Figure 3 illustrates the summary view of the
dataset simulated by the SNESIM dataset. It has ensemble
members consisting of m parameter sequences, n realiza-
tions in each ensemble member, and vector X (red dot) in
each realization to record attribute values. The SNESIM
dataset has six parameter sequence members, and each
member has multiple realizations that are named accord-
ing to the order of generation. The parameter sequence is
a combination of the parameters of the SNESIM dataset.
The parameter sequence is composed of algorithm param-
eter names and values according to specific rules. The rules

Table 1 Description and range of the input parameters for the
SNESIM dataset

Parameter Description Range Default

L Number of multiple grids [0, 5] 2
TS_X Search template size X (0, 10) 5
TS_Y Search template size Y (0, 10) 5
TS_Z Search template size Z (0, 10) 1

Table 2 Description and range of the input parameters for the
DS dataset

Parameter Description Range Default

F Fraction of TI (0, 1] 0.5
T Threshold for pattern distance [0, 1] 0.1
R Search radius for data events (10, 50) 20
N Maximum number of points for data events (10, 50) 20

can be sorted by the length of the parameter names or the
first letter of the parameter names. For example, TS7_7L3
indicates that the search template sizes X and Y are 7, and
the number of multiple grids is 3. It is not written when the
search template size Z is 1. Sg3 shows the third realization
under this parameter sequence.

4.1 Uncertainty evaluation
We used the SNESIM dataset and selected four parameters
of the SNESIM algorithm in this test. There are five en-
semble members in the SNESIM dataset. Fifty realizations
were simulated in an ensemble member. The training im-
age is a section of the reservoirs provided by Strebelle [34]
with a resolution of 250 × 250 pixels. The circular treemap
for calculating different weights of the indicators in this
dataset is illustrated in Fig. 4. In the three circular treemaps
based on different indicators, the yellow circle represents
individual realization, and the cyan circle represents multi-
ple implementations under the same parameter sequence.
The circle’s size indicates the degree of uncertainty in re-
alization. Figure 4 shows that among these parameter se-
quences, the parameter sequence TS3_3L2 has the highest
uncertainty, and the parameter sequence TS7_7L3 has the
lowest uncertainty. It can generally display the uncertainty
under different parameter sequences, which is convenient
for uncertainty evaluation and visualization of specific re-
alizations.

As displayed in Fig. 5, we selected two different mem-
bers of the parameter sequence for the uncertainty eval-
uation in the ensemble dataset. The first row in Fig. 5
shows a circular treemap of these two displays of com-
bined uncertainty. The size of the bubble reflects the de-
gree of uncertainty in the circular treemap. Therefore, we
can use the size of the bubble to provide initial assistance
in the decision-making process for experts. This enables
experts to conveniently explore bubbles with lower un-
certainty at the same time and delve deeper into those
bubbles that they consider necessary for further investi-
gation. The second and third rows show the Etype_mean

Figure 3 A summary of the SNESIM dataset
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Figure 4 Circular treemap in different weights for indicators. (a), (b) and (c) indicate semi-variogram, connectivity and MPH weighted at 100%,
respectively

and Etype_std of the two ensemble members. The parame-
ter sequence TS7_7L3 converges more closely to the max-
imum and minimum values in most regions. In the fourth
row of the bar_3D plot, the values in Fig. 5(a) are lower
than in Fig. 5(b). The Bar_3D plot can assist domain ex-
perts in visualizing the different indicators of each real-
ization. It helps address our need for specific analysis of
each indicator within a single realization, ultimately aiding
experts in understanding the uncertainty associated with
the realization. Combining the above diagrams, the uncer-
tainty in the parameter sequence TS7_7L3 is significantly
lower than that in the parameter sequence TS5_5L3.

In the uncertainty evaluation of an individual realization,
we compare the similarity of the spatial structure between
the TI and the realization generated by MPS stochastic
simulations. As illustrated in Fig. 6, MPH represents the
histogram and size between the TI and a realization. The
left column shows the TI and an individual realization. The
other columns show ten cluster representatives and their
counts. The count of cluster representatives is the number
of pattern representatives in individual realization or TI.
The patterns of an individual realization and the TI depend
on the degree of uncertainty. We computed these ten pat-
tern representatives and derived a distance to evaluate the
uncertainty between the TI and the generated realization.
Based on the size of ten cluster representatives between a
realization and TI, we calculated the distance of both to be
approximately 20.46.

