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Abstract 

Computer-aided drug design (CADD) has emerged as a highly effective and indispensable tool for streamlining 
the drug discovery process, leading to significant reductions in cost and time. The integration of CADD with machine 
learning (ML) and deep learning (DL) technologies further enhances its potential and promises novel advancements 
in the field. In this article, we provide a review of the computational methods employed in the development of novel 
anesthetics, outlining their respective advantages and limitations. These techniques have demonstrated their utility 
across various stages of drug discovery, encompassing the exploration of target-ligand interactions, identification 
and validation of new binding sites, de novo drug design, evaluation and optimization of absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) properties in lead compounds, as well as prediction of adverse effects. 
Through an in-depth exploration of computational approaches and their applications, this article aims to help rel-
evant researchers develop safer and more effective anesthetic drugs.
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1 Introduction
One of the most remarkable milestones in the his-
tory of medicine is attributed to William T.G. Morton 
(1819–1868), who pioneered the use of inhaled ether as 
a surgical anesthetic [1]. Anesthesia is a temporary and 
reversible state induced by medications or other inter-
ventions that leads to a controlled loss of sensation or 
consciousness [2]. Depending on the nature of the proce-
dure and individual patient requirements, various types 
and levels of anesthesia are available, including general 

anesthesia, regional anesthesia, and local anesthesia. The 
primary objective of anesthesia is to ensure patient safety 
and comfort, providing a foundation for further examina-
tions or surgical procedures.

The effects of anesthesia are intricately intertwined 
with a wide array of physiological processes, encom-
passing analgesia, sedation, hypnosis, immobility, 
unconsciousness, amnesia, suppression of autonomic 
reflexes, and muscle relaxation [3, 4]. In clinical prac-
tice, anesthesia involves the administration of a com-
bination of anesthetic drugs rather than relying solely 
on a single agent. Broadly speaking, anesthetic drugs 
can be categorized into various types, including general 
anesthetics, local anesthetics, analgesics, sedatives, and 
muscle relaxants [5].

The pursuit of an ideal anesthetic encompasses a 
wide range of characteristics including safety, effec-
tiveness, controllability, rapid onset and offset, mini-
mal side effects, stability, compatibility, reversibility, 
and cost-effectiveness, yet the realization of such an 
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agent remains elusive [4, 6, 7]. Although commonly 
used anesthetic drugs possess certain desirable prop-
erties, they are also associated with unwanted effects 
(Table  1). Improper utilization may lead to adverse 
reactions including respiratory depression, hypoten-
sion, adrenal suppression, inflammation, nausea, vom-
iting, and convulsions in patients [8–12]. Consequently, 
the expectation among all anesthesia practitioners is 
the development of a novel, safer, and more efficacious 
anesthetic drug.

The development of novel drugs is a complex, pro-
tracted, high-risk, and costly endeavor, typically 
spanning more than a decade and involving invest-
ments amounting to billions of dollars [13]. Despite 
the extensive research and financial commitments, 
only a limited number of drugs successfully navigate 
the approval process and reach the market [14, 15]. 
Notably, drugs targeting the central nervous system, 
including anesthetics, experience the highest rate 
of failure in development [16]. Numerous factors 

Table 1 Commonly used anesthetic drugs. FDA, Food and Drug Administration

Catagory Drug name Characteristics Limitations Delivery method FDA approval year References

General anesthesia Desflurane Rapid onset and recov-
ery, low blood-gas 
solubility

Pungent, airway 
irritation, malignant 
hyperthermia

Inhalation 1992 [19, 20]

Isoflurane Smooth induction 
and recovery, potent

Respiratory depression, 
hepatotoxicity, malig-
nant hyperthermia

Inhalation 1979 [21]

Sevoflurane Pleasant odor, rapid 
onset and recovery

Costly, hepatotoxicity, 
malignant hyperther-
mia

Inhalation 1996 [19, 21]

Ketamine Dissociative anesthesia, 
analgesic

Emergence reactions, 
hallucinations

Intravenous 1970 [19, 21]

Anesthesia induction Phenobarbital Long-acting, sedative, 
anticonvulsive

Contraindicated 
in pregnancy

Intravenous 1911 (synthesized) [22]

Etomidate Rapid onset, cardiovas-
cular stability

Adrenal suppression, 
excitation

Intravenous 1999 [19]

Anesthesia induction 
and maintenance

Propofol Rapid onset and recov-
ery, anticonvulsive

Hypotension, respira-
tory depression, pain 
on injection, lipid 
accumulation

Intravenous 1989 [19, 23]

Local anesthesia Benzocaine Short duration Allergic reactions Topical 1890 (synthesized) [24]

Procaine Short duration Allergic reactions Injection 1948 [25]

Cocaine Vasoconstriction Addictive, abuse Topical 2017 [21]

Tetracaine Long-lasting Allergic reactions, 
systemic toxicity

Topical, Injection 2006 [26]

Lidocaine Rapid onset, intermedi-
ate duration

Allergic reactions, 
systemic toxicity

Topical, Injection 1999 [27]

Local anesthesia Bupivacaine Long-lasting Systemic toxicity, 
cardiotoxicity

Injection 2011 [21]

Analgesia,anesthesia Alfentanil Potent, rapid onset 
and recovery

Respiratory depression, 
abuse

Intravenous 1986 [28]

Anxiety,seizures, anes-
thesia induction

Diazepam Sedative, long-acting, 
anxiolytic, anticon-
vulsive

Dependence, abuse Oral 2010 [29]

Anxiety, anesthesia 
induction

Midazolam Sedative, anxiolytic, 
anticonvulsive

Dependence, abuse Oral 1985 [21]

Pain relief, anesthesia Pethidine Less respiratory 
depression

Addiction Intramuscular 1942 [30]

Morphine Potent Respiratory depression, 
dependence

Injection 1998 [21, 31]

Muscle relaxation Succinylcholine Rapid onset, 
short duration

Malignant hyperther-
mia, hyperkalemia

Intravenous 2018 [21]

Atracurium besilate Intermediate-acting, 
non-depolarizing

Histamine release, 
hypotension

Intravenous 1983 [32]
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contribute to the failure of drug development, includ-
ing but not limited to inadequate potency, unforeseen 
adverse effects, off-target effects, and significant chal-
lenges in synthesis [17].

The advancement of computer-aided methods and 
artificial intelligence in the medical field has propelled 
modern anesthesiology into the era of information 
technology. In this regard, the integration of computer-
aided drug design (CADD) and machine learning tech-
niques has yielded diverse applications in the field of 
drug discovery [18]. These methodologies have proven 
instrumental in reducing costs, saving time, preemp-
tively eliminating unqualified molecules, and minimiz-
ing failures in the final stage of drug development. This 
paper provides a comprehensive review of commonly 
utilized computer-aided and machine-learning methods, 

highlighting their applications in the development of 
anesthetic drugs.

2  Methods of computer‑aided drug design
The concept of CADD can be traced back to the early 
1960s when researchers started using computers to sim-
ulate and model chemical interactions. However, it was 
not until the 1980s that the term “computer-aided drug 
design” was coined, and the field really began to take off 
in the 1990s [33]. Generally, there are two types of tech-
niques: structure-based drug design and ligand-based 
drug design (Fig. 1).

2.1  Structure‑based drug design
Structure-based drug design (SBDD) has gained sig-
nificant popularity as a widely embraced strategy for 

Fig. 1 Overview of computer-aided drug design. QSAR, quantitative structure-affinity relationship; HTS, high-throughput screening; VS, virtual 
screening
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expedited and cost-effective lead identification and 
optimization. SBDD has emerged as a widely adopted 
approach for rapid and cheaper lead identification and 
optimization [34]. It encompasses a range of techniques, 
such as homology modeling, molecular dynamics, molec-
ular docking, and de novo drug design [35]. The core 
of SBDD is to explore binding modes in protein-ligand 
complexes and predict the binding affinity [36, 37]. The 
initial step in SBDD is to identify drug targets and obtain 
their three-dimensional structure, which can be experi-
mentally measured or computationally predicted using 
methods like homology modeling [13].

