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Abstract
The global prevalence of diabetes is steadily increasing, with a high percentage of patients unaware of their disease status. 
Screening for diabetes is of great significance in preventive medicine and may benefit from deep learning technology. In 
traditional Chinese medicine, specific features on the ocular surface have been explored as diagnostic indicators for systemic 
diseases. Here we explore the feasibility of using features from the entire ocular surface to construct deep learning models 
for risk assessment and detection of type 2 diabetes (T2DM). We performed an observational, multicenter study using oph-
thalmic images of the ocular surface to develop a deep convolutional network, OcularSurfaceNet. The deep learning system 
was trained and validated with a multicenter dataset of 416580 images from 67151 participants and tested independently 
using an additional 91422 images from 12544 participants, and can be used to identify individuals at high risk of T2DM 
with areas under the receiver operating characteristic curve (AUROC) of 0.89–0.92 and T2DM with AUROC of 0.70–0.82. 
Our study demonstrated a qualitative relationship between ocular surface images and T2DM risk level, which provided new 
insights for the potential utility of ocular surface images in T2DM screening. Overall, our findings suggest that the deep 
learning framework using ocular surface images can serve as an opportunistic screening toolkit for noninvasive and low-cost 
large-scale screening of the general population in risk assessment and early identification of T2DM patients.

Highlights

• Phenotypes of ocular surface can be used for accurate, non-invasive, affordable T2DM risk assessment.
• Ocular surface phenotypes associated with T2DM risk preliminarily elucidated by the neural network OcularSurfaceNet.
• It has potential for generalized high-impact application in T2DM screening for large-scale population.
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Introduction

Diabetes mellitus is recognized as a leading cause of prema-
ture death and disability worldwide, with the global preva-
lence estimated to increase from 9.3% in 2019 to 10.9% by 
2045, which imposes huge personal and societal health care 
burdens [1, 2]. Among the different types of diabetes, type 
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2 diabetes mellitus (T2DM) accounts for approximately 
90%–95% of all cases [3]. However, as T2DM develops 
over years, it may not be noticed until severe complica-
tions have already arisen and damage to the body has taken 
place. In 2021, almost one in two adults between the ages of 
20–79 years old with diabetes were unaware of their diabetes 
status (44.7%, 239.7 million globally) [4], calling for effec-
tive measures for large-scale screening to identify unknown 
T2DM patients. The current gold standard method for the 
diagnosis of diabetes by intravenous or fingerstick blood 
tests is invasive, nonuser-friendly, and costly [5]; unsuitable 
for screening of the general population. Other risk assess-
ment methods, such as polygenics [6–8] and serum metabo-
lomics profiles [9, 10], still require laboratory tests and are 
time-consuming and costly [11].

Human eyes may provide a noninvasive and easily acces-
sible observation window of systemic health. Specific fea-
tures of ophthalmic images, regarded as imaging biomark-
ers, have been explored as manifestations of eye diseases 
and systemic diseases, such as diabetic retinopathy [12, 13], 
cardiovascular diseases [14, 15], stroke [16–18], and other 
diseases [19, 20]. Slit-lamp images have also been utilized 
to facilitate early identification of hepatobiliary diseases 
[21]. Moreover, features on the ocular surface have also 
been explored as diagnostic indicators of systemic diseases 
in traditional Chinese medicine (TCM) [22]. In TCM theory, 
each region of the ocular surface corresponds to a different 
viscus in the body. By diagnosing the patterns of specific 
features of a particular region on the ocular surface, the cor-
responding diseased viscus and pathological changes can be 
differentiated.

In recent years, deep learning methods have gained 
popularity due to their capability of extracting predictive 
features from raw samples. In particular, convolutional neu-
ral networks (CNNs) have demonstrated great potential in 
image-based diagnosis, especially diabetes prediction using 
retinal fundus images [23]. However, prior studies on deep 
learning-based diagnosis using ophthalmic images usually 
rely on prelabeled images for feature learning, which are 
subject to the availability of high-quality clinical metadata.

In this work, we constructed a deep convolutional net-
work, OcularSurfaceNet, for risk assessment and detection 
of T2DM by analyzing ophthalmic images of the ocular sur-
face without prior labeling. A two-stage refinement strategy 
by transfer learning that employed both global and local fea-
tures of ocular surface images in model development was 
established. Furthermore, inclusion of unhealthy subjects 
who carried diseases other than T2DM in the control group 
during model training significantly improved the accuracy 
of our AI models. We further conducted multiple assays to 
elucidate T2DM-relevant regions and features of the ocular 
surface. As demonstrated using internal and external test 
datasets, our models showed superior performance and 

robustness in both risk assessment and detection of T2DM 
in community screening in 12 cities nationwide.