The uncertainty evaluation of the TI and the corre-
sponding realizations is displayed in Fig. 7. A randomly
selected realization and the TI in the parameter sequence
TS7_7L3 are depicted in Fig. 7(a). As shown in Fig. 7(b),
the semi-variogram and connectivity curves between the
TI and a realization can be observed. It can visually com-
pare the uncertainty of the TI and a realization at different
lag distances. We converted the trends of the connectivity
and variogram into scalar indicators by using Eq. (5) and

Eq. (7). The variogram value for each direction is indicated
in the variogram plots. The plots are based on a polar co-
ordinate system, setting r ∈ [0, 60] and θ ∈ {0, �

36 , . . . ,π}.
We can see the difference between the TI and realizations
in each direction (Fig. 7(c)).

During exploring the uncertainty evaluation, the uncer-
tainty in the realization was estimated in several aspects.
As summarized in Table 3, the composite indicator was
calculated with a connectivity weight of 100%. In addi-
tion, it can be seen that the uncertainty in the realization
Sg35 is the lowest in connectivity and MPH. The worst re-
alizations are Sg20, Sg17, and Sg47 in connectivity, MPH
and variogram, respectively. In the composite indicator, we
found that the best realization is Sg43, and the worst real-
ization is Sg20. Figure 8 illustrates the comparative analysis
of the four indicators in the parameter sequences TS5_5L3
and TS7_7L3. In Fig. 8(a), the blue curve of TS7_7L3
is much lower than the yellow curve of TS5_5L3. It re-
veals that the parameter sequence TS7_7L3 is better than
TS5_5L3 in the connectivity indicator. Although the curve
of TS5_5L3 and the curve of TS7_7L3 are interlaced, the
overall blue curve is still lower than the yellow curve in
Fig. 8(b). This demonstrates that the parameter sequence
TS7_7L3 is more stable than TS5_5L3 for finding the sim-
ilarity of multiple-point patterns in MPS simulations. Fig-
ure 8(c) shows that nearly half of the realizations of the pa-
rameter sequence TS5_5L3 (yellow curve) are lower than
TS7_7L3 (blue curve), but the yellow curve fluctuates more
violently than the blue curve. Thus, the parameter se-
quence TS7_7L3 is more stable than TS5_5L3 for reducing
the uncertainty of MPS stochastic simulations. As demon-
strated in Fig. 8(d), we also observed that the blue curve
is much lower than the yellow curve. This illustrates that
the parameter sequence TS7_7L3 is better than TS5_5L3
in a composite indicator. All the statistics demonstrate that
the composite indicator can combine the characteristics of
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Figure 5 Exploring the uncertainty of different parameters for the SNESIM algorithm. (a) and (b) visualize and evaluate the uncertainty in TS7_7L3
and TS5_5L3, respectively

multiple indicators and assist the uncertainty evaluation in
MPS simulations.

4.2 Parameter sensitivity
We visualized the indicators of MPS realizations to ana-
lyze the parameter sensitivity under different parameter
sequences. MDS [35] and parallel coordinates-scatter ma-
trix plots were adopted to explore parameter sensitivity
during MPS simulations. To verify the validity of these ap-

Table 3 Summary of the uncertainty evaluation in the parameter
sequence TS7_7L3

Dconnect Dmph Dsemi-variogram Dtotal

Better realization Sg35 Sg38 Sg35 Sg43
Indicator value 26.5 146.27 14.1 82.83
Worse realization Sg20 Sg17 Sg47 Sg20
Indicator value 321.93 255.87 58.7 107.31
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Figure 6 Uncertainty evaluation of training image (TI) and realization by MPH: the left column shows the TI and a realization. The others display ten
patterns, the size and distance for the TI and a realization

Figure 7 Uncertainty evaluation of the TI and the corresponding realizations. (a) The TI and a realization; (b) Semi-variogram and connectivity curves
between the TI and a realization. (c) Variogram plots of the TI and a realization
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Figure 8 Comparison of four indicators in the parameter sequences TS5_5L3 and TS7_7L3. (a), (b), (c), and (d) show the curves of the connectivity,
MPH, semi-variogram, and total indicator from 50 generated realizations in the parameter sequences TS5_5L3 and TS7_7L3, respectively

proaches, we applied DS and SNESIM different parame-
ter sequences to generate two datasets: DS_dataset and
SNESIM_dataset. The specific information of the param-
eters for both algorithms is summarized in Tables 1 and 2.