2.1.1  Molecular docking
Once the 3D structure of proteins is obtained, the sub-
sequent step involves exploring atomic-level interactions 
between macromolecular structures and small molecules 
[38]. The most well-known SBDD technique in this pro-
cess is molecular docking. Docking methods typically 
consist of two components: the search algorithm and 
the scoring scheme [39, 40]. The search algorithm is 
responsible for sampling suitable conformations from 
high-dimensional spaces, while the scoring scheme is 
employed to evaluate interaction energies and rank differ-
ent candidate dockings [41, 42]. Classic scoring schemes 
can be force-field-based, empirical, or knowledge-based 
[43], while the introduction of machine learning  (ML) 
approaches has greatly improved the accuracy of scor-
ing functions [44]. Recent developments in molecular 
dynamic simulations have made conformational explo-
ration easier, thereby making molecular docking a more 
powerful tool for virtual screening lead compounds.

2.1.2  Homology modeling
Owing to the high cost and time-intensive feature of the 
experimental measurements, homology modeling has 
become one of the most precise computational meth-
ods to obtain 3D coordinates of proteins from their 
amino acid sequences [45, 46]. The fundamental tenet of 
homology modeling is that the target sequence of inter-
est is likely to share a similar structure and function to 
a homologous template [47, 48]. The quality of the pre-
dicted structure is determined by the level of similar-
ity between the target and the template sequence [49]. 
Sequence-based similarity search algorithms, such as 
FASTA and BLAST, are commonly employed to iden-
tify homologous templates from the Protein Data Bank 
(PDB) dataset [50].

2.1.3  Molecular dynamics
Proteins were once believed to be static structures, 
but this view has been challenged and overturned [51]. 
Molecular dynamics (MD) is a computer simulation 

technique employed to predict protein movements 
and conformational changes over time [52]. Initially 
introduced by Alder and Wainwright [53], MD simu-
lations have evolved from methods based on Newto-
nian mechanics to more advanced quantum mechanical 
approaches [54, 55]. MD simulations are widely used to 
study drug-target interactions, capture multiple con-
formational changes in proteins, calculate ligand-target 
binding energies, and identify cryptic or allosteric sites 
[56, 57]. With rapid development and iteration of graph-
ics processing units, the precision of MD simulations has 
significantly improved, thereby enabling the exploration 
of more sophisticated biochemical processes [58].

2.1.4  High‑throughput screening and virtual screening
Both high-throughput screening (HTS) and virtual 
screening (VS) share the goal of identifying potential tar-
get molecules from a large, diverse library of compounds 
[59]. VS primarily relies on computational simulations 
to predict the interactions between small molecules 
and a target [60]. On the other hand, HTS involves the 
experimental testing of a large number of compounds in 
the wet lab. Though these two approaches possess cer-
tain distinctions, they are often used complementarily 
and researchers even use these terms interchangeably. 
Depending on the availability of structural data, VS/HTS 
can be conducted using either receptor-based or ligand-
based methods [61]. However, in the practical application 
of anesthetic drug development, the utilization of struc-
ture-based methods is more prevalent.

2.2  Ligand–based drug design
In cases where structural information about drug targets 
is not available, ligand-based drug design (LBDD) can be 
a preferred approach [62]. The principle behind LBDD 
is that molecules with similar structures tend to share 
similar biological properties. Common LBDD meth-
ods include quantitative structure-affinity relationship 
(QSAR), similarity search, and pharmacophore mod-
eling [63]. The main objective of LBDD techniques is to 
identify key structural or physicochemical features that 
account for the observed biological activity of a set of 
compounds [64].

2.2.1  Similarity search
Similarity searching is the most effective and straightfor-
ward approach to selecting structures similar to the input 
compound based on chemical or physiochemical charac-
teristics [65, 66]. Choosing the right molecular descriptor 
is an important part of similarity measuring. Common 
molecular descriptors include 2D and 3D descriptors as 
well as various physicochemical properties [67]. The most 
widely used 2D descriptor is the molecular fingerprint, 
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which compares similarity through bit strings [68]. Simi-
larity searching is used in a wide range of scenarios, such 
as molecular novelty measurement, clustering analysis, 
docking searches, and reaction similarity evaluation [69]. 
This method can be a more advantageous alternative 
when lacking enough ligands with known bioactivity [70].

2.2.2  Pharmacophore modeling
Pharmacophores represent abstract characteristics essen-
tial for biological activity, rather than actual chemical or 
functional groups [71]. Pharmacophore features com-
monly include cations, anions, aromatics, and hydrogen 
bond acceptors or donors [72, 73]. Ligand-based phar-
macophore modeling is commonly utilized in virtual 
screening to reveal features crucial for receptor binding. 
It generally includes the following steps: analyzing the 
conformational space of ligands in the training set, align-
ing molecular conformations, and identifying the best 
overlay of pharmacophore features [74].

2.2.3  QSAR
QSAR modeling is a process of predicting the physical 
and biological properties of untested molecules based on 
their structure [75, 76]. Pharmacophore modeling iden-
tifies essential 3D features for biological activity, while 
QSAR quantifies the relationship between structural 
features and activity, offering complementary informa-
tion for drug development. QSAR modeling has under-
gone constant evolution and reinforcement, becoming 
one of the most frequently utilized approaches for the 
statistical analysis of biological data [77]. However, the 
phenomenon of “activity cliffs”, where slight changes in 
chemical structures can result in significant changes in 
target activity, can impede QSAR model performance 
[78]. It’s an inherent challenge but may be improved with 
other advanced computational techniques.

The selection of chemical descriptors plays a pivotal 
role in improving the performance of the QSAR mod-
els. 2D QSAR studies are based on various 2D prop-
erties such as constitutional descriptors, topological 
descriptors, and electronic descriptors. But their lim-
ited ability to account for the 3D structure of molecules 
undermines their predictive capabilities [79]. To over-
come this limitation, 3D-QSAR leverages the ligands’ 
three-dimensional characteristics like molecular shape, 
electrostatic potentials, hydrophobic regions, and steric 
interactions, while 4D-QSAR adds conformational and 
alignment freedom, improving the model’s accuracy and 
comprehensibility [80].

2.2.4  Clinical demand‑oriented reverse drug design
Anesthesia, especially general anesthesia is an intri-
cate physiological activity that encompasses multiple 

targets, and a comprehensive understanding of each 
target’s mechanism remains elusive. These hurdles 
make it more complicated to develop novel anesthet-
ics through the target-based drug design paradigm. In 
addition, clinicians consider the clinical features of a 
molecule as the most crucial information and the pri-
mary indicator of its potential as a new drug. Although 
descriptors commonly used in QSAR pertain to the 
molecule’s druggability, they do not provide a direct 
reflection of the molecule’s biological activity when 
used in patients.

Therefore, our team led by Jin Liu (the professor and 
chairman of the Anesthesiology Department and direc-
tor of the Translational Neuroscience Center at West 
China Hospital, Sichuan University, Chengdu, China) 
presents a novel strategy termed “clinical demand-ori-
ented reverse drug design”. Our strategy prioritizes the 
direct optimization of compound clinical properties 
regardless of the information of targets, distinguishing 
itself from the conventional target-based drug discov-
ery paradigm. Moreover, our model has the ability to 
understand clinical requirements described in natu-
ral language. It can process a descriptive paragraph 
outlining clinical demands as input and subsequently 
generate potential candidates, setting it apart from phe-
notype-based drug discovery, which primarily revolves 
around screening as its central methodology.

Our team has undertaken efforts to develop novel 
general anesthetics through clinical demand-oriented 
reverse drug design. We have selected several clini-
cal characteristics as optimization goals, encompass-
ing anesthesia efficacy, anesthetic onset and duration 
time, blood pressure, abnormal nervous system exci-
tation, and respiratory depression. Taking inspiration 
from Jin’s work [81], our initial step involved training 
a molecular variational autoencoder (VAE) capable 
of encoding and decoding molecules. The VAE model 
enabled us to encode input molecule graphs into latent 
vectors and decode modified vectors into compounds 
with optimized properties. In addition, the latent space 
provided by the VAE model can be utilized to train pre-
dictors for diverse clinical properties.

