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Abstract 

The list of drugs patients may be exposed to during the perioperative and postoperative periods is potentially exten-
sive. It includes induction agents, neuromuscular blocking drugs (NMBDs), opioids, antibiotics, sugammadex, colloids, 
local anesthetics, polypeptides, antifibrinolytic agents, heparin and related anticoagulants, blue dyes, chlorhexidine, 
and a range of other agents depending on several factors related to individual patients’ clinical condition and pro-
gress in the postoperative recovery period. To avoid poor or ultrarapid metabolizers to a particular drug (for example 
tramadol and codeine) or possible adverse drug reactions (ADRs), some drugs may need to be avoided during or 
after surgery. This will be the case for patients with a history of anaphylaxis or other adverse events/intolerances to a 
known drug. Other drugs may be ceased for a period before surgery, e.g., anticoagulants that increase the chance of 
bleeding; diuretics for patients with acute renal failure; antihypertensives relative to kidney injury after major vascular 
surgery; and serotonergic drugs that together with some opioids may rarely induce serotonin toxicity. Studies of ger-
mline variations shown by genotyping and phenotyping to identify a predisposition of genetic factors to ADRs offer 
an increasingly important approach to individualize drug therapy. Studies of associations of human leukocyte antigen 
(HLA) genes with some serious delayed immune-mediated reactions are ongoing and variations of drug-metabolizing 
cytochrome CYP450 enzymes, P-glycoprotein, and catechol-O-methyltransferase show promise for the assessment 
of ADRs and non-responses to drugs, particularly opioids and other analgesics. Surveys of ADRs from an increasing 
number of institutions often cover small numbers of patients, are retrospective in nature, fail to clearly identify culprit 
drugs, and do not adequately distinguish immune-mediated from non-immune-mediated anaphylactoid reactions. 
From the many surveys undertaken, the large list of agents identified during and after anesthesia and surgery are 
examined for their ADR involvement. Drugs are classified into those most often involved, (NMBD and antibiotics); 
drugs that are becoming more frequently implicated, namely antibiotics (particularly teicoplanin), and blue dyes; 
those becoming less frequently involved; and drugs more rarely involved in perioperative, and postoperative adverse 
reactions but still important and necessary to keep in mind for the occasional potential sensitive patient. Clinicians 
should be aware of the similarities between drug-induced true allergic type I IgE/FcεRI- and pseudoallergic MRGPRX2-
mediated ADRs, the clinical features of each, and their distinguishing characteristics. Procedures for identifying MRG-
PRX2 agonists and diagnosing and distinguishing pseudoallergic from allergic reaction mechanisms are discussed.
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Graphical Abstract

1 Introduction
Considering the collective number of possible different 
drugs being taken by patients for existing conditions 
before anesthesia and surgery [1], the variety of drugs 
used during the perioperative period [2, 3], and range 
of medications administered postoperatively, especially 
for pain [4, 5], it is apparent that anesthetists and sur-
geons need to be constantly aware of the possibility of 
adverse drug reactions (ADRs) that may affect patient 
recovery and management. ADRs account for a signifi-
cant number of hospital admissions and result in con-
siderable morbidity, mortality, and cost. One UK study, 
for example, found an admission prevalence of 6.5% [6] 
while the incidence of serious ADRs in US hospitals 
was 6.7% with a fatality rate of 0.32% [7].

The extensive collective list of drugs used in anes-
thesia and surgery in the perioperative period includes 

induction agents (propofol, midazolam, ketamine, and 
possibly thiopentone); neuromuscular blocking drugs 
(NMBDs); opioids; antibiotics, particularly penicillins 
and cephalosporins; sugammadex; colloids; local anes-
thetics; polypeptides such as protamine; antifibrino-
lytic agents; heparin and related anticoagulants; blue 
dyes for sentinel lymph node localization; chlorhex-
idine; and others ([8]; see below for information on 
the individual background drugs in this list). In con-
sidering adverse reactions for an individual patient at 
any one time, one must include the total list of medi-
cations the patient is currently or has recently been 
exposed to. That will be the sum of drugs routinely, or 
occasionally, being taken (including over-the-counter 
products) for existing conditions, plus drugs admin-
istered preoperatively and postoperatively. Drugs 
administered postoperatively will, of course, be subject 
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to length of patient recovery periods and ongoing 
treatments so the collective list of drugs for many dif-
ferent patients with different clinical conditions will be 
diverse and extensive.

Here we examine some properties, and interactions 
associated with drug-induced adverse effects together 
with genetic and non-genetic factors influencing enzyme 
function and drug metabolism and where ongoing 
research based on patient genotyping promises to bet-
ter explain patient responses to a wide range of treat-
ments. This is particularly so for patient responses to 
analgesic treatments employed in anesthesia and surgery. 
This approach, together with detailed information of a 
patient’s current medication and histories of previous 
drug-induced reactions; clinical descriptions of reactions 
to individual drugs; diagnostic details; and, where known, 
underlying mechanistic insights; provides the physician 
with the best combination of information to anticipate a 
potential ADR and be already prepared to deal with it.

2  Anticipation of potential adverse drug effects
There are some potential culpable drugs that need to 
be considered before anesthesia and surgery. Examples 
include the claim that the use of diuretics in critically 
ill patients with acute renal failure is associated with an 
increased risk of death [9] and the possible association 
between preoperative antihypertensive management of 
medication and postoperative acute kidney injury after 
major vascular surgery. Relevant drugs include angioten-
sin-converting enzyme inhibitors, angiotensin II receptor 
binding inhibitors, calcium channel blockers, and diuret-
ics. Note, however, that lack of consensus between guide-
lines on this subject remains [10, 11]. Anticoagulants that 
increase the chance of bleeding, for example, warfarin, 
enoxaparin, and P2Y12 inhibitors such as clopidogrel, 
prasugel, and ticlopidine (Sections 5.8 and 6) might also 
be ceased for a few days before elective surgery depend-
ing on the patient’s thrombotic risk [12].

In addition to known drug-induced hypersensitivities 
of some patients, including rare cases of anaphylaxis 
[6–8, 10], patients receiving a combination of two or 
more serotonergic drugs may carry the risk of seroto-
nin toxicity [13]. Those patients already taking mono-
amine oxidase inhibitors (MAOIs), selective serotonin 
reuptake inhibitors (SSRIs), serotonin norepinephrine 
reuptake inhibitors (SNRIs), 3,4- methylenedioxym-
ethamphetamine (MDMA or ‘ecstasy’), or tricyclic 
antidepressants are particularly at risk if some opioids, 
namely those known to be serotonin reuptake inhibi-
tors (especially tramadol, meperidine, and perhaps tap-
entadol and fentanyl), are given during or soon after 
anesthesia [14].

3  Genotyping and phenotyping to individualize 
drug therapy

Variations in the germline affect drug responses and such 
variants, and drug-drug interactions, are a major source 
of different individual drug responses. Genotyping and 
phenotyping tests are complementary approaches to 
individualize drug therapy [15] and an important tool 
in the study of ADRs [16, 17]. Early important findings 
from studies of the possible predisposition of genetic fac-
tors with ADRs found associations of human leukocyte 
antigen (HLA) genes with some serious delayed immune-
mediated cutaneous reactions and liver injuries start-
ing with the association of HLA-B*57:01 with abacavir 
hypersensitivity syndrome [17–19]. Table  1 lists some 
examples of HLA alleles associated with causative drugs 
and different hypersensitivity reactions including allopu-
rinol-, carbamazepine-, and sulfamethoxazole-induced 
Stevens-Johnson syndrome (SJS) and toxic epidermal 
necrolysis (TEN); carbamazepine-induced maculopapu-
lar rash (MPR) and drug reaction with eosinophilia and 
systemic symptoms (DRESS); and amoxicillin-clavulanic 
acid with drug-induced liver injury (DILI) [20].