Methods

Study design and participants

In this observational, multicenter study, patient cohorts from 
multiple national and regional investigations (Supplemen-
tary Methods) were obtained and divided randomly into 
the development, validation, internal testing, and external 
testing datasets, respectively. The demographic distribu-
tion of the cohorts (Supplementary Table 1) varied largely 
and covered multiple regions of the whole nation, facilitat-
ing accurate and unbiased evaluation of the proposed AI 
models. These studies were approved by the institutional 
review boards and ethics committees of the corresponding 
institutes, and written informed consent was obtained from 
each participant.

In this study, T2DM and prediabetes were defined accord-
ing to the international guidelines by the World Health 
Organization (WHO) [3, 24]. High-risk cases of T2DM 
assessed by questionnaire scores were defined as HR-QS 
for short [25]. Both HR-QS and prediabetes were at high 
risk of T2DM and defined as HR. Datasets with T2DM and 
HR excluded were defined as non-HR.

Data collection and preprocessing

Eight ocular surface images were acquired using a benchtop 
eye examination instrument for each participant by looking 
at the top, bottom, left, and right directions with both eyes 
while keeping the sclera adequately exposed (Supplemen-
tary Methods) [26]. This portable instrument was approved 
as a second-class medical device of the People’s Repub-
lic of China in 2018 and has been widely deployed, cover-
ing over 200,000 people. Ophthalmic images of the ocular 
surface were checked automatically and manually, where 
unqualified images (blurred focus, lack of clarity, light leak-
age, occlusion, etc.) were excluded. As a result, 70% of the 
images were found to be qualified, and 90% of the samples 
were defined as qualified samples with more than four cor-
responding images being qualified.

We performed white balance on the qualified raw images 
and then segmented the ocular surface, iris, and sclera areas 
using U-Net (Supplementary Methods) [27]. We also per-
formed image augmentation to improve the performance of 
the AI models. Only the training samples were augmented 
to avoid data leakage. We preprocessed the ocular surface 
images and their horizontally flipped images randomly 
with three transformations: rotation (-15° ~ 15°), cropping 
(70% ~ 100%), and zooming (80% ~ 105%) (Fig. 1), where 
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the degree of transformation was randomly determined. As 
a result, the ocular surface images were tuned to 3,332,640 
in the training phase. All processes were implemented with 
PyTorch (version 1.4.0) and/or Python (version 3.7.7) soft-
ware [28].

Development of the T2DM risk assessment 
and detection models

With ResNet-18 [29] as the backbone (Supplementary 
Table 2), we first developed an image-level classification 
model to evaluate the probability of whether an image comes 
from a high-risk case of T2DM. Then, the final determina-
tion of a sample was performed by comparing the average 
probability and the threshold (which was tuned according 
to the Matthews correlation coefficient (MCC)) [30]. We 
developed image-level classification models using different 
regions of ophthalmic images to assess the contribution of 
different ocular surface regions in T2DM risk assessment 
and using groups of ophthalmic images with different angles 
to integrate local and global ophthalmic features. Models 
were trained and validated using the same data partition 
strategy (80% for training, 10% for tuning, and 10% for vali-
dation). In T2DM prediction, T2DM samples were regarded 
as ‘hits’, and others were included in the control set. In HR 

prediction, T2DM and HR samples were included in the ‘hit’ 
set, and non-HR samples were included in the control set.

In detail, the region-specific models IrisNet, ScleraNet, 
and OcularSurfaceNet were trained with the iris, sclera, 
and whole ocular surface regions of the ophthalmic images, 
respectively (Fig. 1). Images were grouped into 8 catego-
ries according to their angles. Considering the integration 
of local and global ophthalmic characteristics in T2DM 
risk assessment, we trained the models with ungrouped 
images (G) and refined with angle-specific images (G2L) 
and trained the models with angle-specific images (L) and 
further refined with ungrouped images (L2G).

