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Abstract
Discriminative correlation filters (DCF) with powerful feature descriptors have proven to be very effective for
advanced visual object tracking approaches. However, due to the fixed capacity in achieving discriminative learning,
existing DCF trackers perform the filter training on a single template extracted by convolutional neural networks
(CNN) or hand-crafted descriptors. Such single template learning cannot provide powerful discriminative filters with
guaranteed validity under appearance variation. To pinpoint the structural relevance of spatio-temporal appearance
to the filtering system, we propose a new tracking algorithm that incorporates the construction of the Grassmannian
manifold learning in the DCF formulation. Our method constructs the model appearance within an online updated
affine subspace. It enables joint discriminative learning in the origin and basis of the subspace, achieving enhanced
discrimination and interpretability of the learned filters. In addition, to improve tracking efficiency, we adaptively
integrate online incremental learning to update the obtained manifold. To this end, specific spatio-temporal
appearance patterns are dynamically learned during tracking, highlighting relevant variations and alleviating the
performance degrading impact of less discriminative representations from a single template. The experimental
results obtained on several well-known datasets, i.e., OTB2013, OTB2015, UAV123, and VOT2018, demonstrate the
merits of the proposed method and its superiority over the state-of-the-art trackers.
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1 Introduction
Visual object tracking is one of the most fundamental
topics in pattern recognition and computer vision, which
plays crucial roles in a wide range of visual intelligent
systems, e.g., medical image analysis, human-computer
interaction, transportation intelligence, and robotics. To
consistently and accurately track an arbitrary object in
unconstrained scenarios is very challenging due to de-
formable shape, changing aspect, and textural variations
of the target. Considering existing advanced tracking al-
gorithms, discriminative correlation filter (DCF-) based
trackers [1] have exhibited promising performance in var-
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ious benchmarks [2–4] and competitions such as the Vi-
sual Object Tracking (VOT) challenges [5, 6] and Vis-
Drone [7, 8]. In general, the advantages of DCF include its
spatial appearance model exploiting the circulant matrix
structure [9] and efficient optimization in the frequency
domain [10]. More recent innovations focus on scale de-
tection [11], joint regularization [12], continuous domain
mapping [13], multi-response fusion [14], etc.

The success of current advanced DCF trackers can be
attributed to two main factors: spatial regularization and
temporal fusion. Regarding the spatial regularization, as
images and videos rectify the 2D planes from the view
of a camera, the proposal of spatial regularization en-
ables a direct improvement of the tracking performance
by potentially endowing the learned classifiers with a spe-
cific attention mechanism, enhancing the model’s discrim-
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ination by focusing on less ambiguous and background
regions [15–17]. Considering the temporal fusion tech-
niques, advanced DCF trackers highlight the online ap-
pearance clues by gathering more historical target infor-
mation or constructing temporally consistent constraints
on the discriminative learning stage [18–20]. To this end,
the above-mentioned spatio-temporal model methodolo-
gies have received continuous attention in the visual track-
ing community, especially for the powerful deep learning
representations developed in recent years [21–23].

However, from the geometry viewpoint, the current
DCF paradigm extracts the discriminative information
from independent training templates (points), without
unifying the spatio-temporal appearance jointly. Specifi-
cally, the multi-channel feature representations from dif-
ferent frames obtained by a pre-trained convolutional neu-
ral network (CNN) are simply inputs to the DCF learning
stage with a moving average. Therefore, the model capac-
ity against appearance variation can only be guaranteed
within a limited �2-norm ball around the training tem-
plates, impeding the generalization of the learned filters,
as illustrated in Fig. 1. Motivated by this observation, we
argue the necessity of constructing the appearance from
independent points to spatio-temporal affine subspace.
The relationships among multiple historical frames can
be jointly considered in the affine subspace, effectively ex-
tending the model capacity. In our design, during the on-
line tracking process, all the previous frames are collected
to construct the affine subspace, consisting of an origin
and a linear subspace. To mitigate the increased calcula-
tion complexity in obtaining the linear subspace when a
large number of frames are involved, we employ the in-
cremental learning technique to update the origin and the
linear subspace online, resulting in efficient affine subspace
learning and updating.

In addition to constructing the affine subspace to reflect
the spatio-temporal appearance, we also propose to en-
dow the DCF model with parsimony and consistency con-
straints. In principle, with the development of robust vi-
sual features, e.g., the Haar descriptor, histogram of ori-
ented gradient (HOG), and convolutional blocks of deep
architectures (AlexNet, VGGNet, ResNet) [22–24], the
volume of the feature representations has witnessed a con-
tinuous swell. Accordingly, these high dimensional fea-
ture maps provide improved discriminative information
to achieve better tracking performance in distinguishing
the target from its corresponding surroundings. However,
there exists inevitable redundancy and noise in these fea-
ture maps. Therefore, to highlight the relevance between
deep feature representations and the discriminative learn-
ing task, we propose to regularize the learned filters to be
sparse. In addition, temporal smoothness is also empha-
sized in the DCF learning objective to achieve consistency
in filter training, improving the stability of the tracking
model.