Cytochrome CYP450 enzyme genotyping and/or phe-
notyping for 537 patients (241 had genotyping and phe-
notyping, 61 genotyping only and 235 phenotyping only) 
were undertaken to test for inefficacies of drug treatment 
(i.e., low drug levels) and ADRs (reflected in high drug 
levels). Genotyping was found to correctly predict poor 
metabolizer phenotypes for most CYP isoenzymes but 
results for normal, intermediate, and ultra-rapid metabo-
lizers were more variable. Figure 1 summarizes the asso-
ciations between phenotype and/or genotype and clinical 
responses for different drug groups. Analgesic/anesthetic 
drugs, antidepressants, antineoplastics, and immuno-
suppressants showed the highest numbers of association 
occurrences. The genotype-phenotype results explained 
fully, or at least partly, 44% of the particular clinical 
event, the main ones being ADRs to analgesic/anesthetic 
drugs (n = 187), antidepressants (n = 153), antineoplastics 
(n = 97), and immunosuppressants (n = 93) [15].

Variations of CYP enzymes, the primary multi drug 
transporter P-glycoprotein (permeability glycopro-
tein, P-gp), and the enzyme catechol-O-methyltrans-
ferase that catabolizes catecholamines, have been used 
to assess ADRs and non-responses to drugs including 
analgesic drugs used for chronic pain, particularly opi-
oids. Catechol-O-methyltransferase polymorphisms also 
affects opioid dose with the dose lower for wild-type 
compared to the mutated genotypes [16]. For the assess-
ment of ADRs, CYP450 are the most studied enzymes. 
In a study to evaluate the link between lack of effective, 
or adverse drug therapy, patients’ genotype and/or phe-
notype were obtained to assess CYP and P-glycoprotein 
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activities in pain clinic patients referred for an ADR or 
a non-response to chronic pain. The majority of patients 
studied involved an ADR (59.7%) while 37.9% were non-
responders. The prodrug opioids (tramadol, codeine, 
oxycodone, dextromethorphan), were most involved fol-
lowed by other opioids, antidepressants, nonsteroidal 

antiinflammatory drugs (NSAIDs), and acetaminophen 
(paracetamol). CYP and P-gp metabolic pathways for 
some analgesics are summarized in Table 2 [16]. Results 
showed a link between an ADR and modified CYP and 
P-glycoprotein in a high proportion of cases and this was 
especially apparent when the drug was a prodrug opioid, 

Table 1 Associations between severe hypersensitivity reactions and HLA alleles

Reproduced from Brandt O, Bircher AJ. Delayed-type hypersensitivity to oral and parenteral drugs. J Germ Soc Dermatol. 2017;15:1111-32 [20] with permission from 
John Wiley & Sons

SCAR  Severe cutaneous adverse reactions (AGEP, DRESS and SJS/TEN), DILI Drug-induced liver injury, SJS/TEN Stevenson-Johnson-syndrome/toxic epidermal 
necrolysis, DRESS Drug reaction with eosinophilia and systemic symptoms, MPR Maculopapular rash

Causative Drug Hypersensitivity reaction HLA-alleles Ethnicity

Abacavir Abacavir hypersensitivity syndrome HLA-B*57:01 European descent, African-
American, Hispanic descent

Allopurinol SCAR HLA-A*33:03
HLA-B*58:01
HLA-C*03:02

European descent, Han-Chinese

HLA-B*58:01 Japanese, Thai

Amoxicillin-clavulanic acid DILI HLA-A*02:01
HLA-A*30:02
HLA-DQA1*01:02
HLA-DQB1*06:02
HLA-DRB1*15:01
HLA-DRB5*01:01

European descent

Carbamazepine SJS/TEN
DRESS

HLA-A*31:01
HLA-A*31:01
HLA-B*07:02

European descent

MPR
SJS/TEN

HLA-A*02:01
HLA-A*24:02
HLA-A*33:03
HLA-B*15:02
HLA-B*15:11
HLA-B*40:01
HLA-B*58:01
HLA-C*01:02
HLA-C*03:02
HLA-C*08:01
HLA-DQB1*03:03
HLA-DRB1*04:05
HLA-DRB1*07:01
HLA-DRB1*12:02

Han-Chinese

DRESS HLA-A*31:01
HLA-B*51:01

SJS/TEN HLA-B*15:02 Indian

SJS/TEN, MPR,EEM HLA-A*02:06
HLA-A*31:01
HLA-B*51:01

Japanese

SJS/TEN HLA-B*15:11

SCAR HLA-B*39:02

SCAR HLA-A*31:01 Korean

SJS/TEN HLA-B*15:11

SJS/TEN HLA-B*15:02 Malay, Thai, Vietnamese

SJS/TEN, DRESS HLA-B*46:01 Vietnamese

Sulfamethoxazole SJS/TEN HLA-B*38:01/:02/:11 European descent

SJS/TEN HLA-B*15:02
HLA-C*06:02
HLA-C*08:01

Thai



Page 5 of 28Baldo  Anesthesiology and Perioperative Science            (2023) 1:16  

for example, tramadol and codeine, and its link with 
CYP2D6 and clinical outcomes (see below).

A European study, designated PREemptive Pharma-
cogenomic testing for Preventing Adverse drug REac-
tions (PREPARE), has recently been established with 
the aim of examining individual germlines to guide 
optimal drug dosage and provide safer and more effec-
tive drug treatments. Described as an attempt to 
remove the “trial and error” approach to drug prescrib-
ing and progress toward personalized medication, the 
strategy involves more than 6,000 patients and the test-
ing of a panel of 48 genetic variants in 13 pharmaco-
genes with the aim of reducing the incidence of ADRs 
to 39 target drugs [21, 22].

As mentioned above, genetic polymorphisms of 
patients, particularly CYP450 enzymes, e.g., genotypes 
CYP2C9, CYP2C19, and CYP2D6, which may affect 
drug detoxification, activation, and plasma concentra-
tion, may need to be considered as possible contribu-
tors to the individual variability of patient responses 
to some drugs (Table  2). With opioids for example, 
enzyme CYP2D6 converts the prodrugs tramadol to 
O-desmethyltramadol [23] and codeine to morphine 
[24, 25]. O-Desmethyltramadol is six times more 
potent as an analgesic than the parent drug while mor-
phine shows a 200-fold greater affinity for the μ recep-
tor than codeine. However, different allelic variants of 
CYP2D6 genotype produce different enzyme functions: 
CYP2D6*1 and CYP2D6*2 show normal function; for 

CYP2D6*9 and CYP2D6*10 function is decreased; with 
CYP2D6*3 and CYP2D6*4 function is absent; and a 
duplication of alleles such as CYP2D6*1, CYP2D6*2, 
and CYP2D6*35 leads to increased function. With 
tramadol for example, consequences of such allelic 
variants can therefore result in a range of effects from 
lesser pain relief for patients with no, or decreased, 
CYP2D6 activity (resulting in less tramadol converted 
to O-desmethyltramadol) to a life-threatening outcome 
in patients who are ultrarapid metabolizers and who 
therefore require more drug for pain relief [25–27].