To generate and optimize potential compounds, we 
randomly sampled vectors from the latent space (i.e., 
random initialization). Subsequently, we calculated the 
necessary gradients for each property and applied the 
gradient descent algorithm to optimize each property 
individually. The optimized compounds exhibiting 
high predictive scores for all the clinical goals under-
went further experimentation in the wet lab. Our 
research paradigm has already yielded preliminary 
results and may shed light on the development of new 
anesthetic drugs.
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3  Principles of machine learning
The ultimate goal of artificial intelligence (AI) is to cre-
ate computer systems or machines that have human-like 
intelligence and independence [82]. Learning and prob-
lem-resolving are typical tasks that represent human 
intelligence, thereby making "machine learning" a core 
area of artificial intelligence [83]. The major focus of 
machine learning is to develop computer systems that 
can acquire knowledge, make predictions or decisions, 
and enhance their performance using provided data 
instead of explicit programming [84, 85].

ML techniques are typically classified into three main 
categories (Fig.  2): supervised learning, unsupervised 
learning, and reinforcement learning. In addition, deep 
learning, a specialized approach within ML, and trans-
fer learning, an extension or application of ML, have also 
demonstrated their utility in the field of drug discovery.

3.1  Supervised learning
Supervised learning encompasses the process of train-
ing a model using annotated data, where input samples 
are paired with corresponding target labels [86]. Through 
this approach, the model acquires the ability to make pre-
dictions or classify unseen data by leveraging the patterns 
and relationships learned from the labeled examples.

3.1.1  Classification
Classification refers to assigning input data instances to 
specific predefined categories or classes. The evaluation 

of a classification model is typically based on metrics 
such as precision, recall, accuracy, F1 score, and the area 
under the receiver operator characteristic curve (AUC-
ROC) [87].

Naive Bayes (NB) Naive Bayes is a classification method 
based on Bayes theorem that assumes the independence 
of features given class labels. This method has advantages 
including simplicity, computational efficiency, and abil-
ity to handle high-dimensional or unbalanced data [88]. 
Nonetheless, in real-world scenarios, it is uncommon 
for features to be truly independent, which restricts the 
effectiveness of this method when substantial interac-
tions exist between features.

k‑Nearest Neighbor (k‑NN) The k-NN algorithm classi-
fies or predicts new data points based on their proximity 
to labeled training examples within a feature space. k-NN 
exhibits versatility by accommodating both classification 
and regression tasks. To generate predictions, the algo-
rithm identifies the k nearest neighbors in proximity to 
the new data point and assigns the most prevalent class 
label among them. The algorithm’s performance hinges 
upon the careful selection of the distance metric and the 
optimal value for k [89]. Noteworthy advantages of k-NN 
encompass its simplicity, ease of implementation, capac-
ity to handle multi-class classification, and adaptability 
to novel data. Nevertheless, k-NN’s main disadvantage is 
computational complexity, especially with large datasets, 

Fig. 2 Machine learning algorithms used for anesthetic drug discovery
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owing to the necessity of comparing the query point 
against all training examples [90].

Support Vector Machine (SVM) SVM aims to identify 
an optimal hyperplane within a high-dimensional space 
to separate data points into different classes, maximizing 
the margin between the classes. SVM is widely regarded 
as one of the most robust predictive models and finds 
extensive utilization in the domain of drug development 
[91]. SVMs are capable of handling high-dimensional 
data but are not directly applicable to multi-class tasks.

Decision Tree (DT) The decision tree algorithm con-
structs a hierarchical structure of nodes to facilitate deci-
sion-making based on simple decision rules derived from 
data features [92]. Conceptually, a tree can be perceived 
as a piecewise constant approximation. This approach 
possesses a white-box property, offering interpretabil-
ity through visually comprehensible tree structures, and 
it can effectively handle both numerical and categorical 
data. These advantages have established decision trees as 
one of the most prevalent and potent machine learning 
methods [93]. The limitations of decision trees include 
their proneness to overfitting when deep trees are uti-
lized, as well as their sensitivity to minor data variations, 
which can lead to high variance [94]. To address these 
limitations, ensemble techniques like random forests or 
gradient boosting can be utilized.

Gradient Boosting Machine (GBM) Boosting is a tech-
nique that transforms weak learners into strong learners, 
and one notable implementation of this principle is gra-
dient boosting. GBM sequentially combines weak pre-
dictive models to create a robust ensemble model and 
can be used in regression and classification tasks. When 
decision trees serve as the weak learners, the result-
ing algorithm is referred to as a gradient-boosted tree. 
This iterative process allows GBM to effectively capture 
complex, non-linear relationships in the data, providing 
higher accuracy compared to single machine learning 
models [95].

Random Forest (RF) Random forest is a versatile 
machine-learning algorithm that harnesses the collec-
tive strength of an ensemble of decision trees. Each tree 
in the forest is constructed independently by randomly 
selecting subsets of features and data samples. The final 
prediction is then determined by aggregating the out-
puts through majority voting or averaging. RF exhibits 
several advantages, including its proficiency in han-
dling high-dimensional data, capturing complex rela-
tionships, and effectively managing missing values and 
outliers. Although Random Forest frequently achieves 

superior accuracy compared to a single decision tree 
[96], it sacrifices some of the inherent interpretability in 
decision trees.

Synthetic Minority Oversampling Technique 
(SMOTE) Label imbalance is a common challenge 
encountered in datasets utilized for drug discovery 
[97], and SMOTE is employed to tackle this issue [98]. 
It addresses the scarcity of data in the minority class by 
generating synthetic samples that closely resemble the 
existing minority class instances. This approach effec-
tively balances the class distribution and enhances the 
classifier’s ability to accurately predict the minority class. 
However, SMOTE may introduce synthetic samples that 
are noisy or less representative of the actual data.

3.1.2  Regression
Regression aims to predict a continuous numerical value 
as the output. Regression models can be linear or non-
linear and are evaluated using metrics such as mean 
squared error, mean absolute error, or R-squared.

Linear regression The linear regression model is 
renowned for its simplicity and effectiveness. It estab-
lishes a linear relationship between a dependent variable 
and one or more independent variables, seeking to iden-
tify the best-fit line that minimizes the overall difference 
between the predicted and actual values [99]. Notably, 
linear regression offers interpretability through coef-
ficients that convey the direction and magnitude of the 
variable relationships. But this method is not suitable for 
nonlinear scenarios.

Ordinary least square One of the commonly used 
methods in Linear Regression is Ordinary Least Squares, 
which estimate the parameters of a linear model by mini-
mizing the sum of the squared errors.

Logistic regression Logistic regression gets its name 
from the logistic function, also known as the sigmoid 
function, which lies at the core of this method. The sig-
moid function maps real-valued numbers to a range 
between 0 and 1. Despite the resemblance to linear 
regression in terms of representation, logistic regres-
sion differs by focusing on binary values rather than 
continuous ones [100]. The simplicity and interpret-
ability of logistic regression make it advantageous, as it 
offers insights into the importance and direction of input 
variables. Furthermore, logistic regression demonstrates 
computational efficiency and versatility in handling both 
numerical and categorical features, making it a valuable 
tool for various types of data analysis.
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3.2  Unsupervised learning
Unsupervised learning deals with unlabeled data, allow-
ing the model to discover hidden patterns or data group-
ings without explicit target labels or human intervention. 
Clustering and dimensionality reduction are two of the 
most common tasks in unsupervised learning.

3.2.1  Clustering
Clustering is used to automatically group similar objects 
together based on their inherent characteristics or pat-
terns, without any prior knowledge of class labels or out-
put values. In the process of drug discovery, clustering 
can be used to cluster compounds based on structural 
similarities, or group molecular targets based on func-
tional characteristics.

K‑Means K-Means is an iterative algorithm that parti-
tions data into k clusters by assigning data points to the 
cluster with the closest centroid and updating the cen-
troids based on the mean of the data points within each 
cluster. The value of k, representing the number of clus-
ters, is a user-defined parameter. K-Means boasts sim-
plicity and efficiency, making it well-suited for large data-
sets. It operates without the need for labeled data and can 
handle both numerical and categorical features. How-
ever, it is crucial to consider that K-Means algorithm is 
sensitive to the initial placement of centroids, which can 
lead to convergence on different solutions [101].