To combine the DCF learning paradigm in the con-
structed affine subspace, we use the origin and the basis of
the subspace to train one main filter and multiple auxiliary
filters. In principle, the filter learning process correspond-
ing to the origin is similar to that in the standard DCF
paradigm, where a moving average template is employed to
train the classifier in the current frame. The novelty of our
affine subspace DCF (ASDCF) learning approach empha-
sizes the design of learning auxiliary filters correspond-
ing to the basis of the subspace. Specifically, after obtain-
ing the basis of the current K dimensional subspace, we
propose to train K separate auxiliary filters correspond-
ing to the K basis representation. To this end, each auxil-
iary filter is associated with specific appearance variation,
improving the capacity of the proposed learning model.
The proposed ASDCF injects the spatio-temporal infor-
mation represented by the deep features to the online up-
dated affine subspace, unifying the spatial visual features
and the changing temporal variations, with improved dis-
crimination and interpretability compared with the stan-
dard DCF framework.

The Simaese-based trackers have recently achieved re-
markable performance by learning to map the target tem-
plate and instance into an appearance variation that has
preserved feature space through an end-to-end network.
However, the Siamese-based trackers conduct tracking by
relying on a fixed template, and the appearance capacity
is not modeled, resulting in performance that is especially
dependent on the invariance of extracted features. In con-
trast, the constructed affine space of this work enhances
the ability to model target appearance, increasing the toler-
ance of the learned model to spatio-temporal appearance
variation of an object. Therefore, by combining the pro-
posed affine space construction and updating with DCF
learning, more accurate and stable target tracking results
can be realized.

The main contributions of the proposed ASDCF track-
ing approach include the following:

1) A new affine subspace construction technique in
online visual tracking to unify the spatial and temporal
discriminative information, with an efficient incremen-
tal learning method to update the affine subspace during
tracking.

2) An effective DCF learning objective imposing sparsity
and temporal smoothness regularization for the filters.

3) A comprehensive evaluation of ASDCF on several
well-known public available benchmarking datasets, in-
cluding OTB2013 [2], OTB2015 [3], UAV123 [4], and
VOT2018 [6]. The results support the advantage of the
proposed ASDCF, with superior tracking performance
compared with the state-of-the-art trackers.

The rest of this paper is organized as follows. In Sect. 2,
we briefly review relevant tracking approaches for con-
structing spatio-temporal appearance models, especially
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the development of the DCF framework. The proposed
affine subspace construction is presented in Sect. 3. The
details of the proposed ASDCF method are introduced in
Sect. 4, accompanied by an efficient optimization scheme.
The implementation details and experimental results are
reported in Sect. 5, with ablation studies and comparative
analysis. Conclusions are presented in Sect. 6.

2 Related work
Existing visual object tracking approaches include gen-
erative learning and discriminative learning, e.g., image
matching [25], statistical theory [26], particle filtering
framework [27], subspace learning methodology [28], dis-
criminative correlation filters [1], and deep neural net-
works [29]. In this section, we focus on introducing the
development of the above-mentioned tracking approaches
that are pertinent to our ASDCF. Continuously improved
tracking performance has been evidenced by recent track-
ing benchmarking datasets and competitions such as VOT
[6]. Readers are recommended to refer to recent surveys
[3, 30–32] for detailed and comprehensive reviews of the
visual tracking approaches.

2.1 Generative learning framework
Generative learning frameworks aim at learning the in-
trinsic target state distribution to represent the target ap-
pearance, based on which similarity metric or reconstruc-
tion error can be employed to calculate the final probabil-
ities for the candidates in the next frame. Typical gener-
ative learning models in the early visual tracking research
stage include optical flow [25] and mean-shift [33]. The ba-
sic assumptions behind these two methodologies are con-
sistent brightness and limited appearance variations. Al-
though these two methods provide complete mathemat-
ical derivations to model the visual tracking task, their
rigid constraints cannot satisfy the real-world scenarios,
resulting in poor tracking performance when processing
challenging videos. To enhance the tracking robustness,
the particle filtering system is applied to visual tracking
[27, 34] to estimate the posterior distribution of the tar-
get via Bayes’s theorem and sampling techniques. Specifi-
cally, the conditional distribution is approximated via the
similarity between the current samples and the model dis-
tribution, providing nonlinear inference for the tracking
scope. It should be noted that improved performance can
be achieved with the increasing number of involved par-
ticles while sacrificing the model efficiency. Due to the
convenience that the particle filtering system is an ex-
ternal predicting framework, it has been widely studied
and extended to fuse with other generative methods, e.g.,
sparse subspace representations and low-rank represen-
tations [35–37]. In principle, the subspace-based tracking
paradigm has received wide attention since the proposal of

the incremental subspace learning scheme [28], which as-
sumes that the target can be linearly represented by its cor-
responding eigenvectors. Sparse trackers assume the tar-
get to be sparsely represented by an over-complete dictio-
nary. Accordingly, the representation coefficients and re-
construction errors are used to gauge the quality of candi-
dates. Furthermore, low-rank constraints have been pro-
posed to increase the relevance of particles by suppressing
spurious information [37].