The above brief examples serve to illustrate some 
of the sort of potential adverse reactions that might 
be anticipated by careful consideration of a patient’s 
clinical history, list of current medications, germline 
variations shown by genotyping and phenotyping, and 
in some cases, comparative epidemiology concern-
ing the risk of different drug reactions between differ-
ent countries [28]. Beyond that, however, the rareness 
and apparent random nature of drug-induced adverse 
effects, both immune- and non-immune-mediated, 
makes predictions difficult, meaning that there is 
no substitute for vigilance in the assessment of each 
patient and, at the very least, having some knowledge 
of what is already known of adverse reactions to the 
relevant drug(s).

Drugs commonly used in anesthesia and surgery 
together with reports of their involvements in allergic or 
other adverse reactions are now examined.

Fig. 1 Genotype and/or phenotype associated with adverse drug reactions/high drug levels and different clinical conditions. (Reproduced and 
modified from Lorenzini KI, Desmeules J, Rollason V, et al. CYP450 genotype-phenotype concordance using the Geneva Micrococktail in a clinical 
setting. Front Pharmacol. 2021;12:730637. doi: 10. 3389/ fphar. 2021. 730637 [15], an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY))

https://doi.org/10.3389/fphar.2021.730637
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Table 2 Analgesics and their cytochrome P450 (CYP) and P-glycoproten (P-gp) metabolic pathways

Major pathway ; Minor pathway ; Active metabolite

Reproduced from Rollason V, Lloret-Linares C, Lorenzini KI, et al. Evaluation of phenotypic and genotypic variations of drug metabolising enzymes and transporters in 
chronic pain patients facing adverse drug reactions or non-response to analgesics: A retrospective study. J Pers Med. 2020; 10:198. doi: 10. 3390/ jpm10 040198 [16], an 
open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:// creat iveco mmons. org/ licen ses/ by/4. 0/)

https://doi.org/10.3390/jpm10040198
http://creativecommons.org/licenses/by/4.0/
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4  Perioperative drug reactions: clinical 
features, comparative epidemiology, surveys, 
and incidences of drug groups involved

Although anesthesia today has an impressive record of 
safety, small but significant risks that are hard to over-
come remain. These risks include an adverse response 
to the rapid administration of a variety of potent drugs 
over a short period of time, patients cannot draw atten-
tion to early symptoms, drapes can cover cutaneous 
symptoms such as pruritus and rash, some already sick 
patients may show abnormal responses, and there may 
be an early absence of symptoms in a condition show-
ing only a single manifestation. A pseudoallergic, or 
anaphylactoid, reaction, for example, a drug-induced 
release of histamine and perhaps other allergic/inflam-
matory mediators, may show the same clinical picture 
as a true immune-mediated anaphylactic response 
making it difficult to distinguish the two. In such 
cases, identification of the mechanism of the reaction 
is important for subsequent patient safety during drug 
treatments and anesthesia [8].

Symptoms of anaphylaxis and anaphylactoid responses 
are often similar, making it difficult to distinguish the 
two based on symptoms alone although the former reac-
tion tends to be more severe [8]. On a graded scale, most 
anaphylactic reactions are classified as grade 2 or 3 (and 
sometimes 4) depending on presence of cutaneous symp-
toms. Mild reactions are grade 1, moderate reactions 
grades 2–3 and severe reactions grade 3–4 [29–31]. In 
drug-induced reactions during the perioperative period, 
the full list of possible symptoms does not always mani-
fest in every patient [32–36]. Cardiovascular collapse, 
the sole feature in ~60% of cases, is due to vasodilation 
and pooling of peripheral blood which reduces venous 
return and cardiac output. It is the most common, and 
usually the worst, life-threatening feature. It may not be 
the only sign, for example, asthmatic patients may expe-
rience bronchospasm which can be the first indication 
of a reaction and persisting lung inflation is often a diffi-
cult problem to reverse. Bronchospasm, more often seen 
in anaphylaxis, and the sole feature in up to about 20% 
of cases, may be critical since the high pressures needed 
for inflation reduce venous return and may increase ven-
tricular compliance. It is not clear if the human heart is 
a target organ in anaphylaxis [37]; cardiac failure may 
occur in patients with cardiac disease during anaphylaxis 
but not in patients with normal cardiac function. Non-
cardiogenic pulmonary edema is occasionally seen as a 
single feature of anaphylaxis and a postmortem finding, 
for example, due to reaction to protamine after cardiac 
bypass surgery. Angioedema or laryngeal edema may 
progress slowly making it prudent to prolong patient 
observation. A list of gastrointestinal symptoms which 

may last up to 6  h, includes abdominal pain, vomiting, 
diarrhea, and hematemesis. Cutaneous symptoms are 
more often seen in anaphylactoid (non-IgE-mediated) 
reactions. Other possible signs and symptoms can be 
grouped as: Uncommon features — cardiac failure, 
disseminated intravascular coagulation, hemoptysis, 
melena. Minor features — rash, flushing, rhinitis, cough, 
lacrimation, urticaria, pruritus, aura, conjunctivitis. Late 
features — headache, edema, thromboembolism, wound 
hematoma, vaginal discharge [32–35].

Given the enormous number of anesthetics admin-
istered throughout the world, for example recent esti-
mates of 45 million and 8 million per year in the USA and 
France, respectively, drug-induced immediate hypersen-
sitivity or type I IgE-mediated reactions and anaphylac-
toid reactions during the perioperative period are rare. 
Early reports on anaphylaxis in anesthesia date to Fisher 
and More in 1981 [38] who found an incidence of 1 in 
5,000 to 1 in 25,000 with a mortality rate of 3.4%. In a 
later, more comprehensive series, Fisher and Baldo [33] 
estimated an incidence of 1 in 10,000 to 1 in 20,000. 
Subsequent estimates from different countries generally 
show estimated incidences ranging from ~1 in 1,000–
2,000 to 1 in 20,000. For example: Australia 1–5,000–
20,000 and 1–11,000, New Zealand 1 in 1–5,000–13,000, 
U.K. 1 in 5,000–10,000, France 1–3,500–6,000 and 
1–4,600–13,000; Spain 1 in 10,200, Norway 1–6,000, 
Japan 1–10,000 and 1–18,600, Singapore 1 in 10,000, and 
1–7000, and Thailand 1 in 5,000 [8].

The most comprehensive data on perioperative drug-
induced anaphylaxis is contained in the Australian 
30-year series maintained by Malcolm Fisher at Royal 
North Shore Hospital of Sydney, in the ongoing French 
series beginning with results from 1984–1989 and still 
underway, and the smaller 2005 Norwegian study [8, 33, 
35, 36, 39–43]. Table 3 shows a side-by-side comparison 
of results from 606 patients in the Australian series and 
1816 patients in France at that time. A summary of the 
most important features in these results includes the pre-
dominance of NMBD-induced reactions in both series; a 
high incidences of reactions to succinylcholine and rocu-
ronium amongst the NMBDs; a much lower incidence 
of latex anaphylaxis occurred in Australia; penicillins 
and cephalosporins were the dominant culprit antibiot-
ics with the former implicated more often in France and 
cephalosporins nearly five times more involved in the 
Australian reactions; opioids were implicated in only 
about 2% of reactions; and gelatin proved to be the pre-
dominant colloid in both series. For more than three 
decades French investigators have published a total of 11 
surveys covering the years 1984–2020. During that time, 
NMBDs have remained the predominant cause of ana-
phylaxis (see Section  5.2), reactions to induction agents 
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and opioids have decreased (Sections 5.1 and 5.8), drugs 
such as colloids (Section  5.7) have remained stable but 
marked increases in reactions to antibiotics (Section 5.4) 
and blue dyes (Section 5.6) have occurred.