Elucidation of T2DM risk assessment based 
on ophthalmic images

Grad-CAM maps and ΔMCC maps were constructed to 
understand T2DM-relevant regions on the ocular surface, 
and the distribution of significant features was tested to 
explore T2DM-relevant ocular features (Supplementary 
Methods) [31]. Based on regions in the ΔMCC map, we fur-
ther tested the distribution differences of 90 ocular features 
among all qualified 20,221 T2DM/high-risk samples and 
7224 T2DM low-risk samples. One hundred and eight ocular 
features included 6 coarse-grained morphological features 

Fig. 1  Overview of the study. Ophthalmic images of the ocular surface were acquired at eight different angles. After segmentation and augmen-
tation of the ophthalmic images, the AI model was developed and trained to recognize distinguished features in different regions of the ocular 
surface, followed by tuning the attention of the AI model using both merged and individual images at different angles (Basic unit). The average 
of image-level inference was used to predict participants’ status
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and 102 fine-grained morphological color features (Supple-
mentary Fig. 2). Specifically, we selected T2DM-relevant 
ocular features with a higher frequency of enrichment in 
T2DM/high-risk samples and then categorized them into 
different groups to explore their association with T2DM.

Evaluation of the T2DM risk assessment 
and detection models

We computed the accuracy (ACC), sensitivity (SEN), spec-
ificity (SPE), F1-measure (F1), MCC, Kappa score, and 
AUROC as evaluation metrics for the T2DM risk assess-
ment and detection models.

Statistical analysis

The 95% CIs of metrics were estimated with the nonpara-
metric bootstrap method (1000 random resamplings with 
replacement). A t test was used to evaluate the distribution 
of RGB color values, hue, saturation, and value channels. 
Chi-square tests were used to test the distribution of shape 
features such as dark punctate, patchy, and halo-shaped fea-
tures. All comparisons were two-sided and calculated using 
Python (version 3.7.7) and/or R (version 4.0.4) software.

Results

In the evaluation of the contribution of different ocular 
surface regions in T2DM risk assessment, we trained Iris-
Net, ScleraNet, and OcularSurfaceNet with iris, sclera, and 
whole ocular surface regions of the ungrouped images. 
IrisNet, ScleraNet, the ensemble of IrisNet and ScleraNet, 
and OcularSurfaceNet achieved AUROCs of 0.8587 (95% 

CI, 0.8452–0.8715), 0.8728 (95% CI, 0.8599–0.885), 
0.8823 (95% CI, 0.8697–0.8941), and 0.8869 (95% CI, 
0.8751–0.8988), respectively (Fig.  2a, Supplementary 
Table 3).

We also tested IrisNet, ScleraNet, the ensemble of Iris-
Net and ScleraNet, and OcularSurfaceNet on internal and 
external test sets (Fig. 2b-c, Supplementary Table 3). In 
T2DM risk assessment, they achieved AUROCs of 0.8627 
(95% CI, 0.8533–0.8717), 0.8766 (95% CI, 0.8682–0.8853), 
0.8824 (95% CI, 0.8744–0.8905), and 0.8874 (95% CI, 
0.8794–0.8951) on the internal test set and AUROCs 
of 0.9011 (95% CI, 0.8847–0.9196), 0.9104 (95% CI, 
0.8922–0.9269), 0.9131 (95% CI, 0.8968–0.9287), and 0.915 
(95% CI, 0.8986–0.9299) on external test set 1, respectively. 
OcularSurfaceNet has achieved higher MCC and AUROC 
(Supplementary Table 3) than other models on internal and 
external test sets. The results show that OcularSurfaceNet 
outperformed the other models, which suggests that T2DM-
relevant features may be region-specific and that distinct 
ocular characteristics may be present in different regions of 
the iris and sclera. Thus, we used ophthalmic images of the 
entire ocular surface to develop the following models.

When evaluated on the internal test set and exter-
nal test set 1, OcularSurfaceNet achieved a sensitivity of 
0.9512 (95% CI, 0.9369–0.9637) and 0.8316 (95% CI, 
0.7908–0.8673) on T2DM samples, sensitivity of 0.9211 
(95% CI, 0.8553–0.9737) and 0.7 (95% CI, 0.55–0.825) 
on prediabetes samples, sensitivity of 0.9338 (95% CI, 
0.9274–0.9401) and 0.756 (95% CI, 0.719–0.793) on HR-QS 
samples, and specificity of 0.5964 (95% CI, 0.575–0.6173) 
and 0.8847 (95% CI, 0.8553–0.914) on non-HR samples 
(Supplementary Table 4).