The advantage of generative learning framework focuses
on its exploration of enlarging the tracking model capac-
ity via carefully designed appearance representation and
inference systems. However, generative tracking methods
suffer from the limitation of neglecting the background ap-
pearance, resulting in less discriminative performance.

2.2 Discriminative learning framework
In addition to generative learning methods, various clas-
sification methods, such as support vector machine [26],
multiple instance boosting [38], and linear regression [10]
have been employed in constructing learning models in a
discriminative manner, exploring the discriminative infor-
mation between the target region and its surroundings.
Discriminative learning approaches construct a tracking
task as a classification or regression problem, aiming at
directly inferring the output of a sampling candidate by
estimating the conditional distribution of labels for the
given inputs. Therefore, the optimal sampling candidate
with the maximal response is selected as the final track-
ing result. However, a common limitation of the above dis-
criminative trackers is that the initialization of the learning
model is performed in the initial frame with insufficient
appearance information, without guaranteed tracking ro-
bustness for the following frames. More recently, Siamese
networks [29, 39–41] have been successfully applied in
visual tracking. Taking the advantage of large annotated
tracking datasets, deep architectures and powerful graph-
ical processing units, Siamese networks achieve efficient
visual tracking by performing efficient template matching
in the learned feature embedding space.

Compared with basic generative learning approaches,
discriminative methods developed a comparatively more
robust modeling paradigm that extracts and analyzes ap-
pearance from both foreground and background, achiev-
ing better tracking performance.

2.3 Discriminative correlation filter
DCF belongs to the discriminative learning paradigm, and
we provide detailed instructions of its development in this
subsection as it is the baseline of our proposed ASDCF.
The seminal work of the DCF framework is minimum out-
put sum of squared error (MOSSE) [42], which formu-
lates the tracking task as discriminative filter learning [43]
rather than template matching [44], achieving improved
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tracking efficiency. Based on this modeling technique, the
concept of circulant matrix [9] is introduced to DCF by
CSK [10] with an enlarged search window, enabling the
generation of more negative training samples in the dis-
criminative filter learning stage. To further explore the po-
tential of the DCF framework, spatial-temporal context
information [45] and kernel modeling technique [1] are
leveraged to improve the learning formulation by involving
local appearance and nonlinear metrics, respectively. In
recent years, the DCF paradigm has further been extended
by exploiting scale detection [46, 47], structural patch anal-
ysis [48, 49], multi-clue fusion [14, 50, 51], sparse repre-
sentation [36, 52, 53], support vector machine [54, 55],
enhanced sampling mechanisms [56, 57] and end-to-end
deep neural networks [29, 40, 58].

Despite the outstanding performance of the DCF frame-
work in visual object tracking, it is still a very challenging
task to achieve high-performance tracking for a spatio-
temporal changing arbitrary object, especially in uncon-
strained scenarios. The main obstacles include spatial
bounding effect and temporal inconsistency. To alleviate
the boundary effect problem caused by the circulant struc-
ture, SRDCF [15] proposes introducing spatial regulariza-
tion in the DCF formulation, which allocates more filter
energy for the central region and less energy for the sur-
roundings using a pre-defined spatial smooth weighting
function. A similar technique has been pursued by prun-
ing the training samples or learned filters with pre-defined
binary mask [16, 59–62]. To achieve adaptive spatial reg-
ularization, LADCF [63] embeds dynamic spatial feature
selection in the filter learning stage, activating the sup-
portive spatial regions not only from the foreground but
also from the background. Similarly, A3DCF [64] proposes
an adaptive attribute-aware mechanism to learn channel-
wise masks to enhance discriminative elements of fea-
ture maps while suppressing irrelevant features. ADTrack
[65] adopts image pre-treatment to achieve mask gener-
ation for discriminative filter learning. The above spatial
regularization approaches decrease the ambiguity ema-
nating from the background and enable a relatively en-
larged search window for DCF tracking. However, these
approaches only consider information redundancy and
unbalance along the spatial dimension. On the other hand,
to mitigate temporal filter inconsistency, historical appear-
ance information is rearranged in SRDCFdecon [18] and
C-COT [13], with enhanced robustness and temporal sta-
bility, by gathering multiple previous frames in the filter
learning stage. In addition, to alleviate the computational
burden caused by involving a large number of histori-
cal samples, ECO [20] decreases the inherent computa-
tional complexity by clustering historical frames in a gen-
erative sample space and employing projection matrix to
reduce the channel numbers for the feature representa-
tions.