Except for a few investigations in the U.S. involv-
ing small numbers of patients, no comprehensive and 
ongoing studies of this subject have been published. For 
many years there was less interest in the United States 
where reactions were said to be rare although it may 
be that there was less interest in the subject or reac-
tions were largely unrecognized or went unreported. 
Following the early French and Australian surveys, 
numerous epidemiological studies of perioperative ana-
phylaxis, many retrospective, have been published; a 
recent count identified 55. However, as well as the small 
numbers of patients examined in many countries, the 
retrospective nature of the studies, failures to clearly 
identify culprit drugs, and uncertainties in distinguish-
ing immune-mediated from non-immune-mediated 
anaphylactoid reactions are, as pointed out by Harboe 
et  al. [39], recurring criticisms. There are few, or no, 
accessible published findings with adequate numbers 
of patients and new information, from many countries, 
including, but not exclusively, Africa, many Asian and 
Arab countries, the Indian Subcontinent, Central and 
South America, much of Eastern Europe and Russia. 
In addition, and in common with the early Australian, 
French, Scandinavian, and recent UK investigations 
(see below), NMBDs and antibiotics have been identi-
fied as the most important culprit drugs.

In a survey covering the period 2005–2012, the first 
multi-center retrospective examination from the UK, 
161 patients were investigated for anaphylaxis. Skin and 
IgE antibody tests identified 103 patients with an IgE-
mediated drug-induced hypersensitivity, 61 (59.2%) of 
whom reacted to a NMBD, 13 patients (12.6%) reacted 
to an antibiotic, 9 (8.7%) to patent blue V, and 8 patients 
(7.8%) to chlorhexidine [44]. Other drugs previously 
rarely implicated in type I allergic reactions were ondan-
setron (5 patients), midazolam (2) and local anesthetics 
(2 patients). Following the French lead, the recent UK 6th 
National Audit Project (NAP6) survey of perioperative 
anaphylaxis reviewed 266 reports of anaphylaxis grades 

Table 3 Agents responsible for type I immediate allergic 
reactions during anesthesia [8]

From Baldo BA, Pham NH [2021]. Drug allergy: clinical aspects, mechanisms, 
diagnosis, structure-activity relationships.  2nd edition. Cham, Switzerland: 
Springer Nature. https:// doi. org/ 10. 1007/ 978-3- 030- 51740-3 [8]. Reproduced 
with permission from Springer Nature
a Survey in France 1997-2004; 1816 patients. Data from Mertes PM, Alla F, Trechot 
P, et al. Aaphylaxis during anesthesia in France: an 8-year national survey. J 
Allergy Clin Immunol. 2011;128:366–73 [35]
b On-going Australian survey; 606 patients. Data from Fisher MM, Jones K, 

      Agent Reaction (%)
Francea

Reaction (%)
Australiab

Neuromuscular blocking drugs 58.1 61.9
 Succinylcholine 33.4 32.8

 Rocuronium 29.3 16.8

 Atracurium 19.3 9.1

 Vecuronium 10.2 5.6

 Pancuronium 3.6 1.9

 Mivacurium 2.5 0.5

 Cisatracurium 1.7 0.5

  Alcuroniumc 24.8

 d-Tubocurarine 2.9

 Gallamine 2.1

 More than one  drugd 2.1

Hypnotics/Induction agents 2.3 10.4
 Propofol 55.8 6.3

 Midazolam 32.6

 Thiopentone 9.3 52.4

 Ketamine 2.3

 Alfathesin 30.2

 Propanidid 9.5

 Methohexitone 1.6

Latex 19.7 0.8
Antibiotics 12.9 8.6
 Penicillins 49.0 15.4

 Cephalosporins 37.0 73.1

 Vancomycin 5.8

 Others 14.0 5.8

Colloids 3.4 4.6
 Gelatin 89.9 85.7

 Hetastarch 9.5

 Albumin 1.6

 Dextran 70 14.3

Opioids 1.7 2.6
 Morphine 35.5 50.0

 Fentanyl 22.6 25.0

 Sufentanil 22.6

 Nalbuphine 12.9

 Remifentanil 6.5

 Meperidine (Pethidine) 18.7

 Omnopon 6.3

Other agentse,f 2.7e 3.8f

No causal drug detected 7.4

Rose M. Follow-up after anaesthetic anaphylaxis. Acta Anaesthesiol Scand. 
2011;55:99–103 [43]
c Discontinued
d Eight reactions with two different neuromuscular blocking drugs administered
e Made up largely of patent blue, propacetamol, local anesthetics, aprotinin and 
protamine
f Made up of largely of induction agent plus neuromuscular blocker (4 patients), 
protamine, local anesthetics, patent blue, chlorhexidine, contrast media and 
ondansetron

Table 3 (continued)

https://doi.org/10.1007/978-3-030-51740-3
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3–5 over a 1-year period from all UK 6th National Audit 
Project national health service (NHS) hospitals [45]. In 
192 cases, the leading cause of reactions was antibiotics 
with 94 reactions, NMBDs were implicated in 65 reac-
tions, chlorhexidine in 18, and patent blue in 9 with gela-
tin, ondansetron, sugammadex, propofol, protamine, and 
ibuprofen making up a total of 13 reactions. Opioids, still 
widely used but known to be rarely allergenic, were not 
involved in any of the cases. Approximate incidences of 
the most prevalent culprit drugs were patent blue 1 in 
7,000, NMBDs 1 in 19,000, antibiotics 1 in 27,000, and 
chlorhexidine 1 in 127,500. Incidence of anaphylaxis per 
100,000 for the two most implicated drug groups were 
NMBDs 5.3, antibiotics 4.

Overall then, results from a relatively small number of 
clinically adequate surveys from different countries (see 
expanded review in [8]), reveal that NMBDs and antibi-
otics provoke a clear majority of perioperative allergic 
reactions. More detailed analyses of the involvement of 
the different drug groups are shown in the relevant sec-
tions below.

5  Individual drug groups implicated in reactions
Adverse drug reactions during the postoperative period 
also need to be anticipated since patients, both those 
remaining in hospital or discharged, may remain on, or 
commence, new therapies. These may include NSAIDs 
and opioids for pain relief; a variety of anti-clotting agents 
(e.g., the vitamin K antagonist warfarin, antiplatelet drugs, 
direct oral anticoagulants, heparin including low molecu-
lar weight forms, synthetic pentasaccharide inhibitors of 
factor  Xa, and direct thrombin inhibitors), proton pump 
inhibitors to treat gastroesophageal reflux disease; and 
a variety of other therapies for ongoing blood pressure, 
heart, vasculature, lung, kidney, and other diseases.

In the following sections, the drugs shown to be the 
leading causes of anaphylaxis during anesthesia in the 
most comprehensive surveys from France and Australia 
and more recent surveys involving lesser patient num-
bers, are discussed in detail. In addition, a list of other 
drugs, less often involved in provoking reactions, but 
none the less important, are summarized.