Hierarchical clustering Hierarchical Clustering is a 
method that groups similar data points into nested clus-
ters based on pairwise distances [102]. It differs from 
K-Means in that it constructs a hierarchical structure of 
clusters, while K-Means directly partitions the data. Divi-
sive clustering begins with all data points in a single clus-
ter and recursively splits them into smaller clusters until 
the desired number of clusters is reached. This approach 
allows for capturing the inherent hierarchical structure of 
the data without requiring the prior specification of the 
number of clusters. But the choice of distance metric and 
linkage method can impact the resulting clusters.

3.2.2  Dimensionality reduction
Dimensionality reduction techniques are used to trans-
form high-dimensional data into a lower-dimensional 
subspace while preserving the most important features. 
By reducing the dimensionality, researchers can simplify 
data analysis, remove noise, and identify key patterns.

Principle Component Analysis (PCA) PCA addresses 
the complexity of high-dimensional data by extract-
ing smaller features from a large set of variables [103]. 

It’s widely acknowledged as one of the most prominent 
methods within this category. PCA identifies the direc-
tions, known as principal components, along which the 
data exhibits the most significant variability. PCA finds 
applications in various domains, including molecular 
descriptors analysis, feature space reduction, and high-
dimensional data visualization. However, reducing the 
number of variables naturally comes at the expense of 
accuracy.

Linear Discriminant Analysis (LDA) LDA focuses on 
projecting data onto a lower-dimensional space while 
preserving class-specific information. It assumes that the 
data follow a Gaussian distribution and that the covari-
ance matrices of different classes are equal [104]. LDA 
calculates class-specific means and covariance matrices 
to determine a discriminant function that optimally sepa-
rates the classes. This method offers benefits such as sim-
plicity, interpretability, and the ability to handle multi-
class problems. But it can’t capture complex non-linear 
relationships in the data.

Time‑structure Independent Components Analysis 
(tICA) tICA is a method used to analyze data that 
changes over time, like molecular dynamics simulations 
or time series data. It simplifies the data and finds impor-
tant patterns in the information. tICA can be a useful 
tool for understanding slow movements and significant 
changes in complex systems, thereby accelerating the 
process of drug development.

3.3  Deep learning
Deep learning  (DL) algorithms are based on artificial 
neural networks, which aim to emulate the functionality 
of the human brain and learn from examples [105]. In the 
human brain, millions of interconnected neurons collab-
orate to acquire and process information [106]. Likewise, 
deep learning neural networks comprise multiple layers 
of artificial neurons, operating collectively within a com-
puter system.

3.3.1  Multilayer Perceptron (MLP)
MLP is an artificial neural network that comprises multi-
ple interconnected layers of nodes called neurons. It con-
sists of three types of layers: the input layer, the output 
layer, and the hidden layer. Each neuron in the network 
receives input from the previous layer, applies a non-lin-
ear activation function to generate an output, and passes 
it to the next layer. The hidden layers, positioned between 
the input and output layers, enable MLPs to approximate 
any arbitrary function and learn complex features [107]. 
MLPs are trained using the backpropagation technique, 
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where the network adjusts the weights and biases of its 
connections to minimize the discrepancy between pre-
dicted and actual values [108].

3.3.2  Convolutional Neural Network (CNN)
CNN is a neural network architecture that draws inspi-
ration from the structure and functioning of the human 
visual system [109]. It consists of multiple layers, includ-
ing convolutional layers, pooling layers, and fully con-
nected layers. The convolutional layers play a central 
role in CNNs as they extract important features from the 
input [110]. Pooling layers then downsample the output, 
reducing its dimensionality. Fully connected layers con-
nect all the neurons from the previous layer to the next, 
enabling classification or regression tasks. The hierarchi-
cal structure of CNNs allows them to automatically learn 
pertinent features from raw data, eliminating the neces-
sity for manual feature engineering.

Though originally designed for visual data analy-
sis, CNNs have expanded their applications to various 
domains, including drug discovery. CNNs are now uti-
lized in analyzing intricate molecular and biological data, 
facilitating de novo drug design, aiding decision-making 
in pharmaceutical research, and processing imaging data 
like high-content screening images or histopathology 
slides [111].

3.3.3  Graph Neural Network (GNN)
A graph is a data structure consisting of two fundamen-
tal components: nodes (or vertices) and edges [112]. 
GNN is a specific type of deep learning model specifi-
cally designed to operate on graph-structured data. The 
primary goal of GNNs is to acquire node or entire graph 
representations through the propagation of information 
within the graph structure. An exemplary technique in 
this realm is the Graph Convolutional Network, which 
extends conventional convolutional operations to encom-
pass graphs.

Graphs provide an effective representation of the struc-
ture and properties of chemical molecules, and they have 
garnered significant attention in the field of drug dis-
covery [113, 114]. GNNs offer the capability to model 
molecular structures and exploit both local and global 
molecular interactions, making them valuable tools in 
the exploration of novel drug candidates.

3.3.4  Recurrent Neural Network (RNN)
RNN is a general framework for processing sequen-
tial data. Unlike feedforward neural networks, RNNs 
have feedback connections, allowing them to maintain 
an internal memory or state. This memory allows the 
network to process information not only based on the 

current input but also on previously seen inputs in the 
sequence.

RNNs suffer from vanishing or exploding gradients, 
which can make long-term dependencies challenging 
to learn. To mitigate this issue, specialized variations of 
RNNs, such as Long Short-Term Memory (LSTM) and 
Gated Recurrent Unit (GRU), have been introduced. 
LSTMs achieve this through separate memory cells and 
gating mechanisms [115], while GRUs simplify the archi-
tecture by using combined and reset gates [116].

3.4  Transfer learning
Transfer learning is a machine learning method that 
applies knowledge obtained from training one task to a 
distinct but related task [117]. Instead of commencing 
from scratch, a pre-existing model, typically trained on a 
substantial dataset, is used as a foundation for a new task 
[118]. The pre-trained model has already learned general 
features and patterns from the initial task, which can be 
leveraged to improve learning and performance on the 
new task even with limited labeled datasets.

The integration of transfer learning and deep learn-
ing architectures frequently gives rise to a powerful 
framework known as deep transfer learning, offering 
a convenient means of fine-tuning parameters. Trans-
fer learning has demonstrated promising applications, 
including biological sequence analysis, molecule bioac-
tivity prediction, molecular generation, virtual screening, 
and protein-protein interaction prediction [119]. These 
advancements highlight the potential of transfer learning 
to enhance various aspects of drug discovery research.

This promising method can save computational 
resources and minimize the requirement for labeled data. 
However, effective transfer learning depends on the simi-
larity between the pre-trained task and the target task. 
Failing to select an appropriate pre-trained model may 
result in the "negative transfer", wherein the learner’s 
performance deteriorates compared to not employing 
transfer learning at all [120].

3.5  Reinforcement learning
Reinforcement learning  (RL) stands as a distinct para-
digm within the field of machine learning, wherein an 
agent interacts with an environment, receives feed-
back or rewards, and adjusts its behavior through trial 
and error [121]. Although both supervised learning 
and reinforcement learning aim to optimize their per-
formance over time, they differ in three main aspects: 
Firstly, supervised learning relies on labeled training 
data, while reinforcement learning doesn’t require pre-
labeled datasets. Secondly, supervised learning aims 
to predict output accurately for new inputs, whereas 
reinforcement learning seeks an optimal strategy to 
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maximize cumulative rewards over time. Thirdly, feed-
back in supervised learning comes from labeled training 
data, while reinforcement learning receives feedback as 
rewards or penalties based on agent actions in the envi-
ronment, which can be delayed and sparse. Similar to 
how children explore their surroundings and learn to 
achieve a goal, RL models operate autonomously and 
self-teach. RL algorithms hold considerable power and 
promise as they can learn optimal actions for achieving 
success in an unfamiliar environment without the need 
for intervention or guidance from a supervisor.

Reinforcement learning has found practical applica-
tions in the realm of drug discovery, encompassing a 
range of areas such as enhancing precision medicine, 
improving clinical trials, optimizing biochemical prop-
erties, and advancing pharmacological research [122, 
123]. Traditional generative models may generate novel 
molecules with limited synthetic accessibility. This 
challenge can be effectively tackled by integrating rein-
forcement learning algorithms to explore the synthesiz-
able chemical space [124].