To advance the DCF modeling space, we introduce the
affine subspace to enlarge the representative power for the
potential appearance variations from a geometric view-
point. Therefore, performing discriminative modeling in
the affine subspace can unify the spatial and temporal dis-
criminative information, enhancing the DCF capacity for
challenging video sequences.

3 Affine subspace generation
To accommodate appearance variations for spatio-
temporal changing objects, we propose to employ affine
subspace to represent both static and dynamic informa-
tion. An affine subspace can be formulated as:

A =
{

x ∈R
D : x = μ + Uz

}
, (1)

where μ ∈ R
D denotes the origin of the affine subspace,

and U (U = [u1, u2 . . .]) represents the corresponding basis
of the subspace, as depicted in Fig. 1. Based on the formula-
tion in Eq. (1), we can gather the historical appearance with
an updated affine subspace, realizing extended representa-
tion capacity compared with a single template. Specifically,
the origin μ reflects the weighted average static appear-
ance from all the previous frames, while the basis U con-
structs the detailed variations during the tracking process.
Here, the basis is obtained by calculating the dominant K
eigenvectors of the subspace based on singular value de-
composition (SVD).

It should be noted that the affine subspace has to be up-
dated once a new frame is available, resulting in an in-
creasing burden for the SVD calculation. Therefore, the
computational burden would explode if hundreds of high-
dimensional representations were involved in the affine
subspace construction. To mitigate this issue, we propose
to introduce an incremental learning technique to achieve
efficient updates for the origin μ and the basis U. Given a
data matrix A = [x1, x2, . . . , xn] ∈ R

D×n, where each column
xi denotes the appearance gathered from the ith frame.

Update the origin: Suppose we have already obtained the
mean vector of A as μA. When the appearance represen-
tations from new m frames are available, denoted as B =
[xn+1, xn+2, . . . , xn+m] ∈ R

D×m, the aim is to incrementally
calculate the mean vector of the new data matrix [A B].
Denoting the mean vector of B as μB, the updated origin
for the affine subspace expanded by [A B] can be calculated
as:

μ =
n

m + n
μA +

m
m + n

μB. (2)

Update the basis: Suppose we have already obtained the
SVD of A as A = U�V�. When the appearance represen-
tations from the new m frames are available, denoted as
B = [xn+1, xn+2, . . . , xn+m] ∈ R

D×m, the aim is to incremen-
tally calculate the SVD results of the new data matrix [A B]
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Figure 1 Illustration of the proposed appearance learning space that is supported by affine subspace. left: The appearance of a single template
point is used to train the filter in each frame node. right: The appearance generated by the affine subspace is used to train one main filter (from
origin μ) and K auxiliary filters (from basis u1,u2, . . . ,uK ) to provide improved generalization (K = 3)

as [A B] = U′�′V ′�. Denoting the component of B that is
orthogonal to U as B̃, such that the SVD of [A B] can be
partitioned as follows:

[
A B

]
=

[
U B̃

]
R

[
V� 0
0 I

]
, (3)

where R =
[

� U�B
0 B̃�B

]
. To balance the tracking efficiency and

effectiveness, we retain the first K eigenvectors in U. Con-
sidering the size of the new frames, m, the SVD of R can
be calculated in constant time regardless of the number of
frames in A, R = Ũ�̃Ṽ

�. Therefore, Eq. (3) can be formu-
lated as:

[
A B

]
=

[
U B̃

]
Ũ�̃Ṽ

�
[

V� 0
0 I

]
. (4)

Based on Eq. (4), the final eigenvectors U′ can be ob-
tained as U′ = [U B̃]Ũ. The corresponding eigenvalues �′ =
�̃. After obtaining U′, we retain the first K eigenvectors in
U′ to represent the basis of the updated affine subspace.

4 Approach
4.1 Basic discriminative correlation filter
Given the location and scale of a target at frame t, visual
object tracking aims at predicting the location of the tar-
get in the next frame. In the learning stage, we aim to train
a discriminative filter that obtains high-value responses
around the target center and low-value responses for the
background. DCF is formulated to learn a filter that distin-
guishes the target from the near background. In general, a
padded search window centered around the target location
from frame t is extracted with corresponding feature rep-
resentation x = [x1, x2, . . . , xn]� ∈R

D. The circulant matrix

can be generated as [9]:

X =

⎡

⎢⎢⎢⎢⎢
⎣

x1 x2 x3 . . . xD
xD x1 x2 . . . xD–1

xD–1 xD x1 . . . xD–2
...