5.1  Hypnotics/induction agents
Before being replaced by propofol and, to lesser extent 
etomidate, Cremophor-based induction agents alfathesin 
and propanidid contributed significantly to life-threat-
ening anaphylaxis during anesthesia with incidences as 
high as 1 in 875 cases. This was clearly shown in an early 
Australian survey involving 443 patients where thiopen-
tone, alfathesin, and propanidid accounted for 52.6%, 
37.2% and 7.7%, respectively of anaphylactic reactions to 
hypnotics [33]. As well as propofol, the main induction 

agents now widely used are midazolam and ketamine 
with thiopentone only occasionally used in, for example, 
some cases involving electroconvulsive therapy.

5.1.1  Thiopentone
Thiopentone can be viewed as the classic drug used in 
anesthesia for rapid sequence induction. Since its intro-
duction in 1934 and heavy usage over many years, reports 
of its involvement in hypersensitivity reactions are rare 
although it seems likely that many cases may have been 
unrecognized or misdiagnosed. Incidences of anaphylaxis 
were stated to be 1 in 22,000–29,000 [46, 47]. In 1985 
Boileau et  al. [48] in France reported 258 cases of ana-
phylaxis to the induction agent while the early Australian 
and French surveys of 606 and 1816 patients, respectively 
found incidences of immediate allergic reactions of 5.4% 
and 0.2%, respectively (Table 3). The majority of reactions 
occur after multiple exposure to the drug and although a 
few cases of anaphylaxis have been reported after one or 
two exposures [8, 49], including one case after a 20-year 
gap in exposure [50], it is generally believed that at least 
six exposures are usually required. Reactions to thiopen-
tone sometimes include cutaneous symptoms of rash, 
urticaria and severe exfoliative dermatitis. Reactors to 
the drug tend to be older with a female to male ratio of 
3:1.

For the diagnosis of immediate allergic reactions to 
thiopentone, challenge tests were used, sometimes with 
adverse consequences, leading to preferment of skin test-
ing. Prick testing is carried out with undiluted solution 
(25  mg/ml). Intradermal testing starts with a dilution 
of 1 in 10,000 and proceeds up to a maximum of 1 in 10 
(2.5 mg/ml). Serum IgE antibody tests together with inhi-
bition studies to ensure specificity of binding [51, 52] and 
controls for false positives due to high levels of IgE anti-
bodies to substituted ammonium groups [53–55] proved 
a valuable test in helping to confirm immediate allergic 
reactions to the hypnotic [52, 54, 56, 57]. Employment of 
the thiopentone IgE immunoassay together with selected 
barbiturate structural analogs in quantitative inhibition 
studies enabled the identification of the IgE antibody 
binding structures on the thiopentone molecule. These 
proved to be position 1 on the pyrimidine ring with its 
attached sulfur atom and, on the other side of the ring, the 
ethyl and secondary pentyl groups at position 5 [54, 55].

5.1.2  Propofol
Propofol  (Diprivan®), used for short-acting induction 
and maintenance of anesthesia, and in intensive care and 
outpatients for short procedures, is an oil-in-water emul-
sion formulated with soybean oil and egg phospholipid 
as emulgent. Two other formulations, the microemul-
sion  Aquafol® and water-soluble phosphate derivative 
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prodrug  Lusedra® which is metabolized to propofol, have 
been introduced. Apart from several isolated case reports 
([58] and references therein], propofol is regarded as a 
remarkably safe drug with a reported incidence of 1 in 
60,000 for allergic reactions [59]. French and Austral-
ian surveys have shown low incidences of anaphylaxis of 
1.3% and 0.65%, respectively during anesthesia (Table 3).

Although there are a small number of reports of sus-
pected allergy to propofol in individuals allergic to egg, 
soy or peanut, the first in 1994 [60], convincing confirma-
tory evidence has been absent. This, and some other 
reports of possible allergies after propofol in children 
with food allergy led to the conclusion that egg allergy 
might be a possible risk for the drug’s administration. 
However, several investigations have not found evidence 
to support this. In a study of 60 patients with eosinophilic 
esophagitis who received propofol, 52 (87%) of whom 
were sensitized to egg, soy, or peanut, no allergic symp-
toms were seen [58]. Of 153 patients allergic to egg, soy, 
or peanut and exposed to propofol, skin and challenge 
testing revealed 4 with allergy to propofol but none had 
symptoms of allergy or IgE antibodies to egg, soy, or pea-
nut. In an extension of the study, no cases of propofol 
allergy were identified in anesthetic charts of 99 patients 
with IgE antibodies to egg, soy, or peanut [61]. More 
recent investigations also found no evidence of a relation-
ship between food allergy history and perioperative reac-
tions to propofol [62], that allergic reactions to propofol 
are rare, and they are not reliably predicted by a history 
of food allergy [63].

Overall, it seems that in cases of propofol hypersen-
sitivity, the propofol molecule itself is the source of the 
allergic sensitization. This conclusion gains support from 
the report of anaphylactic reaction to  Aquafol® which is 
formulated without the lipid solvent in propofol emul-
sion [64].

For skin testing, the prick test concentration is 10 mg/
ml while for intradermal application, testing starts at a 
dilution of 1 in 100–1,000 proceeding up to a 1 in 10 dilu-
tion (1 mg/ml).

5.1.3  Midazolam
Midazolam  (Versed®), a benzodiazepine, is a short-act-
ing (half-life 1.8–6.4  h), rapidly effective central nerv-
ous system (CNS) depressant when given intravenously. 
Indicated for procedural sedation, and often given with 
fentanyl, midazolam acts by binding to the gamma-
aminobutyric acid (GABA) receptor complex producing 
hypnotic, sedative, amnestic, muscle relaxant, and anti-
convulsant actions. It is also administered intramuscu-
larly, orally, rectally, and intranasally.

Hypersensitivity reactions to midazolam are uncom-
mon although a retrospective skin and provocation tests 

study from Brazil covering 101 patients over a 10-year 
period concluded that the drug is a major cause of intra-
operative immediate hypersensitivity [65]. Surprisingly, 
10 of 28 patients (35.7%) tested positive, a frequency sim-
ilar to that found for NMBDs (22 of 62; 35.5%). A com-
parison with results in the early Australian and French 
surveys of 606 and 1816 patients, respectively showed 
reactions to NMBDs in 58–60% of allergic patients and to 
midazolam in 0.75% of French patients and no reactions 
in the Australian survey (Table  3). Allergic reactions to 
the hypnotic have been described after intranasal [66, 67] 
and intrarectal [68] administration. There are at least 7 
reports of anaphylactic/anaphylactoid reactions to mida-
zolam [8, 69–72] although confirmatory diagnostic tests 
were not always undertaken. Numerous reports of urti-
caria and rash in patients receiving midazolam, including 
some cases of anaphylaxis, have led to the suggestion that 
there may be an association between midazolam-induced 
anaphylaxis and allergic urticaria and special attention 
should therefore be paid to this [71]. A clear correlation 
between the two, however, has not been established. 
Other suspected hypersensitivities and non-immune-
mediated adverse reactions recorded for midazolam 
include dyspnea, pruritus, laryngospasm, respiratory 
depression, tonic clonic seizures, cardiac arrhythmias, 
facial edema, and eyelid swelling, [72, 73].