We constructed a two-stage refining strategy by trans-
fer learning that takes into consideration both local and 

Fig. 2  Performance of the AI system in the prediction of high-risk cases of T2DM based on ophthalmic images. ROC curves showing the per-
formance of T2DM risk assessment using AI models developed with ophthalmic images from different ocular surface regions. a-c, ROC curves 
of IrisNet (orange), ScleraNet (green), the ensemble of IrisNet and ScleraNet (Iris + Sclera.a, blue), and OcularSurfaceNet (Whole OS, red) on 
the validation set (a), internal test set (b), and external test set 1 (c)
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global characteristics of ophthalmic images for T2DM 
risk assessment (Supplementary Fig.  3). This strategy 
improved the model performance and robustness for T2DM 
risk assessment (Fig. 3, Supplementary Table 5). On the 
validation set, the G, L, G2L, and L2G models achieved 
AUROCs of 0.8869 (95% CI, 0.8751–0.8988), 0.886 (95% 
CI, 0.8741–0.8983), 0.9169 (95% CI, 0.9072–0.9266), and 
0.8867 (95% CI, 0.8749–0.8992), respectively. On the inter-
nal test set and external test set 1, G achieved AUROCs 
of 0.8874 (95% CI, 0.8794–0.8951) and 0.915 (95% CI, 
0.8986–0.9299), respectively, while L achieved AUROCs 
of 0.8894 (95% CI, 0.8812–0.8967) and 0.9182 (95% CI, 
0.9025–0.9334), respectively, and G2L achieved AUROCs 
of 0.8912 (95% CI, 0.8837–0.8991) and 0.9163 (95% CI, 
0.9002–0.9313), respectively. Moreover, L2G achieved 
AUROCs of 0.8893 (95% CI, 0.8818–0.8968) and 0.9167 
(95% CI, 0.9009–0.9325), respectively. G2L achieved sen-
sitivity of 0.935 (95% CI, 0.9207–0.9484), 0.9474 (95% 
CI, 0.8816–0.9868), and 0.9045 (95% CI, 0.8971–0.9123) 
on T2DM, prediabetes, and HR-QS samples, respectively, 
and specificity of 0.6806 (0.6597–0.6996) on non-HR sam-
ples of the internal test set, sensitivity of 0.7908 (95% CI, 
0.75–0.8291), 0.65 (95% CI, 0.5–0.775), and 0.6928 (95% 
CI, 0.6536–0.7386) on T2DM, prediabetes, and HR-QS sam-
ples, respectively, and specificity of 0.9182 (0.8931–0.9413) 
on non-HR samples of external test set 1 (Supplementary 
Table 6). Therefore, the two-stage fine-tuned models, espe-
cially G2L, exhibited higher MCC and AUROC values than 
the one-stage models on most test sets, demonstrating the 
utility of the transfer learning method. The two-stage strat-
egy improved model performance by two possible factors: 1) 
T2DM-relevant ocular characteristics are region specific, so 
the fine-tuning process endowed G2L/L2G models with the 

ability to learn both global and local features; 2) compared 
to models pretrained with ImageNet [32], refined models 
provided better source parameters for transfer learning in 
T2DM risk assessment.

We established the T2DM detection model in a simi-
lar manner to the development of OcularSurfaceNet-G2L. 
The T2DM detection model achieved AUROCs of 0.6957 
(95% CI, 0.681–0.7117), 0.7961 (95% CI, 0.7696–0.8214), 
0.7922 (95% CI, 0.7256–0.864), and 0.7122 (95% CI, 
0.6655–0.7564) on internal and external test sets 1–3, show-
ing the potential of the AI-assisted detection of T2DM (Sup-
plementary Table 7).

However, similar to the detection of chronic kidney 
diseases based on fundus and slit-lamp images [23], our 
models achieved better performance in the 50- to 60-year-
old age group (SEN of 0.6403–0.73, SPE of 95% CI, 
0.6585–0.6927), with lower specificity in elderly groups 
(age > 60, SEN > 0.9, SPE < 0.4) and lower sensitivity in 
younger groups (age < 50, SEN < 0.4, SPE > 0.9) (Supple-
mentary Table 8). The results show that age is an important 
factor that affects the model performance; in particular, the 
low specificity of the abundant elderly group samples over-
whelmed the accuracy of the model in community screening 
of T2DM. Thus, we used elderly group (> 60) samples to 
train an independent elderly group sample-specific T2DM 
detection model as an ensemble factor of the T2DM detec-
tion model.