. . .
...

x2 x3 x4 . . . x1

⎤

⎥⎥⎥⎥⎥
⎦

, (5)

where each row in X can be considered an augmented sam-
ple, and therefore the DCF formulation employs X as the
training data matrix [10]. Given labeled training sample
pairs {X, y}, the learning stage of DCF is formulated as a
ridge regression problem:

w = arg min
w

‖Xw – y‖2 + λ‖w‖2

= arg min
w

‖x ∗ w – y‖2 + λ‖w‖2,
(6)

where λ is the balancing parameter for the regulariza-
tion term, and ∗ denotes the cross correlation operator.
According to the time-frequency convolution theorem, a
closed-form solution in the frequency domain can be ob-
tained as:

ŵ =
x̂ � ŷ∗

x̂ � x̂∗ + λ1
, (7)

where � denotes the element-wise multiplication, 1 is an
all-ones vector sharing the same size with x̂, ·̂ denotes dis-
crete fourier transform (DFT) representation and ·∗ repre-
sents the complex conjugate.

4.2 Sparse discriminative correlation filter
Though promising tracking results have been achieved by
the basic DCF formulations, the impact of the redundancy



Xu et al. Visual Intelligence             (2023) 1:4 Page 6 of 13

and noise in the high dimensional feature representations
is not well addressed, especially in the feature maps ex-
tracted from deep CNN architectures, e.g., AlexNet, VG-
GNet, and ResNet. To this end, with the aim of highlighting
the relevance between deep feature representations and
the discriminative learning task, we propose to regular-
ize the learned filters to be sparse. In addition, tempo-
ral smoothness is also emphasized in the proposed DCF
learning objective to achieve consistency in filter training,
improving the stability of the tracking model. In principle,
the filter learning objective is formulated as follows:

w = arg min
w

‖x ∗ w – y‖2 + λ1‖w‖1

+ λ2‖w – wt–1‖2,
(8)

where ‖ · ‖1 denotes the �1-norm, λ1 and λ2 are the corre-
sponding balancing parameters for the sparse regulariza-
tion and temporal smoothness terms, respectively. Based
on the formulation in Eq. (8), the model parsimony can
be achieved for high-dimensional feature representations
with temporally enforced stability.

4.3 Affine subspace discriminative correlation filters
In the implementation, multi-channel feature maps from
CNN are used to enhance the representation power, and
we transform the objective in Eq. (8) from the single-
channel to multi-channel formulation as follows:

w = arg min
w

∥∥∥∥∥

C∑

c=1

xc ∗ wc – y

∥∥∥∥∥

2

+ λ1

C∑

c=1

∥∥wc∥∥
1

+ λ2

C∑

c=1

∥∥wc – wc
t–1

∥∥2.

(9)

In general, the origin contains the global static appear-
ance of the target, while each eigenvector in the basis fo-
cuses on specific variation during the past tracking frames.
To perform DCF learning in the affine subspace, we pro-
pose to learn the discriminative filters for the origin and
the basis separately. Specifically, in frame t, the current
affine subspace At can be represented by the origin μ

and the K eigenvectors in U, {u1, u2, . . . , uK }. We con-
sider the K + 1 vectors, {μt , u1, u2, . . . , uK }, as our train-
ing data to train one main filter wμ and K auxiliary fil-
ters {wu1, wu2, . . . , wuK} based on Eq. (9). As presented in
Sect. 3, the proposed affine space can represent both static
and dynamic information of the target and is updated by
incremental learning. In this way, the spatio-temporal in-
formation of target appearance variations in tracking can
be well modeled. Through further sparse DCF learning
framework, this enhanced representation of target appear-
ance served for tracking model learning which leads to bet-
ter tracking performance, especially in challenging situa-
tions.

4.4 Optimization
According to the convexity of the proposed formulation
in Eq. (9), we employ the augmented Lagrange method to
optimize the problem. Here, we introduce a slack variable
w′ = w for the estimate. The Lagrange function can be ex-
pressed as follows:

L =

∥∥∥∥∥

C∑

c=1

xc ∗ wc – y

∥∥∥∥∥

2

+ λ1

C∑

c=1

∥∥w′c∥∥
1

+ λ2

C∑

c=1

∥∥wc – wc
t–1

∥∥2

+
ν

2

C∑

c=1

∥∥∥∥wc – w′c +
γ c

ν

∥∥∥∥

2

,

(10)

where γ is the Lagrange multiplier with the same size as x,
and ν is the corresponding penalty parameter for the slack
variable w′. We exploit the alternating direction method
of multipliers [66] approach to iteratively optimize the fol-
lowing sub-problems:

⎧
⎪⎨

⎪⎩

w = arg minw L(w, w′,γ ,ν),
w′ = arg minw′ L(w, w′,γ ,ν),
γ = arg minγ L(w, w′,γ ,ν).

(11)

4.4.1 Optimizing w
To optimize w, we exploit the circulant structure [1] and
Parseval’s theorem to transfer the sub-problems from the
original spatial domain to the frequency domain:

min

∥∥∥∥∥

C∑

c=1

x̂c � ŵc – ŷ

∥∥∥∥∥

2

+ λ2

C∑

c=1

∥∥ŵc – ŵk
t–1

∥∥2

+
ν

2

C∑

c=1

∥∥∥∥ŵc – ŵ′c +
γ̂

c

ν

∥∥∥∥

2

.