Recommended skin test concentrations for midazolam 
show some variations: perioperative anaphylaxis inves-
tigation guidelines issued by the Australian and New 
Zealand Anaesthetic Allergy Group (ANZAAG) [74] 
recommend 1 mg/ml for prick testing and 10 µg/ml (ini-
tial) up to 100  µg/ml for intradermal testing while the 
stated maximum non-irritant concentration s 0.5  mg/
ml. A 2019 European Network on Drug Allergy (ENDA)/
European Academy of Allergy and Clinical Immunol-
ogy (EAACI) position paper [75] for drugs used periop-
eratively suggests 50 µg/ml for intradermal testing. Some 
other European references recommend a prick test con-
centration of 5 mg/ml and up to a maximum of 0.5 mg/
ml for intradermal testing.

5.1.4  Ketamine
Ketamine  (Ketalar®) is used for a number of purposes 
including the initiation and maintenance of anesthe-
sia; for procedural sedation; as a sedative in emergency 
departments and intensive care; for acute and chronic 
pain; as an induction agent for pediatric patients; in the 
dental surgery; and as a rapidly acting antidepressant. 
Most preparations are racemic mixtures, composed of 
dextrorotatory S-( +)-ketamine  (Ketanest® and Ketanest-
S®) and the less active enantiomer R-(−)-ketamine. Both 
enantiomers bind to the N-methyl-D-aspartate (NMDA) 
receptor, the S-enantiomer doing so with three-times 
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greater affinity. Binding also occurs with other binding 
sites including opioid, nicotinic, muscarinic, and some 
ion channels.

Ketamine induces histamine release from skin and lung 
mast cells [76] which may account for some reported ana-
phylactoid and unusual reactions [77–80] but immune-
mediated anaphylactic reactions, although rare, have 
been reported. Two such true immediate type I reactions 
include a case following ketamine infusion confirmed by 
positive ketamine skin tests and elevated serum tryptase 
levels [81] and a case diagnosed as a grade IV anaphy-
laxis (World Allergy Organization grading system) with 
positive skin tests and elevated serum tryptase and his-
tamine levels [82]. Perhaps the most feared adverse reac-
tion to ketamine is laryngospasm seen, for example when 
given to a delirious patient [83] and in a patient requiring 
adrenaline where it occurred together with a generalized 
rash [84].

There are several reports of adverse reactions to keta-
mine in children. A 2009 analysis of 8,282 patients’ data 
found that ketamine risk factors for airway and respira-
tory adverse events are high intravenous doses of the 
drug, administration to children < 2  years or ≥ 13  years 
old, and coadministration of anticholinergics or benzo-
diazepines [85]. Reports of reactions in children include 
details of a 4-year old child who developed urticaria after 
intravenous midazolam and was diagnosed as hypersensi-
tive to both ketamine and midazolam after proving intra-
dermal test-positive to ketamine at 1 mg/ml [86]; a 6-year 
old with wheeze and widespread urticaria disseminating 
from the intramuscular ketamine injection site [87]; and 
a 9-year old who showed facial edema, erythema on the 
neck, and labored breathing after 30 mg intravenous keta-
mine. This patient proved negative to a skin prick test 
concentration of 1 mg/ml but positive to intradermal tests 
at concentrations of 1 and 0.25 mg/ml [88].

Overall though, ketamine is deemed to be a relatively 
safe and effective choice for procedural sedation in 
children.

Recommended concentrations of ketamine solutions 
for skin testing show a wide variation depending on the 
particular issued guidelines. For example, the British 
Society of Allergy and Clinical Immunology [89] suggest 
10 and 1 mg/ml for prick testing and up to a maximum 
of 1 mg/ml for intradermal testing while both ANZAAG 
[74] EAACI guidelines, 2019 [75] recommend 100  mg/
ml for prick testing and up to 100 µg/ml for intradermal 
testing.

5.2  Neuromuscular blocking drugs (NMBDs)
A decade after the introduction of muscle relaxants into 
anesthesia [90], Foldes et  al. [91] declared: “…[the] first 
use of muscle relaxants in anesthesiology by Griffith and 

Johnson in 1942 not only revolutionized the practice of 
anesthesia but also started the modern era of surgery and 
made possible the explosive development of cardiotho-
racic, neurological and organ transplant surgery.”

As outlined above, since the early surveys of drug-
induced anaphylactic reactions in the perioperative 
period (Table  3), NMBDs have been found to be the 
drugs implicated most often. In the consecutive French 
series, the incidences of reactions to NMBDs range from 
81% in the 1984–1989 survey to a low of 48% percent 
in the 2005–2007 survey (average of all surveys 61.2%). 
The selection of NMBDs used over the last 30 years has 
changed, nevertheless, usage of succinylcholine has 
remained relatively high as has the numbers of cases of 
anaphylaxis to the drug. Anaphylaxis is more common 
with succinylcholine and rocuronium than with atra-
curium and rocuronium appears to be of higher risk 
compared to pancuronium, vecuronium, and cisatracu-
rium [44, 44, 92, 93]. In the UK NAP6 survey, NMBDs 
were judged responsible for 34% of definite/probable 
cases of anaphylaxis, causing 32% of deaths or cardiac 
arrests. Rocuronium was implicated in 42% of reactions 
to NMBDs, while atracurium and succinylcholine were 
involved in 35% and 22% of cases, respectively [45]. Of 
83 cases of anaphylaxis during anesthesia detected in 
a 1996–2001 Norwegian study, 71% proved to be IgE 
antibody-mediated, 93.2% of these were mediated by 
NMBDs, and succinylcholine was the NMBD most often 
implicated followed by rocuronium and vecuronium [39].

The ratio of females to males for allergy to NMBDs is 
up to about 4:1, atopy is not a risk factor, and the median 
annual incidences of allergic reactions to NMBDs has 
been estimated to be 105.5, 250.9, and 184 per million 
procedures for men, women, and children (both sexes), 
respectively. Peak ages for anaphylaxis are 10–20 and 
40–60 years for males and 40–50 years in the high inci-
dence range of 30–60 years for women [33, 35].

Early skin testing with free NMBDs in the late 1970s 
and 1980s [94–98] to diagnose what appeared to be ana-
phylactic reactions to the drugs had become the stand-
ard diagnostic procedure by the 1990s [99, 100]. This 
was soon supplemented by immunoassays demonstrat-
ing the involvement of long persisting IgE antibodies 
[101] that recognized, and cross-reacted with, quaternary 
and tertiary ammonium groups on the different NMBD 
molecules [102–106]. Experiments also demonstrated 
cross-reactivity with substituted ammonium ions on a 
range of different chemicals and drugs with diverse phar-
macological activities, suggesting prior immune sensiti-
zation to ammonium ions in the NMBD-allergic patients 
who reacted to an NMBD on first exposure [103]. Sub-
sequent studies tend to support this explanation but it 
remains unexplained why only a very small number of 



Page 12 of 28Baldo  Anesthesiology and Perioperative Science            (2023) 1:16 

subjects with IgE antibodies to ammonium groups dem-
onstrate allergic sensitivity to NMBDs [107]. Routine 
diagnosis of allergic type I sensitivity to a NMBD is now 
undertaken by a combination of skin testing with the free 
drug(s) (Table  4), NMBD-specific IgE immunoassays (if 
available), otherwise with a diagnostically useful cross-
reacting morphine immunoassay prepared in-house or 
as a commercial product [108, 109], a basophil activation 
test [110], and tryptase testing [111]. The simplicity of the 
morphine-solid phase assay and its suitability for routine 
laboratory use makes it a valuable addition to skin testing 
in diagnosing NMBD allergic sensitivity. Failure of the 
morphine-based immunoassay to detect IgE antibodies 
to the tetrahydroisoquinolinium NMBD atracurium in a 
significant number of patients [108, 109] raises the ques-
tion of the specificity of the atracurium-reactive IgE, in 
particular, whether the antibodies are complementary to 
substituted ammonium groups. Employment of an atra-
curium solid phase and inhibition studies demonstrated 
specific IgE binding inhibited by atracurium but not by 
six other NMBDs [112]. Interestingly, the patients with 
reactive IgE antibodies each had a history of more than 
20 operations, suggesting prior sensitization.