4.2.1 SNESIM
As described in Figs. 9 and 10, the effect of configuring
different parameters generated in the dataset for realiza-
tions can be observed. Assembling the two plots can fa-
cilitate parameter sensitivity analysis in MPS simulations.
The randomly selected realizations in Fig. 10 verify the va-
lidity of the parallel coordinates-scatter matrix plot. Fig-
ure 9 indicates that purple lines are at the bottom of the
axis in parallel coordinates, and gray lines are at the top
of the axis in parallel coordinates. In the scatter matrix,
purple points are at the bottom left of every scatter plot,
and gray points are generally at the top right. This demon-
strates that the realizations generated under the two pa-
rameter sequences TS7_7L3 and TS7_7L2 work far better
than the others, and TS3_3L2 is the worst in the six param-
eter sequences. The uncertainties of parameter sequences

TS7_7L3 and TS7_7L2 are lower than others, and the pa-
rameter sequence TS3_3L2 has the highest uncertainty.

Although the uncertainty and the parameter sensitivity
of all parameters can be observed in Fig. 9, data overlap
remains inevitable. To analyze parameter sensitivity bet-
ter, we regarded the two parameter sequences TS7_7L3
and TS3_3L2 as an example, as illustrated in Fig. 11. The
realizations of the parameter sequence TS7_7L3 are both
positioned in the lower left corner of the scatter matrix
plot, while the realizations of TS3_3L2 are in the upper
right corner. In the parallel coordinates plot, the param-
eter sequence TS7_7L3 has lower indicator values than
TS3_3L2. In the semi-variogram, the indicator ranges of
the parameter sequences TS3_3L2 and TS7_7L3 are simi-
lar in Fig. 11. To further compare the parameter sensitiv-
ity, we constructed the MDS plot (Fig. 12) by projecting
all realizations in TS7_7L3 and TS3_3L2 into two dimen-
sions. We chose the TI as the reference, and all realiza-
tions revolved around the reference. The 50 realizations
of TS7_7L3 follow the reference closer than the 50 real-
izations of TS3_3L2. This indicates that the uncertainty of
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Figure 9 Exploring parametric sensitivity via parallel coordinate–scatter matrix plot in the SNESIM dataset

the realizations under the parameter sequence TS7_7L3 is
lower than that under TS3_3L2. The selection of TS7_7L3
can significantly reduce the uncertainty in the SNESIM al-
gorithm. In short, the parallel coordinates-scatter matrix
plot is relatively easy to use to identify the parameter se-
quences with the highest uncertainty since the values of
the indicator are reflected in the respective subplots. The
MDS plot can validate visualization for the realization un-
certainty of the different parameter sequences in stochas-
tic simulation.

4.2.2 DS
We used our method to visualize the DS dataset and com-
pare uncertainty among different parameter sequences.
In DS, there are four main parameters: fraction of TI
(F), maximum number of points (N ), search radius (R),
and distance threshold (T ). The DS_dataset was gen-
erated by setting different values for the four parame-
ters to investigate the parameter sensitivity. The nam-
ing rule of the DS dataset is the same as that of the
SNESIM_dataset. As illustrated in Figs. 13 and 14, we

selected different parameter sequences separately to ex-
plore parameter sensitivity. Figure 13 describes the paral-
lel coordinates-scatter matrix plots and Fig. 14 depicts the
corresponding realizations under the different parameter
sequences. We found that the red lines are below the par-
allel axis, and the blue lines are above the parallel axis. This
indicates that the realizations of the parameter sequence
D0.2_F0.5_N40_R30 (red) are closer to the spatial features
of the TI. Meanwhile, the effect of the parameter sequence
D0.1_F0.1_N10_R20 (blue) is the worst among the param-
eter sequences. To further analyze the parameter sensitiv-
ity of different parameter sequences in DS, various cases
of parameter sensitivity were implemented via a paral-
lel coordinates-scatter matrix plot (Fig. 15). As displayed
in Fig. 15(a) and Fig. 15(b), realizations of the individual
parameter sequence we selected can be visualized, and
others are not directly visualized. This indicates that per-
forming the analysis and visualization on an individual pa-
rameter sequence avoids data overlap. The parameter se-
quence D0.2_F0.5_N20_R20 is higher than the parameter
sequence D0.2_F0.5_N40_R30 (Fig. 15(c)). This shows that
the parameter sequence D0.2_F0.5_N40_R30 has lower
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Figure 10 Stochastic realizations of SNESIM by using different parameter sequences