(12)

A closed-form solution for the above sub-problem can
be obtained as [67]:

ŵi =
(

I –
x̂ix̂

�
i

λ2 + ν/2 + x̂�
i x̂i

)
g, (13)

where g = (x̂iŷi + νŵ′
i – νγ̂ i + λ2ŵt–1 i)/(λ2 + ν), the vec-

tors ŵi (ŵi = [ŵ1
i , ŵ2

i , . . . , ŵC
i ] ∈ C

C), x̂i, and ŵt–1 i denote
the i-th units of ŵ, x̂ and ˆwt–1, respectively, across all C
channels, and i ∈ {1, 2, . . . , D}.
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Figure 2 Overview of the proposed ASDCF. Affine subspace generation and online updating are introduced in Sect. 3. Details of the affine sparse
DCF formulation and optimization are presented in Sect. 4.3 and Sect. 4.4. We discuss the online tracking stage of our ASDCF in Sect. 4.5 (K = 3 in the
illustration)

4.4.2 Optimizing w′

To optimize w′, we need to minimize the following sub-
problem:

minλ1

C∑

c=1

∥∥w′c∥∥
1 +

ν

2

C∑

c=1

∥∥∥∥wc – w′c +
γ c

ν

∥∥∥∥

2

. (14)

The soft-threshold shrinkage operator is used here to
form a closed-form solution for each element w′c

i in the
vector w′ separately:

w′c
i = sign(p) max

(
0, |p| –

λ1

ν

)
, (15)

where p = wc
i + γ c

i
ν

, with wc
i and γ c

i being the values corre-
sponding to the elements at the i-th spatial unit and c-th
channel in w and γ , respectively.

4.4.3 Optimizing multiplier γ and penalty ν

The multiplier γ and the penalty ν are updated at the end
of each iteration as:

{
γ = γ + ν(w – w′),
ν = min(ρν,νmax),

(16)

where ρ is the parameter that controls the strictness of the
penalty and νmax is the corresponding upper threshold.

4.5 ASDCF algorithm
We summarize our ASDCF in detail in two stages, i.e,
tracking and learning.

4.5.1 Tracking stage
As shown in Fig. 2, given a new image in frame t and
the predicted target state of frame t – 1 (target center
pt–1, the target width, wt–1, and height ht–1), we extract a
search window {I} centered around pt–1. The search win-
dow patch is of n′ × n′ pixels. We re-size the patch to the
n × n basic search window size. n′ is determined by the
target size wt–1 × ht–1 and the padding parameter, � as:
n′ = (1 + �)

√
wt–1 × ht–1. Then we extract multi-channel

features of the search window as x ∈ R
D×C . Given the fil-

ter model obtained from the previous frame, one main fil-
ter wμ and K auxiliary filters {wu1, wu2, . . . , wuK}, the re-
sponse map y can efficiently be calculated in the frequency
domain as:

ŷ =
C∑

c=1

x̂c � ŵc
μ + λ3

K∑

k=1

C∑

c=1

(
x̂c – μ̂

c) � ŵc
uk , (17)

where λ3 is a balancing parameter. The new position cor-
responds to the maximal value in the response maps y.

4.5.2 Learning stage
To balance the accuracy and efficiency, our tracker per-
forms filter training every 5 frames. In the filter learn-
ing stage, we first extract the 5 feature representations,



Xu et al. Visual Intelligence             (2023) 1:4 Page 8 of 13

{xt–4, xt–3, . . . , xt} of the target appearance from frame
t – 4 to frame t based on the tracking results. Then the
affine subspace A is updated according to Sect. 3. Af-
ter obtaining A, the main filter wμ and K auxiliary fil-
ters {wu1, wu2, . . . , wuK} are trained according to Eq. (10)-
Eq. (16).

5 Evaluation
5.1 Implementation
To evaluate the performance of the proposed ASDCF, we
implement the tracking algorithm in the MATLAB plat-
form on an Intel i7 2.20 GHz CPU with an Nvidia GTX
1050Ti GPU. The detailed settings for the parameters used
in Sect. 4.5 are as follows. The number of auxiliary fil-
ters K = 3, corresponding to the number of eigenvectors
we use to represent the subspace. We set the basic win-
dow size n × n = 240 × 240 pixels, the padding parame-
ter � = 4. We equip the proposed ASDCF with both hand-
crafted and deep CNN features. The hand-crafted set in-
cludes HOG and color names (CN) features, with 4 pixel
cell size, λ1 = 10–5, λ2 = 30, and λ3 = 0.3. Specifically, the
HOG (31 channels) and CN (10 channels) features are con-
catenated along the channel dimension to obtain the final
hand-crafted feature representation x ∈ R

3600×41. We use
ResNet-50 (the output of layer 3) to extract deep feature
representations using the MatConvNet toolbox1 [68]. The
regularization parameters λ1 = 10–6, λ2 = 5, and λ3 = 0.2.
The dimensionality of the ResNet-50 feature representa-
tion is x ∈R

225×1024.