5.3  Sugammadex
In seeking a method to aid solubility of the widely used 
NMBD rocuronium and decrease injection pain, a 

strategy was devised to encapsulate the rocuronium mol-
ecule to form an inclusion complex with a chemically 
modified γ-cyclodextrin, named sugammadex [113, 114] 
(Fig. 2). The high affinity and specificity of sugammadex 
for rocuronium (and other aminosteroid NMBDs) ena-
bled its use in anesthesia for rapid reversal of rocuro-
nium-induced neuromuscular block by sequestering the 
drug as an inclusion complex and removing it from the 
neuromuscular junction [113–116]. Despite successful 
encapsulation, doubt remains whether the ammonium 
ion at position 16 on the steroid nucleus of encapsulated 
rocuronium is completely enclosed by thio(2-carboxye-
thyl) sodium side chain groups at the primary ring of sug-
ammadex or if it might still be accessible for binding with 
complementary IgE molecules [117]. This question is also 
relevant to the rocuronium tertiary ammonium group 
at the opposite end, the secondary rim, of the inclusion 
complex [115, 118].

The increasing use of sugammadex has been accompa-
nied by a small but steady increase of reports of anaphy-
laxis/anaphylactoid reactions to the agent [119, 120]. This 
has been most apparent in Japan where sugammadex was 
first used in 2010 and where it has perhaps been used 
more intensively than elsewhere. An investigation of the 
drugs most often involved in anaphylaxis in Japan showed 
that, for the period 2012–2016, sugammadex with 32% of 
the cases was the biggest cause followed by rocuronium 
(27%) and antibiotics (23%) [121]. A Japanese retrospec-
tive study of 15,479 patients who received sugammadex 
revealed 6 cases of anaphylaxis (0.039%; 1 in 2,580) [122], 
an incidence similar to that for succinylcholine and rocu-
ronium [91]. The incidence of rare adverse events is dif-
ficult to measure but the recent estimate of the incidence 
of anaphylaxis to sugammadex obtained in a retrospec-
tive single-center study over 3  years (2016–19) [123] is 
strikingly less than the Japanese estimate and the drug’s 
package insert figure of 1 in 300 [124]. In accounting for 
the difference, the not entirely convincing suggestion of 
regional differences in exposure to cyclodextrins was 
advanced.

The possibility of altered allergenic recognition — aller-
genicity enhanced, lessened, or abolished — with spe-
cial reference to the rocuronium-sugammadex inclusion 
complex (S-R-Cx), suggested in 2011 [115] and subse-
quently shown to occur [125–131], raised the question 
of the basis of the observed altered immune recognition 
[132]. In a recent study of a patient who experienced IgE/
FcεRI-dependent anaphylaxis to S-R-Cx, the patient’s 
serum, skin testing and the basophil activation test 
(BAT), were employed together with a panel of care-
fully selected structural analogs of rocuronium. Results 
showed that recognition of S-R-Cx is due to IgE interac-
tion with a new allergenic determinant formed by a shape 

Table 4 Concentrationsa of neuromuscular blocking drugs used 
for skin testing

Positive control for prick test: Histamine 10 mg/ml or codeine phosphate 9% 
w/v. Negative control for prick and intradermal tests: Same volume of solvent 
used for drugs
a Maximum nonirritative concentrations normally non-reactive in subjects not 
allergic to a neuromuscular blocking drug
b A positive test is a wheal after 20 min with a diameter 3 mm greater than the 
negative control or a diameter at least half the diameter of the positive control
c 0 02 – 0.05 ml injected to give a 4 mm diameter bleb. A positive test is the 
appearance of an erythematous wheal (often pruritic) after 20 min with a 
diameter at least twice that of the initial bleb
d A high proportion of positive reactions in normal controls has led to 
suggestions that these prick test concentrations are too high
e Some published maximums for vecuronium and pancuronium are 400 μ g and 
200 μg, respectively. See also, [74, 75]

Neuromuscular 
blocking drug

Skin prick testb 
concentration mg/ml

Intradermal testc 
concentration 
µg/ml

Succinylcholine 10 100

Rocuroniumd 10 50

Vecuroniumd 4 40e

Pancuronium 2 20e

Atracurium 1 10

Cisatracurium 2 20c

Mivacurium 0.2 2



Page 13 of 28Baldo  Anesthesiology and Perioperative Science            (2023) 1:16  

alteration of the attached thiocarboxyethyl sodium side 
chains at the primary ring of the host sugammadex mol-
ecule [131] (Fig. 2). It is clear that when an allergic reac-
tion to sugammadex is suspected, skin, BAT and other 
testing should be undertaken with free sugammadex, 
rocuronium, and the complex, S-R-Cx, the latter pre-
pared using the stoichiometric ratios of sugammadex and 
rocuronium [132].

The successful sequestration of rocuronium into an 
inclusion complex with sugammadex prompted the 
early suggestion that the modified γ-cyclodextrin might 
be a new and useful treatment to manage rocuronium-
induced anaphylaxis [117]. Soon after, several reports 
were published [133–135] that appeared to support 
this speculation and there are now reports of at least 23 
cases presenting data claiming, to at least some extent, 
mitigation of rocuronium-induced anaphylaxis and suc-
cessful management after administration of sugam-
madex ([8, 119]; for full list contact author). Claims for 
non-IgE-dependent pseudoallergic reactions to rocu-
ronium reversed by sugammadex have been made for 
three patients showing irritant skin reactions but no evi-
dence of immediate hypersensitivity to the NMBD. In a 

confusingly presented report, “anaphylaxis” and elevated 
tryptase levels are described and attributed to mastocyte-
related G-protein-coupled receptor (GPCR) member X2 
(MRGPRX2)-mediated “pseudoallergic reactions” [136]. 
MRGPRX2, a low affinity, high-dose human mast cell 
receptor mediating nonimmune adverse reactions results 
in some pseudoallergies manifesting as itch, inflam-
mation, and pain (Section 6). It is not yet clear whether 
rocuronium mediates mast cell activation and subse-
quent cutaneous reactions via activation of MRGPRX2 
[137, 138] but if it does, sugammadex may suppress such 
reactions. However, of the claims so far of rocuronium-
induced IgE/FcεRI-mediated anaphylaxis mitigated by 
sugammadex, symptoms and diagnoses overwhelmingly 
indicate systemic anaphylaxis with cutaneous reactions 
uncommon.