RL boasts numerous advantages and diverse applica-
tions, but it is not exempt from limitations. For example, 
RL algorithms grapple with the delicate task of striking 
a balance between exploring new actions and exploiting 
existing knowledge. Additionally, designing appropriate 
reward functions poses a significant challenge [125].

4  Applications in anesthetics discovery
Drug discovery typically involves identifying and vali-
dating targets, discovering potential hits and leads, opti-
mizing lead compounds, conducting preclinical testing, 
progressing through clinical trials, and obtaining regula-
tory approval (Fig. 3). CADD and ML methods have been 
widely applied at various steps of the process (Table 2).

4.1  Target elucidation
Target elucidation is the fundamental basis for the design 
and development of effective drugs that modulate target 
activity and deliver disease treatment. It encompasses 
two primary parts: target identification and target valida-
tion. Target identification involves the identification of 
biological targets (proteins, enzymes, receptors, etc.) and 

Fig. 3 Steps for anesthetic drug discovery
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Table 2 Applications of computational methods, GABA, gamma-aminobutyric acid

Category Methods Applications Reference

Structure‑Based Drug Design Homology Modeling Prediction of Benzodiazepines’ bind-
ing modes

Elgarf et al. [126]

Design of δ agonists Pan et al. [127]

Prediction of anesthetic binding sites Bertaccini et al. [128]

Prediction of anesthetic binding sites Bertaccini et al. [129]

Prediction of anesthetic binding sites Bertaccini et al. [130]

Molecular Dynamics Design of δ agonists Pan et al. [127]

Prediction of the binding mechanism 
between propofol and GABAARs

Yuan et al. [131]

Design of Nav1.7 inhibitors with anal-
gesic and anti-pruritic poperties

Chandra et al. [132]

Discovery of local anesthetics acting 
on Nav1.7 channel

Manzur-Villalobos et al. [133]

Molecular Docking Prediction of conformational states 
of µOR

Feinberg et al. [134]

Discovery of ligands to Nav proteins Meraj et al. [135]

Discovery of anesthetics Lv et al. [136]

Prediction of anesthetic binding sites 
and affinities

Liu et al. [137]

Prediction of the binding mechanism 
between propofol and GABAARs

Yuan et al. [131]

Design of Nav1.7 inhibitors Chandra et al. [132]

Design of etomidate analogs with-
out adrenocortical suppression

Jiang et al. [138]

Exploration of the binding mecha-
nism to GABABRs

Lima Neto et al. [139]

Discovery of local anesthetics acting 
on Nav1.7 channel

Manzur-Villalobos et al. [133]

Design of δ agonists Pan et al. [127]

Structure‑Based Drug Design High‑Throughput Screening and 
Virtual Screening

Discovery of µ OR agonists Feinberg et al. [134]

Discovery of local anesthetics acting 
on Nav1.7 channel

Manzur-Villalobos et al. [133]

Identification of anesthetics with low 
detrimental cardiovascular toxicity

Cayla et al. [140]

Discovery of compounds with revers-
ible sedative-hypnotic activity

Yang et al. [141]

Design of Nav1.7 inhibitors Chandra et al. [132]

Identification of S1R antagonists Peng et al. [142]

Identification of anesthetics based 
on ADMET properties

Peng et al. [143]

Identification of anesthetics Lea et al. [144]

Identification of anesthetics McKinstry-Wu et al. [145]

Identification of anesthetics Ebalunode et al. [146]
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Table 2 (continued)

Category Methods Applications Reference

Ligand‑Based Drug Design Similarity Search Discovery of local anesthetics acting 
on Nav1.7 channel

Manzur-Villalobos et al. [133]

Pharmacophore Modeling Discovery of anesthetics Ebalunode et al. [146]

QSAR Evaluation of the binding affinity 
with GABAARs

Cheng and Ding [147]

Prediction of the binding affinity 
with S1R

Peng et al. [142]

Prediction of the binding affinity 
with GABAARs

Lu and Zhou [148]

Design of δ agonists Pan et al. [127]

Discovery of analgesic opioids Jia et al. [149]

Evaluation of polyhalogenated ethers’ 
anesthetic potency

Mehdipour et al. [150]

Evaluation of toxicity Coli Louvisse de Abreu et al. [151]

Discovery of local anesthetics Azamatov et al. [152]

Prediction of mu opioid receptors’ 
binding affinity

Floresta et al. [153]

Supervised Machine Learning Naive Bayes Identification of OPRK1’s druggable 
conformations

Sripriya Akondi et al. [154]

Prediction of PIH Kendale et al. [155]

Discovery of psychoactive metabo-
lites from Cannabis sativa

Jagannathan [156]
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Table 2 (continued)

Category Methods Applications Reference

Supervised Machine Learning k‑Nearest Neighbor Identification of OPRK1’s druggable 
conformations

Sripriya Akondi et al. [154]

Identification of GABAARs Liao et al. [157]

Prediction of PIH Kendale et al. [155]

Discovery of novel analgesic opioids Jia et al. [149]

Support Vector Machine Identification of GABAARs Liao et al. [157]

Classification of GABAARs Mohabatkar et al. [158]

Discovery of psychoactive metabo-
lites from Cannabis sativa

Jagannathan [156]

Discovery of analgesic opioids Jia et al. [149]

Identification of seizure-inducing 
drugs

Gao et al. [159]

Investigation of the effects of sevoflu-
rane concentration changes

Dhandore et al. [160]

Prediction of the seizure liability Zhang et al. [161]

Prediction of PIH Kendale et al. [155]

Prediction of blood-brain barrier 
penetration

Yu et al. [162]

Evaluation of the binding affinity 
with GABAARs

Cheng and Ding [147]

Decision Tree Identification of GABAARs Liao et al. [157]

Prediction of blood-brain barrier 
penetration

Yu et al. [162]

Investigation of the effects of sevoflu-
rane concentration changes

Dhandore et al. [160]

Gradient Boosting Machine Investigation of the effects of sevoflu-
rane concentration changes

Dhandore et al. [160]

predict intraoperative hypoxemia Lundberg et al. [163]

Prediction of PIH Kendale et al. [155]

Random Forest Identification of GABAARs Liao et al. [157]

Discovery of µ OR agonists Feinberg et al. [134]

Prediction of GABAergic potential Wijeyesakere et al. [164]

Prediction of PIH Kendale et al. [155]

Prediction of blood-brain barrier 
penetration

Yu et al. [162]

Discovery of analgesic opioids Jia et al. [149]

Synthetic Minority Oversampling 
Technique

Identification of OPRK1’s druggable 
conformations

Sripriya Akondi et al. [154]

Supervised Machine Learning Linear Regression Investigation of the effects of sevoflu-
rane concentration changes

Dhandore et al. [160]

Logistic Regression Identification of OPRK1’s druggable 
conformations

Sripriya Akondi et al. [154]

Prediction of PIH Kendale et al. [155]
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the exploration of their structural characteristics [169]. 
Target validation, on the other hand, aims to under-
stand target-ligand interactions, uncover the underlying 
molecular mechanisms, and demonstrate the druggable 
potential of the target [170]. Obtaining comprehensive 
information about targets is vital for guiding the subse-
quent drug discovery process.

4.1.1  Prediction of protein structures
Proteins in living cells continuously undergo conforma-
tional changes, altering their atomistic-level structures 
and binding affinities with chemicals [154]. Researchers 
have found that certain protein conformations exhibit 
significantly stronger chemical binding abilities than oth-
ers [171]. Furthermore, a protein’s shape determines its 
function. Erroneous protein structures may lead to toxic-
ity and adverse reactions. Therefore, correctly predicting 
the structure of proteins and understanding protein con-
formational dynamics are vital to uncovering the under-
lying mechanisms of diseases and then advancing the 
drug discovery process.

Traditional structural biology experiments are time- 
and money-consuming, thus computational methods 
have recently flourished to produce less expensive and 
quicker computer simulations, helping researchers to 
predict the structure of targets related to anesthesia 
[172]. For example, Gamma-aminobutyric acid (GABA) 

has been widely recognized as the primary inhibitory 
neurotransmitter in the central nervous system [173]. 
The characterization of GABAA and GABAB receptors 
has been crucial for understanding some physiological 
activities in the nervous system [174]. Sripriya Akondi 
et al. applied SVM to classify GABAARs based on the fea-
tures extracted from Chou’s pseudo-amino acid composi-
tion [158, 175]. Liao et al. trained four ML classifiers to 
distinguish GABAARs from non-GABAARs , using only 
the protein sequence information. Among the four classi-
fiers, the gradient boosting decision tree and a library for 
support vector machine (libSVM) marginally overper-
formed RF and k-NN [157].