uncertainty than the parameter sequence D0.2_F0.5_N20_
R20. To compare the effect of individual parameters on the
realization uncertainty, the parameter sequences D0.1_
F0.1_N10_R20 and D0.1_F0.1_N20_R20 are selected for
visualization analysis (Fig. 15(d)). The parameter sequence
D0.1_F0.1_N20_R20 is basically under the parameter se-
quence D0.1_F0.1_N10_R20. The larger the indicator of
the parameter N within a certain range, the smaller the re-
alization uncertainty. As demonstrated in Fig. 16, the red
points represent TI, the green points are D0.2_F0.5_N40_
R30, and the purple points represent D0.1_F0.1_N10_R20
in the MDS plot. The green and purple points surround the
red points, and the vast majority of the purple points are
closer to the red points. When the parameter sequences
were selected for comparison, the parallel coordinates-
scatter matrix plot displays the three parameters: N , R,
and T . The MDS plot compares the differences between
multiple parameter sequences and TI.

5 Discussion and conclusions
In this work, we propose a novel visualization framework
to evaluate the uncertainty and parameter sensitivity of
MPS stochastic simulations. A composite indicator for
the ensemble dataset is presented to facilitate uncertainty
evaluation and parameter sensitivity analysis. The com-
posite indicator is based on three typical metrics: MPH,
connectivity, and semi-variogram, which can conveniently
evaluate the uncertainty of MPS realizations. Using this in-

dicator, a circular treemap conforming to the hierarchical
structures of ensemble datasets is constructed. Further-
more, the novel framework is built on the circular treemap
for exploring uncertainty and parameter sensitivity in en-
semble datasets.

For uncertainty exploration in MPS stochastic simula-
tions, the Etype diagram presents the mean and standard
deviation in MPS realizations. The bar_3D plot details the
specific values of the indicators in multiple realizations.
The spatial characteristics of an individual realization are
extracted to portray their uncertainty by using a connec-
tivity function and semi-variogram plots. The MPH plot is
used to describe the degree of dissimilarity of the hetero-
geneous patterns in MPS realizations. The variogram and
semi-variance plots show the anisotropy of the generated
realizations.

The parallel coordinates-scatter matrix plot is presented
to explore the parameter sensitivity in MPS stochastic
simulations. The parallel coordinates plot is able to ana-
lyze the degree of uncertainty in different parameter se-
quences. Meanwhile, the scatter matrix plot can describe
the relationship between the features extracted from dif-
ferent realizations. The appropriate parameter sequences
of MPS simulations can be selected through the parallel
coordinates-scatter matrix plot. According to the paral-
lel coordinates-scatter matrix plot, we can use analogical
analysis to compare the uncertainty of two parameter se-
quences, thereby assisting experts in parameter analysis



Huang et al. Visual Intelligence            (2023) 1:12 Page 14 of 18

Figure 11 Parallel coordinates–scatter matrix plots when we are specifying special parameters in SNESIM

Figure 12 MDS plot of 50 realizations of two different parameter sequences in SNESIM
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Figure 13 Exploring parametric sensitivity via the parallel coordinates-scatter matrix plots in the DS_dataset

Figure 14 TI and stochastic realizations of the DS dataset under different parameter sequences
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Figure 15 Various cases of parameter sensitivity via parallel coordinates-scatter matrix plots when we are specifying special parameters in DS

Figure 16 MDS plot of 50 realizations for the different parameters in
DS

and decision-making. The diagram provides an intuitive
visual representation, enabling experts to quickly identify
and comprehend the relationships between the parame-
ters of MPS simulations. We can simultaneously display
the values of multiple parameters and reveal the similari-
ties and differences between parameter sequences by ob-
serving the distribution of the scatter points. This compar-
ative approach helps domain experts gain deeper insights
into the characteristics and trends of parameter sequences,
facilitating more accurate decisions. In addition, the MDS
plot is used to compare the difference between the realiza-
tions generated according to specific parameters.

The results based on two representative MPS algorithms
demonstrate the effectiveness and applicability of the pro-
posed visualization framework. The framework facilitates
the visualization of uncertainty evaluation and parameter
sensitivity analysis, and it is able to apply to other similar
stochastic simulation methods in geosciences.
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