The age-specific T2DM detection model demonstrated 
higher specificity and F1 score in elderly group samples and 
a comparable AUROC to the original model (Fig. 4, Sup-
plementary Table 9). On internal and external test sets 1–3, 
the age-specific T2DM detection model achieved AUROCs 
of 0.6855 (95% CI, 0.6698–0.7001), 0.7768 (95% CI, 

Fig. 3  Performance of the AI system in the prediction of high-risk cases of T2DM based on ophthalmic images by integrating global and local 
ophthalmic features. ROC curves show the performance of T2DM risk assessment using AI models developed with ophthalmic images from 
separate or all angles. We trained models with ocular surface images at 8 separate angles (L, green) and all angles (G, orange), then fine-tuned G 
with images at 8 separate angles (G2L, blue) and fine-tuned L with merged images (L2G, red). a–c, ROC curves show their performance on the 
validation set (a), internal test set (b), and external test set 1 (c)
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0.7511–0.8019), 0.7732 (95% CI, 0.697–0.844), and 0.6995 
(95% CI, 0.6563–0.741), respectively, showing significant 
improvement in elderly groups over the original model.

Elderly people who are susceptible to T2DM are also 
prone to acquire other chronic diseases, such as hyperten-
sion, as well as complications from T2DM [2, 32]. How-
ever, in previous studies on AI-assisted T2DM detection, 
only healthy samples were included in the control group, 
and unhealthy samples with diseases other than T2DM were 
excluded, which may lead to a potentially high false-positive 
rate when applied to clinical samples [23]. In our study, we 
developed and tested AI models using both mixed controls 
and only healthy controls, namely, MC and HC models, 
respectively. On the one hand, we tested MC and HC mod-
els on test sets with unhealthy controls excluded. In this 
scenario, both the MC and HC models achieved state-of-
the-art performance (Supplementary Table 10). On the other 
hand, we evaluated MC and HC models on more realistic test 
sets without exclusion of unhealthy samples. HC achieved 
specificities of 0.0114 (95% CI, 0.009–0.0138), 0.2383 (95% 
CI, 0.2131–0.2663), 0.1364(95% CI, 0.058–0.2206), and 
0.099 (95% CI, 0.086–0.1124), respectively, using the inter-
nal test set and external test sets 1–3, even though the sen-
sitivity was high (Supplementary Table 11). MC achieved 
specificities of 0.4204 (95% CI, 0.4092–0.4313), 0.7797 
(95% CI, 0.7525–0.804), 0.7424 (95% CI, 0.6429–0.8471), 
and 0.7201 (95% CI, 0.7002–0.7412), respectively, 
using the same datasets. In addition, MC also achieved 

AUROCs of 0.6896 (95% CI, 0.6731–0.7059), 0.7842 
(95% CI, 0.7575–0.8091), 0.7922 (95% CI, 0.7256–0.864), 
0.7122 (95% CI, 0.6655–0.7564), and 0.6938 (95% CI, 
0.6814–0.7065) using the internal test set, external test sets 
1–3, and the total independent test set, respectively.

From the comparison, it can be clearly seen that healthy 
and unhealthy control samples all possess distinct features 
that significantly affect the detection of target T2DM. There-
fore, neglecting unhealthy subjects with diseases other than 
T2DM would hinder learning T2DM-specific features in 
model development. Moreover, using only healthy samples 
as controls leads to discrimination between unhealthy and 
healthy subjects, lacking the specificity of T2DM detection. 
In the following part of this study, we included both healthy 
and unhealthy samples with diseases other than T2DM as 
controls in model development.

Finally, we conducted visualization assays to improve 
the interpretability of the AI models and shed light on their 
diagnostic mechanism in T2DM detection. The Grad-CAM 
maps indicated that the T2DM detection model focused on 
dark patchy features in regions around the iris and inferior 
regions of the sclera (Fig. 5a). For a total of 139278 images 
(32351 and 106927 from T2DM and non-T2DM partici-
pants, respectively), we performed an occlusion test accord-
ing to Cartesian coordinates oriented from the iris centers. 
The ΔMCC maps also demonstrated that regions around the 
iris and inferior regions of the sclera of the ocular surface 
images contributed to T2DM detection (Fig. 5b).