Opioids are widely used for pain relief and there are 
four primary subtypes of opioid receptors. Opioid recep-
tor Kappa 1 (OPRK1) agonists have been demonstrated 
to activate pain-inhibitory pathways within the central 
nervous system [176]. Recently, Sripriya Akondi et  al. 
implemented a decision fusion strategy that integrated 
multiple machine-learning algorithms to identify poten-
tial drug-binding molecular conformations of the OPRK1 
protein. To address class imbalance issues, a synthetic 
minority oversampling technique (SMOTE) was incorpo-
rated. The decision fusion strategy utilizing LR (Logistic 
regression) + SMOTE + GB (Gaussian Naive Bayes) and 
LR + SMOTE + k-NN techniques outperformed those 
using a single technique [154]. Feinberg et  al. employed 

Table 2 (continued)

Category Methods Applications Reference

Unsupervised Machine Learning K‑Means Discovery of µ OR agonists Feinberg et al. [134]

Hierarchical Clustering Discovery of psychoactive metabo-
lites from Cannabis sativa

Jagannathan [156]

Principle Component Analysis Identification of seizure-inducing 
drugs

Gao et al. [159]

Linear Discriminant Analysis Prediction of PIH Kendale et al. [155]

Time‑structure Independent Com‑
ponents Analysis

Discovery of µ OR agonists µOR Feinberg et al. [134]

Reinforcement Learning Reinforcement Learning Design of opioid antagonists Deng et al. [165]

Deep learning Multilayer Perceptron Discovery of psychoactive metabo-
lites from Cannabis sativa

Jagannathan [156]

Prediction of PIH Kendale et al. [155]

Convolutional Neural Network Discovery of binding sites for the P2X3 
receptor

Kang et al. [166]

Identification of seizure-inducing 
drugs

Gao et al. [159]

Graph Neural Network Prediction of blood-brain barrier 
penetration

Yu et al. [162]

Recurrent Neural Network Prediction of muscle relaxation Wang et al. [167]

Others Anomaly Detection Algorithm Prediction of drug-induced convul-
sions

Nagata et al. [168]

Transfer Learning Prediction of muscle relaxation Wang et al. [167]
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a combination of molecular dynamics simulations and 
unsupervised machine learning techniques, including the 
tICA algorithm and K-Means clustering, to identify new 
conformational states of µOR. The authors then utilized 
docking scores to develop random forest classifier mod-
els that were capable of virtual screening agonists and 
binders for µ OR [134].

4.1.2  Prediction of targets and binding sites
Effective target discovery is an indispensable prerequisite 
in the modern target-based drug discovery paradigm, as 
the selection of appropriate targets directly correlates 
with the success of drug development [177–179]. There-
fore, prioritizing the identification and validation of tar-
gets is of paramount importance in the drug discovery 
process.

For example, Kang et  al. created a novel deep-learn-
ing model and discovered a distinct druggable binding 
site for the P2X3 receptor (P2X3R). Their finding of 16 
unique hit compounds may expedite the search for new 
P2X3R antagonists and lead to more effective neuro-
pathic pain treatments [166].

Bertaccini et al. conducted a series of studies utilizing 
homology modeling to construct atomic-level models of 
the GABA receptor and the glycine alpha one receptor 
(GlyRa1). These models uncovered potential anesthetic 
binding sites and suggested a link between ligand dock-
ing scores and drug potency. Their findings have made a 
significant contribution to the current understanding of 
anesthetic action and have facilitated the development of 
novel anesthetics [128–130].

4.1.3  Prediction of protein‑ligand interactions
Protein-ligand interactions take an irreplaceable part in 
various biological processes, including signal transduc-
tion, gene regulation, and immunologic reaction [180]. 
Therefore, exploring the mechanisms of protein-ligand 
recognition and binding is crucial for providing a theo-
retical foundation for drug development [181, 182].

In a recent study, Cheng and Ding developed SVR-
based QSAR models to estimate the compounds’ bind-
ing affinities after docking with the GABAA receptor 
and identified six essential characteristics that influence 
ligand-receptor binding [147]. Wijeyesakere et  al. suc-
cessfully built in silico tools to access the GABAergic 
potential of uncharacterized compounds — two binary 
classifiers based on random forest [164]. Liu et al. showed 
the effectiveness of molecular docking methods in pre-
dicting both the binding sites and affinities of anesthet-
ics for both water-soluble and membrane proteins [137]. 
By employing molecular docking and absorption, distri-
bution,  metabolism,  excretion,  and toxicity  (ADMET) 
prediction techniques, Meraj et  al. assessed a group of 

Disopyramide analogs and discovered five potential lead 
compounds that were capable of binding to human volt-
age-gated sodium channel (NaV) proteins [135], which is 
beneficial for the development of anesthetics, anticonvul-
sants, and antiarrhythmic drugs [183]. Similarly, Lv et al. 
discovered the potential of a traditional Chinese medi-
cine named gastrodin as a new anesthetic drug[136].

A major goal of computational biology has been to 
explore the mechanisms of protein-ligand binding. 
Based on homology modeling, Elgarf et  al. discovered 
that different benzodiazepine ligands employ discrepant 
modes for binding to GABAA receptors [126]. Pan et al. 
integrated several computational methods, including 
homology modeling, molecular docking, and molecu-
lar dynamics simulations, to investigate the interaction 
between benzhydrylpiperazine agonists and human δ 
opioid receptors [127]. Yuan et  al. combined molecu-
lar dynamics simulations and molecular docking to 
explore the potential binding mechanism of propofol 
to GABAARs [131]. Lima Neto et  al. were the pioneers 
in introducing quantum biochemical computational 
approaches to investigate the binding mechanism of 
existing agonists and antagonists to the GABAB receptor 
[139]. A recent study by Manzur-Villalobos et  al. evalu-
ated the association between the Nav1.7 channel and 
local anesthetics through virtual screening, molecular 
docking and dynamics [133].

4.2  Hit and lead discovery
In drug discovery, the term "hit and lead discovery" 
encompasses the initial stages involved in identifying 
and optimizing potential drug candidates. This umbrella 
term includes two phases: hit discovery and hit-to-lead. 
The hit discovery phase focuses on the identification of 
compounds or molecules that exhibit promising activ-
ity against a particular target or disease [184]. Once hits 
are identified, the hit-to-lead phase begins, where the 
selected hits undergo further optimization to enhance 
their potency, selectivity, and other desirable properties 
[185]. These two stages typically involve high-throughput 
screening or virtual screening of large compound librar-
ies, de novo drug design, and structure-activity relation-
ship studies.

4.2.1  High‑throughput screening and virtual screening
Since the mid-1990s, HTS has been widely considered 
the primary catalyst for hit discovery [186, 187]. This 
method enables the identification of potential "hits" from 
large-scale chemical libraries [188]. In recent years, there 
has been a notable advancement in VS techniques, which 
can complement high-throughput discovery methods. 
Both academia and industry have replaced traditional 
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drug screening methods with HTS and VS due to their 
simplicity, cost-effectiveness, and efficiency [189].

Through HTS and VS, Feinberg et al. identified a prom-
ising molecule named FMP4, which is an agonist for µ OR 
and possesses a unique structure [134]. Cayla et al. iden-
tified a group of lead compounds based on a distinctive 
chemical core. These compounds exhibited comparable 
anesthetic efficacy while minimizing detrimental cardio-
vascular side effects, making them superior to traditional 
intravenous anesthetics [140]. Chandra et al. introduced 
a tiered approach for the identification of Nav1.7 inhibi-
tors. A novel compound named DA-0218 exhibited anal-
gesic and anti-pruritic properties [132]. Ebalunode et al. 
created a structure-based pharmacophore modeling 
approach to identify novel anesthetic compounds [146]. 
Peng et al. discovered prospective anesthetics by virtual 
screening 50,000 compounds based on drug-likeness 
and ADMET properties, with five lead compounds dem-
onstrating the potential for binding to GABAA protein 
[143]. Yang et al. discovered two innovative compounds 
with reversible sedative-hypnotic activity [141]. Peng 
et  al. identified two FDA-approved drugs that had not 
been recognized as sigma 1 receptor  (S1R) antagonists 
previously [142].