5.2 Evaluation metrics
We perform an experimental evaluation on 4 challenging
benchmarks: OTB2013 [2], OTB2015 [3], UAV123 [4], and
VOT2018 [6]. For OTB2013, OTB2015, and UAV123, we
employ precision plots and success plots to measure the
tracking performance [2]. The precision plot indicates the
proportion of frames with the distance between the track-
ing results and the ground truth less than a certain number
of pixels. The distance precision (DP) is defined by the cor-
responding value when the precision threshold is 20 pixels.
Center location error (CLE) measures the mean distance
between the centers of the tracking results and the ground
truth values. The success plot describes the percentage of
successful frames with a threshold ranging from 0 to 1. The
target in a frame is considered successfully tracked if the
overlap of the two bounding boxes exceeds a given thresh-
old. The overlap precision (OP) is defined by the corre-
sponding value when the overlap threshold is 0.5. The area
under the curve (AUC) of the success plot quantifies the re-
sult in terms of overlap evaluation. For VOT2018, we use
the expected average overlap (EAO), accuracy and robust-
ness metrics for performance evaluation [69].

1http://www.vlfeat.org/matconvnet/

We compare our method against recent state-of-the-art
tracking approaches, including A3DCF [64], KYS [70], AS-
RCF [71], VITAL [72], STRCF [19], ECO [20], C-COT [13],
MCPF [56], MetaTracker [73], CREST [74], BACF [59],
CACF [57], ACFN [75], CSRDCF [16], Staple [14], SiamFC
[76], CFNet [40], SRDCF [15], DSST [47] and KCF [1]. For
VOT2018, we compare our ASDCF with the top trackers
in VOT2018, i.e., ECO, CFCF [77], UPDT [78], SiamRPN
[58], LADCF [63], ULAST [79] and FCOS_MAML [80].

5.3 Ablation studies
The proposed ASDCF aims at improving discrimination
by explicitly modeling the spatio-temporal appearance in
an online updated affine subspace. In addition, spatial
sparsity and temporal smoothness are also fused in the
DCF formulation, decreasing the redundancy and noise
from the high dimensional feature representations. There-
fore, the ablation studies are conducted to verify the ef-
fectiveness of performing DCF learning in the affine sub-
space.

The corresponding results are reported in Table 1. Ac-
cording to Table 1, introducing the affine subspace (K > 0)
in the DCF framework improves the tracking performance
compared with single template learning (K = 0). The per-
formance witnesses a continuous improvement when in-
creasing the number of auxiliary filters until K = 3. Then,
slight performance degradation can be observed at K = 4
and K = 5. The above results indicate that the model ca-
pacity in the affine subspace can be enhanced before sat-
uration, reflecting the effectiveness of the model in terms
of the appearance variation in the affine subspace. In ad-
dition, the best performance is achieved with 3 auxiliary
filters in the tracking system, with the improvement from
90.8% to 92.7% in terms of DP, and from 67.3% to 69.7%
in terms of AUC. Ablation studies demonstrate the mer-
its of performing DCF in the updated affine subspace, as
well as the necessity of considering appearance variation
with explicit modeling techniques during the online track-
ing system.

5.4 Comparison with state-of-the-art methods
5.4.1 Quantitative performance
First, we report the precision plots and success plots on
OTB2013 and OTB2015 in Fig. 3, with the numerical DP

Table 1 Ablation performance on OTB2015 with/without affine
subspace and the impact of using different numbers of auxiliary
filters

Affine Subspace Auxiliary Filters DP AUC

× K = 0 90.8% 67.3%√
K = 1 91.6% 68.0%√
K = 2 92.2% 69.3%√
K = 3 92.7% 69.7%√
K = 4 91.9% 68.7%√
K = 5 91.3% 68.1%

http://www.vlfeat.org/matconvnet/
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Figure 3 The experimental performance on OTB2013 and OTB2015. Precision plots (with the DP score reported in the figure legend) and the
success plots (with the AUC score reported in the figure legend) are presented. Only the top ten trackers are presented for each metric

and AUC scores reported in the corresponding legends,
respectively. Based on the result curves, ASDCF exhibits
superior performance against the state-of-the-art track-
ers in both cases. On OTB2013, ASDCF achieves promis-
ing tracking results with 95.6% in DP. Compared to ECO
and LADCF, which can be considered the best of a class
of DCF-based trackers, our performance is better. On
OTB2015, a consistent advantage of our ASDCF among
the state-of-the-art methods is obtained, achieving 92.7%
in terms of DP and 69.7% in terms of AUC. In addition, OP,
CLE and AUC metrics on these two datasets are also re-
ported in Table 2. Our ASDCF achieves the best OP score
and AUC on both OTB2013 and OTB2015. On OTB2015,
ASDCF obtains accurate and robust tracking results, with
the best OP/CLE, 87.9%/9.5 pixels. We credit the perfor-
mance improvement to the effective affine subspace con-
struction, with more discriminative information retained
in the filter learning stage.