Fig. 4  Performance of the 
age-specific AI System in the 
prediction of T2DM based on 
ophthalmic images by integrat-
ing global and local ophthalmic 
features. ROC curves of the 
age-specific model on the inter-
nal test set (orange), external 
test set 1 (green), external test 
set 2 (blue), and external test set 
3 (red)
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In addition, based on regions in the ΔMCC map (Supple-
mentary Fig. 4), we examined whether the 90 ocular features 
are enriched in T2DM/high-risk participants. As a result, 
36 features are highly enriched in T2DM/high-risk T2DM 
samples (Supplementary Methods, Supplementary Fig. 5). 
Among them, 16 ocular features belonged to the syndrome 
patterns of Yin deficiency, blood deficiency, and blood stasis 
and heat, 11 ocular features belonged to the syndrome pat-
terns of damp heat, phlegm dampness, and Qi stagnation and 
heat, and 4 ocular features belonged to the syndrome pat-
terns of Qi deficiency, blood deficiency and Yang deficiency 
(Supplementary Table 12) [22], while TCM holds that Yin 
deficiency is the root cause of T2DM, and dryness and heat 
are the manifestation of T2DM. The syndrome patterns rep-
resented by these ocular features were in accord with the 
TCM syndrome patterns of T2DM, indicating these ocular 
features might be strongly associated with T2DM.

Discussion

The low awareness rate of T2DM hinders timely intervention 
and adjustment of personal lifestyle at early stages of disease 
development, calling for easily accessible means for large-
scale screening of T2DM. The results of this study suggest 
that AI-assisted analysis of ophthalmic images of the ocular 
surface could be an effective measure for low-cost and scal-
able screening of the general population.

Previous studies on AI-based ophthalmic image analysis 
focused on the examination of retinal fundus images and 

slit-lamp images. However, distinct features are also present 
at the ocular surface, which are interconnected with the vas-
cular system at the retinal fundus but easier to observe and 
more sensitive to changes in the microcirculation. In this 
work, we evaluated the feasibility of using ocular surface 
images to construct AI models for the risk assessment of 
T2DM. To avoid temporal effects of subconjunctival hem-
orrhage by environmental factors, certain contraindications, 
such as late sleeping, spicy diet, and rough rubbing of the 
eyes, were established for collecting ocular surface image 
data in this study.

Compared to previous studies, this work differs mainly 
in three aspects. First, we established a T2DM risk assess-
ment model along with a detection model, which is of great 
significance to preventive medicine with early intervention 
in high-risk patients. Second, qualitative analysis of hyper-
glycemia using a development dataset that has no labels on 
the status of T2DM has been performed in this study, which 
overcomes the limitation of using prelabeled clinical meta-
data for model development. Third, we have demonstrated 
the feasibility of ocular surface images as an alternative 
approach compared to conventional retina fundus images 
and slit-lamp images for AI-based ophthalmic disease detec-
tion. This approach offers new imaging modalities to explore 
the eyes as opportunistic diagnostic windows for eye and 
systemic diseases. Moreover, in this study, the proposed 
deep convolutional network OcularSurfaceNet works in 
conjunction with a portable imaging instrument to facilitate 
on-site ophthalmic image acquisition and analysis.

Fig. 5  Relevant regions and 
features. a, the figure shows 
the original image (left) and 
saliency map (right) from 
Grad-CAM. b, the figure shows 
the ΔMCC map (left) from 
the occlusion test and features 
(right) in the saliency regions
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This study has some limitations to be solved in the future. 
First of all, our model has only been applied to a single eth-
nicity, and it would be beneficial to evaluate the model with 
diverse ethnicity and geographical distribution. Secondly, 
the temporal response of ocular surface features according 
to changing blood glucose levels needs to be established. 
Thirdly, distraction from acute microvascular abnormalities 
of eyes, such as subconjunctival hemorrhage, needs to be 
minimized by refining algorithms. Furthermore, the per-
formance varied with the age distribution in different sam-
ples (Supplementary Table 5). The participants in external 
test set 1 are much younger than those in the internal test 
set (Supplementary Table 1). Accordingly, the risk assess-
ment model showed higher specificity and lower sensitivity 
in external test set 1 and lower specificity and higher sen-
sitivity in the internal test set. However, in terms of early 
intervention for T2DM, higher sensitivity is preferred for 
elderly people, and a slight reduction in sensitivity could be 
tolerated for younger people since elderly people are more 
susceptible to T2DM and other chronic diseases.

In summary, we constructed a deep convolutional net-
work for risk assessment and detection of T2DM in com-
munity screening by analyzing ophthalmic images of the 
ocular surface. We believe the proposed T2DM risk assess-
ment and detection frameworks could be widely utilized in 
point-of-care settings and facilitate large-scale screening for 
early identification and intervention of T2DM.
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