Specifically, fluorescence-based techniques are becom-
ing the most commonly used detection method due to 
their great sensitivity and automation-friendliness[189, 
190]. For example, Lea et  al. utilized a surrogate bind-
ing target for anesthetics and an environment-sensitive 
fluorescent probe to identify novel anesthetics [144]. 
McKinstry-Wu et al. developed a high-throughput assay 
by choosing a fluorescent anesthetic agent and apoferri-
tin as a surrogate for the anesthetic target. In their study, 
two potent agents with low toxicity were selected from a 
large-scale library [145].

4.2.2  De novo drug design
Over the past 15 years, de novo drug design—the pro-
cess of generating innovative compounds with desirable 
properties but without a beginning template has emerged 
as a potential area of study [191]. De novo drug design 
can produce entirely novel and distinctive molecules to 
enhance existing chemical libraries, whereas traditional 
virtual screening often screens candidate compounds 
from existing synthetically accessible, druglike chemical 
space [192, 193]. Nevertheless, lead compounds gener-
ated through this approach typically exhibit low synthetic 
accessibility [194].

With the emergence and flourishing of deep learning 
and reinforcement learning techniques, de novo drug 
design has offered promising opportunities for develop-
ing new and effective drugs. For instance, CNNs [195], 

RNNs [192], generative adversarial networks [196] and 
VAEs [197] have already been applied in this field.

Given the limited brain retention capacity of the 
commonly used opioid antagonist Naloxone, the devel-
opment of improved opioid antagonists is crucial in 
tackling the opioid epidemic. Deng et al. created a deep 
reinforcement learning (DRL) framework to generate 
molecular simplified molecular-inputine-entry sys-
tem  (SMILES), predict chemical properties, and opti-
mize SMILES into desired properties. In this study, 
they sampled 10k SMILES and filtered out 6 potential 
lead compounds, demonstrating their DRL framework’s 
ability to discover better opioid antagonists [165].

4.2.3  QSAR
Using computational methods like QSAR to calcu-
late the ligand-binding affinity is of special interest 
because it can accelerate the drug discovery process at 
an early stage [198, 199]. In a study by Lu and Zhou, 
a novel method was proposed by bridging 3D-QSAR 
and receptor modeling to predict the binding affinity 
of imidazobenzodiazepines to GABAA receptor sub-
types [148]. By constructing 3D-QSAR models, Peng 
et al. accurately predicted the binding affinity between 
ligands and the S1R [142], Pan et  al. evaluated the 
binding affinity of a set of benzhydrylpiperazine δ opi-
oid receptor agonists [127]. Floresta et  al. built three 
distinct QSAR models based on a class of fentanyl-
like structures to predict the binding affinity of µ OR 
ligands [153]. Jia et  al. presented a fresh workflow to 
discover new analgesic opioids with higher binding 
affinities. For each bioassay endpoint taken from the 
PubChem dataset, they created 12 individual QSAR 
models using a mix of four different chemical descrip-
tors and three machine learning techniques (k-NN, RF, 
and SVM) [149]. Mehdipour et al. estimated the anes-
thetic potency of polyhalogenated ethers by develop-
ing a QSAR model that incorporates four parameters: 
logP, molecular polarizability, most positive charge, and 
electrostatic potential parameters [150].

4.3  Lead optimization
After identifying lead compounds with the desired 
bioactivity and selectivity, the subsequential step is 
lead optimization, which aims to improve their drug-
like properties and enhance the chance of developing 
drug candidates. This involves iterative cycles of com-
pound design, synthesis, and testing to optimize various 
aspects, including potency, selectivity, pharmacokinetics 
(PD), pharmacodynamics (PK), metabolic stability, and 
safety [200].
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4.3.1  Evaluation of ADMET properties
PD and PK parameters, including ADMET, have long 
been critical considerations for researchers in the drug 
discovery process [201]. Lack of efficacy and safety has 
been a key factor contributing to the late-stage attrition 
of drug candidates [202]. The emergence of in silico pre-
diction offers a new dimension for assessing multiple 
ADMET properties at every stage of drug discovery, ena-
bling the optimization of virtual screening and experi-
mental testing process by filtering out compounds with 
adverse ADMET profiles [203, 204].

Manzur-Villalobos et al. predicted the ADMET proper-
ties of the amide-type local anesthetic analogs and identi-
fied a potential brand-new local anesthetic that showed 
high binding capacity [133]. Jagannathan endeavored to 
discover novel psychoactive metabolites from Cannabis 
sativa, the smoke of C. sativa, and other phytocannabi-
noid matrices, based on the physiochemical descriptors 
and ADMET properties predicted by four ML techniques 
(NB, SVM, MLP, and hierarchical clustering) [156]. Coli 
Louvisse de Abreu et al. evaluated multiple types of tox-
icity of the epinephrine and norepinephrine degradation 
products using an ADMET predictor [151].

Different from de novo drug design, there are two typi-
cal approaches to designing new drugs based on exist-
ing drug molecules. One is to screen new compounds 
from derivatives of FDA-approved drugs[205]. In a 
recent study, Azamatov et  al. introduced computational 
AMDET prediction methods to develop novel local anes-
thetics with lower toxicity. Through the study of a group 
of 1-aryl tetrahydroisoquinoline alkaloid derivatives, they 
also proposed explainable correlations between chemical 
structures and acute toxicity [152]. Another approach is 
to refine currently available drugs by optimizing PK/PD 
parameters. Jiang et  al. utilized molecular docking and 
PK prediction techniques to design etomidate analogs 
that exhibit comparable anesthetic potency while avoid-
ing adrenocortical suppression [138].

A variety of anesthetic and psychotropic drugs exert 
their effects on the central nervous system (CNS). Pre-
dicting the penetration of the blood-brain barrier (BBB) 
is a significant part of assessing ADMET properties and 
designing CNS drugs [206, 207]. A study by Yu et  al. 
proposed an innovative hybrid method for identifying 
potential CNS drug candidates by combining three tra-
ditional ML algorithms (DT, RF, SVM) with the DL algo-
rithm (Graph Convolutional Network). The resulting 
model generated six explainable sub-structural features 
that enable the rapid assessment of a molecule’s potential 
to penetrate BBB and become a CNS drug [162].

PK/PD modeling is a widely utilized method for assess-
ing dose-concentration-response correlations, providing 
valuable insights for the understanding of drug delivery 

systems and the process of drug discovery [208, 209]. 
Sevoflurane is one of the most commonly used inhala-
tion anesthetics but may lead to neurotoxicity and cog-
nitive dysfunction [210]. Dhandore et  al. combined PK/
PD modeling and six machine-learning regression tech-
niques (Linear Regression, Support Vector Regression, 
Bayesian Ridge, Decision Tree Regressor, Gaussian Pro-
cess Regressor, and XGBoost) to investigate the effects of 
sevoflurane concentration changes on ten body param-
eters. The XGBoost model exhibited the least errors and 
identified SpO2 as the most crucial body parameter to 
study drug effects during surgical anesthesia [160].

4.3.2  Prediction of side effects
Unexpected side effects are a major contributor to late-
stage drug development failures and can even lead to 
the withdrawal of FDA-approved drugs [211–213]. Tra-
ditional approaches for evaluating adverse effects like 
animal models and clinical research, are time-wasting, 
costly, and not easily scalable [214–216]. Consequently, 
there is growing interest in using computational methods 
to detect and predict drug side effects.

Accurately predicting postinduction hypotension (PIH) 
can greatly assist clinicians in recognizing the poten-
tial risk of medication use and selecting the appropri-
ate induction agent. In a study by Kendale et  al., eight 
supervised ML techniques (logistic regression, SVM, 
NB, k-NN, linear discriminant analysis, random forest, 
neural nets, and GBM) were employed to assess the risk 
of hypotension [155]. Lundberg et al. created an ensem-
ble machine learning model that significantly augments 
anesthesiologists’ predictive capabilities concerning the 
risk of intraoperative hypoxemia, both in preoperative 
assessment and real-time monitoring. Their ML system 
leverages time-series data extracted from the patient’s 
monitors and anesthesia machine, alongside static infor-
mation, including age, gender, smoking status, height, 
and weight, which serve as inputs for the model. Mean-
while, the system enhances interpretability by furnishing 
insights into the contribution and trends of various risk 
factors [163].