We also report the precision plots and success plots on
UAV123 in Fig. 4. As shown in the figure, the proposed
ASDCF produces the best results in terms of both DP
and AUC. ASDCF outperforms the advanced DCF track-
ers, i.e., ECO (by 2.0% and 0.6%), C-COT (by 5.0% and
3.1%), and LADCF (by 5.1% and 1.6%), respectively, in
terms of DP and AUC. Therefore, by explicitly modeling
the appearance variation during spatio-temporal changes,
ASDCF exhibits adaptive context awareness with an out-
standing generalization.

In addition, in Table 3, we report the tracking perfor-
mance obtained on VOT2018. VOT sequences consist of
diverse challenging factors, with more severe appearance
variations. Our ASDCF approach performs best in the
EAO metric, achieving a relative gain of 1.2% compared to
the DCF approach LADCF. Compared to the deep learning
based method FCOS_MAML trained offline with large-
scale data, the proposed ASDCF reports a gain of 0.9% in
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Table 2 Performance comparison of our ASDCF method with the state-of-the-art trackers, evaluated on OTB2013 and OTB2015 in
terms of OP and CLE. The best three results are highlighted in red, blue and brown

Figure 4 The experimental performance on UAV123. Precision plots (with the DP score reported in the figure legend) and the success plots (with
the AUC score reported in the figure legend) are presented

Table 3 The tracking results on VOT2018. The best three results are highlighted by red, blue and brown

terms of EAO. For robustness, ASDCF also produces com-
parable results within the top 3 trackers. In principle, the
proposed ASDCF realizes favorable tracking performance
compared with other DCF approaches, i.e., ECO, CFWCR,
UPDT, and LADCF, demonstrating the advantage of per-
forming filter learning based on the appearance represen-
tation provided by the affine subspace.

Compared to these state-of-the-art DCF-based track-
ers that extract representations from independent tem-
plates, the proposed affine subspace strengthens the rep-
resentation capacity for latent appearance variations. With
more powerful representation, undoubtedly, the ASDCF
can learn more discriminative and robust filters, leading
to precise and stable tracking, even in the presence of
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Figure 5 A qualitative comparison of our ASDCF method with the
state-of-the-art trackers, including BACF [59], CACF [57], C-COT [13],
ECO [20] and VITAL [72], on some challenging video sequences of the
OTB2015 [3] (Left column top to bottom: Biker,MotorRolling, and
Soccer. Right column top to bottom: Bird1,Matrix, and Shaking)

severe appearance variations caused by various factors.
Therefore, on these challenging benchmark datasets, the
proposed ASDCF outperforms the state-of-the-art DCF-
based methods and some deep learning-based trackers.

5.4.2 Qualitative performance
Qualitative comparisons with tracking challenges are pre-
sented in Fig. 5, which shows the intuitive tracking results
of the state-of-the-art approaches, i.e., BACF, C-COT,
CACF, ECO, VITAL and the proposed ASDCF, on some
challenging video sequences. The difficulties are generated
by rapid changes in the appearance of both targets and the
corresponding surroundings. Our ASDCF exhibits com-
petitive performance on these challenges as it successfully
identifies the pertinent spatio-temporal target patterns.
Sequences with deformations (MotorRolling, Matrix) and
out-of-view (Biker, Bird1) can be successfully tracked by
our method without any failures. Videos with rapid mo-
tions (Biker, Matrix) also benefit from our strategy of ex-
ploring relevant deep channels to enhance discrimination.
Specifically, ASDCF is an expert in solving in-plane and
out-of-plane rotations (Biker, MotorRolling), because the
proposed affine subspace enables adaptive appearance up-
dating with improved model capacity compared with other
DCF approaches.

6 Conclusion
In this paper, we proposed an effective appearance model
with an outstanding performance by learning discrimi-
native correlation filters in the adaptively updated affine
subspace. The affine subspace enables effective spatio-
temporal appearance representation, providing more dis-
criminative clues than single template learning. A spatio-
temporal regularized DCF formulation accompanied by
efficient optimization also contributes to achieving accu-
rate and robust performance in the affine subspace. The

quantitative and qualitative experimental results on track-
ing benchmarking datasets demonstrate the consistent ef-
fectiveness of our method, compared with state-of-the-
art trackers. The merits of introducing affine subspace to
the DCF learning framework support the potential of ex-
ploring more effective representation spaces with spatio-
temporal capacity in online visual object tracking.
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