Abnormal movements like convulsions, seizures, or 
severe involuntary muscular contractions occasion-
ally happened during anesthesia induction. Nagata et al. 
developed a convulsion prediction model based on 
heart rate variability to predict drug-induced convul-
sions. Their model is built based on an anomaly detec-
tion algorithm named multivariate statistical process 
control [168]. Zhang et al. presented an enhanced SVM 
model to predict the seizure liability of chemicals, which 
was characterized by its cost-effectiveness, expeditious-
ness, and superior accuracy [161]. Gao et  al. developed 
an ML model that combined PCA, SVM and CNNs to 
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effectively differentiate seizure-inducing drugs from safe 
drugs [159].

To improve clinical decision-making, monitoring and 
predicting muscle relaxation in patients is important, as 
muscle relaxants are a critical component of balanced 
anesthesia. Wang et  al. utilized DL techniques (RNN, 
GRU, LSTM) to predict the real-time Train-of-four ratio 
of cisatracurium, a commonly used muscle relaxant. 
Additionally, they implemented transfer learning by cal-
culating patient similarity based on body mass index and 
age and constructing pre-trained models [167].

5  Challenges
Despite the widespread use of CADD and ML methods 
in the field of anesthetic drug discovery in recent years, 
the inherent disadvantages and limitations of these meth-
ods, along with the complexity of the anesthetic process, 
are still inescapable hurdles to the development of new 
anesthetic drugs.

5.1  Limitations of CADD methods
SBDD heavily relies on the availability of high-resolution 
structural data, such as protein crystal structures. How-
ever, acquiring experimental structures for all target 
proteins of interest poses significant challenges and over-
heads. Furthermore, SBDD often overlooks the impact 
of solvent molecules like water in protein-ligand interac-
tions [217]. Another limitation of SBDD is its tendency to 
focus on a single target, disregarding the fact that drugs 
can interact with multiple targets within the human body. 
Complex diseases and physiological activities can involve 
multiple targets, thereby restricting the applicability of 
SBDD in such scenarios.

LBDD requires an ample supply of high-quality ligand 
data for the target protein. The efficacy of LBDD is greatly 
influenced by the accessibility and quality of the train-
ing set. In addition, LBDD predominantly concentrates 
on designing drugs based on known ligands that have 
been previously identified and characterized, but it often 
neglects the significance of considering protein structure 
and flexibility [218]. Also, Computational methods used 
in LBDD such as search algorithms, and scoring func-
tions still have limited accuracy, necessitating further 
validation in the wet lab.

The limitations specific to each of the commonly used 
CADD methods are described below. To start with, the 
accuracy of homology modeling greatly relies on the 
quality and availability of target-template sequence align-
ment [219]. Secondly, the sampling methods utilized in 
molecular dynamics simulations still require further 
improvement to enhance their accuracy and efficiency 
[56]. Thirdly, targets and receptors exhibit consider-
able flexibility, making molecular docking a particularly 

challenging task [39]. In the case of virtual screening, a 
major limitation lies in the absence of robust scoring 
metrics [71]. Moreover, the selection of training com-
pounds significantly influences the quality of the gener-
ated pharmacophore model [74]. Eventually, it bears to 
mention that many CADD methods require substantial 
computational power and storage resources, which can 
pose constraints on their widespread application.

5.2  Disadvantages of ML/DL methods
The quality of the dataset is one of the most significant 
factors affecting the performance of machine learn-
ing models [220]. However, data currently available are 
often not only low in quantity but also far from high-
quality, well-annotated, balanced labeling and compre-
hensive [221, 222]. In particular, there are few specialist 
datasets available for anesthetic drug development. Sec-
ondly, drug discovery datasets incorporate various 
forms of biological, structural, and chemical informa-
tion, such as adverse medication effects in patients, 
multi-omics data in pharmacology, and bioactivity 
assays in the wet lab [223]. Researchers must carefully 
select appropriate data handling methods since prob-
lems often can’t be treated as simple classification or 
regression tasks. Lastly, the creation of dedicated data-
bases often requires significant time and effort from 
experienced professionals for manual data annotation. 
Due to competition among pharmaceutical companies 
and high dataset construction costs, high-quality data-
sets are frequently not publicly available [224].

Lack of transparency and explicability is one of the 
intrinsic flaws of machine learning that has been widely 
criticized [223, 225]. "Black box" machine learning mod-
els make predictions but without providing explanations 
of how and why the model reaches a particular conclu-
sion [226, 227]. Nowadays, only a few studies have inves-
tigated the explanatory power of their models [222]. This 
problem greatly hinders the promotion of ML meth-
ods in the drug discovery process since researchers are 
more interested in the biological mechanism behind the 
prediction.

There are some other important factors closely related 
to the performance of machine learning models. Firstly, 
many algorithms are not out-of-the-box and require re-
initialization and fine-tuning of parameters, resulting in 
poor repeatability of results [224]. For example, the start-
ing values like weights and biases in neural networks are 
usually chosen randomly, which means different initiali-
zations can lead to different trained models with varying 
performance. Additionally, overfitting and underfitting 
often occur during the training of the model, which sig-
nificantly impairs predictive accuracy. Finally, training 
ML/DL models often necessitates extensive storage and 
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computing resources [228]. Large-scale models can’t 
be trained in a short period of time without a sufficient 
number of consumer-grade graphical processing units or 
tensor-processing units.

5.3  Unclear mechanism of anesthesia
Although the notion that general anesthetics act as 
"drugs without receptors" has been disproved, the precise 
mechanism of anesthesia remains elusive, making it more 
challenging to develop novel anesthetic drugs [229, 230].

Recently, there has been growing evidence to suggest 
that the primary molecular targets for general anesthet-
ics are neurotransmitter- and voltage-gated receptors, 
such as GABAA receptors, glycine receptors, nicotinic 
acetylcholine receptors, and glutamate receptors [231, 
232]. However, a drug’s effectiveness is not solely deter-
mined by its activity on the intended target, but also by 
its potential effects on other targets. This is especially rel-
evant in complex therapeutic procedures such as general 
anesthesia, which often require a combination of drugs 
to achieve the desired effect on numerous targets [233]. 
Therefore, the development of novel anesthetics necessi-
tates the consideration of multiple targets, further ampli-
fying the complexity of this task.

Furthermore, the development of effective and safe 
drugs requires a meticulous equilibrium between bio-
logical activity, appropriate pharmacodynamic/pharma-
cokinetic parameters, and manageable toxicity. These 
diverse properties are interrelated yet distinct. To opti-
mize multiple properties without compromising one 
another, researchers must either construct an ensemble 
model capable of predicting all intended properties or 
train multiple individual models to optimize each prop-
erty sequentially [220, 222].

6  Conclusion
Undoubtedly, CADD and ML methods have been 
adopted by more and more pharmaceutical companies 
and research teams for designing novel anesthetic drugs. 
It is worth noting that Large Language Models (LLMs), 
such as ChatGPT, have made remarkable strides and gar-
nered unprecedented attention recently. LLMs have also 
exhibited significant potential in bioinformatic analysis 
and drug discovery tasks, aiding researchers in generat-
ing functional protein sequences, identifying new poten-
tial targets, predicting toxic effects of drugs, interpreting 
drug-drug interactions, and extracting accurate pharma-
cological data from the scientific literature.

Despite the successful identification of several prom-
ising anesthetic compounds through computational 
methods, the development of new commercially avail-
able anesthetics remains a formidable challenge. Mul-
tiple obstacles continue to hinder progress, such as the 

scarcity of high-quality datasets, inherent limitations 
of computational methods, and the incomplete under-
standing of the underlying mechanisms of anesthesia. In 
a nutshell, further explorations of the physiological basis 
of anesthesia and continuous advancements in compu-
tational techniques are imperative. Only through these 
efforts can researchers develop novel anesthetics with 
reduced expense and shorter development timelines.
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