The effect of rapid reversal of anaphylactic symptoms 
is, of course, surprising since it is difficult to see how sug-
ammadex could rapidly alleviate anaphylactic symptoms 
by stopping or reversing the rocuronium-induced aller-
gic mediator cascade since that would seem to require 
sequestration of not only free rocuronium and perhaps 
IgE-bound rocuronium in plasma but also rocuronium 

Fig. 2 Diagrammatic representation of molecular models of sugammadex (left hand structures), rocuronium (middle structures), and 
rocuronium-sugammadex host-guest inclusion complex (right hand structures), showing the encapsulation of the neuromuscular blocking 
drug (NMBD) by sugammadex. a Formation of the inclusion complex shown in conventional colors for atoms. b Coloring of atoms changed to 
distinguish the rocuronium and sugammadex structures. Allyl group of rocuronium colored green; pyrollidinium group, brown; rest of rocuronium 
molecule, mauve. Four of the eight groups that make up the primary ring of sugammadex and visible on one side of the molecule, are shown in 
light blue. Conventional atom colors shown are H white, C black, O red, N blue, S yellow, Na violet. Adapted from Baldo BA and Pham NH (2021). 
Drug allergy: clinical aspects, diagnosis, mechanisms, structure-activity relationships,  2nd edition. Springer, New York, p. 368. Reproduced with 
permission from Springer Nature
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complexed to IgE antibody at the FcεRI receptor on mast 
cells [139–141]. Other explanations have been advanced 
to explain the apparent improvement in some patients’ 
hemodynamic state after sugammadex. These include 
improvement due to already administered epinephrine and 
fluid resuscitation and the suggestion that more sugam-
madex sequesters rocuronium preventing further release 
of mediators allowing epinephrine to work. Attention has 
also been drawn to a dramatic recovery in a similar clinical 
situation after 15–20 min of traditional treatment with epi-
nephrine and steroids [142]. A contrasting case is a report 
of successful treatment with sugammadex of anaphylaxis 
to rocuronium in a patient whose only symptom was bron-
chospasm. Despite the absence of prior treatment with 
epinephrine, the patient experienced a dramatic recov-
ery ~15  min after receiving sugammadex [143]. In what 
the authors called a “case-control” study, Platt et al., [144] 
found that only six of 13 cases of what was thought to be 
anaphylaxis to rocuronium improved after sugammadex. 
Of the six, only three were confirmed to be due to rocuro-
nium, bringing into question the original diagnostic con-
clusions and data interpretations. The authors concluded 
that in the absence of an explanation of the sugammadex-
IgE-rocuronium-based mechanism, sugammadex is not 
effective in reversing rocuronium anaphylaxis but effective 
in some cases of non-rocuronium anaphylaxis by revers-
ing neuromuscular blockade which increases muscle tone 
compressing intramuscular and intra-abdominal ves-
sels thus reducing venous capacitance, increasing venous 
return, and cardiac preload [134]. Attention was also 
drawn to potential ventilation complications when revers-
ing neuromuscular blockade in a situation of high airway 
pressures and hypoxia.

Explanations suggested above obviously need close 
consideration and, if possible, further investigation, but 
there remains a conspicuous absence of any examination 
of the rapid and sometimes dramatic improvement in 
the clinical picture in the growing list of cases of rocu-
ronium-induced anaphylaxis treated with sugammadex. 
Rapid reversal of symptoms, often complete, is reflected 
in the temporally related statements describing the 
response to sugammadex as “immediate, “almost instan-
taneous”, hemodynamic improvement “2 min later”, “45 s 
later” and so on [8, 119]. Two in vitro models have been 
presented as evidence against sugammadex-induced mit-
igation of rocuronium-induced anaphylaxis -- one is the 
reported failure of sugammadex to block CD63 expres-
sion after rocuronium-induced basophil activation ([145] 
and the second the failure of sugammadex to reverse 
the course of an established allergic reaction to rocuro-
nium in the skin [146]. In the BAT experiments, already 
expressed CD63 may not reflect termination of media-
tor release; with the cutaneous model, degranulation of 

mast cells is a rapid process which, once initiated, leads 
to wheal and flare reactions as a result of capillary per-
meability and vasodilation, respectively. Histamine lib-
eration and an increase in local blood flow begin within 
2 min but histamine alone does not account for resultant 
wheal size. Already liberated mediators and a cutaneous 
reaction may not by be prevented or even diminished by 
sugammadex [147–149].

Accumulation or absence of convincing case reports 
over a long period or fresh insights leading to new inves-
tigative approaches may contribute to resolving the 
question of sugammadex’s capacity to mitigate rocuro-
nium-induced anaphylaxis but only a controlled clini-
cal trial in humans involving challenge studies (which is 
unlikely), will ultimately decide the issue. In the mean-
time, some in  vitro approaches may provide impor-
tant relevant data. Along with experimental strategies 
to investigate if allergenic structures in the inclusion 
complex are still accessible to IgE binding and whether 
the cyclodextrin can compete with IgE for free drug or 
sequester the bound drug from IgE-rocuronium com-
plexes, a comparison of the association complexes of 
sugammadex and IgE antibody-rocuronium complexes 
has been proposed [118]. Sugammadex forms a stable 
complex with rocuronium with an association constant 
 Ka of 1.8 ×  107   M−1. The average association constant of 
IgE-rocuronium complexes is not known and neither is/
are the sensitizing antigen(s) of IgE antibodies that react 
with NMBDs. Although association constants for aller-
gens such as multideterminant, multivalent pollen pro-
teins are often high, e.g.,  Ka  1010 –  1011   M−1 [150, 151], 
the affinities and avidities of rocuronium-IgE complexes 
may be lower than first expected because of the bide-
terminancy of NMBDs and likely non-NMBD nature of 
the source(s) of the sensitizing agent(s) [103, 106]. This 
would lead to complexes of poorer ‘fit’ than the unknown 
sensitizing agent-IgE antibody complex. Higher affinities 
for the IgE-rocuronium complexes than for the sugam-
madex complex would result in the failure of sugamma-
dex administration to mitigate a reaction; higher affinity 
of the sugammadex-rocuronium complex would result 
in sequestration of the offending drug and mitigation of 
anaphylaxis. Note also that affinities for antibodies react-
ing with the same hapten may differ by a factor of  103 to 
 105 [152]. If rocuronium-reactive IgE antibodies show 
such heterogeneity, sugammadex may mitigate an ana-
phylactic reaction in some patients but not others.

From the foregoing discussion, it is clear that sugam-
madex’s role in managing rocuronium-induced anaphy-
laxis is contentious. Reflecting this, ANZAAG of the 
Australian and New Zealand College of Anaesthetists 
(ANZCA) [153] advocates that, “The use of sugammadex 
in resuscitation of suspected anaphylaxis to rocuronium 
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is not recommended”, although the Association of Anaes-
thetists of Great Britain and Ireland makes no such rec-
ommendation [154]. Given the current situation with 
data and arguments for and against the application of 
sugammadex for the rescue of anaphylaxis, the recom-
mendation against its use may not be unreasonable and 
perhaps even prudent but it also seems too soon to dis-
count many of the findings in the 23 case studies and to 
assume that host-guest sequestration and immune mech-
anisms involving IgE antibodies and mast cell receptors 
are not involved. Apart from the classical pathway involv-
ing IgE and its high-affinity receptor FcεRI, possible 
involvement of alternative pathways mediated by IgG, the 
low affinity FcγR locus, macrophages, platelet activating 
factor (PAF) and MRGPRX2 [137, 139, 155–157] should 
not be overlooked and the importance of nitric oxide, 
endothelial nitric oxide synthase, PAF, PI3K/Akt signal-
ling, cytokines IL-4 and IL-13, sphingosine-1-phosphate 
and sphingosine kinases may be relevant [158, 159].

Recommended maximum non-irritant skin test con-
centrations of sugammadex are 100 mg/ml for prick test-
ing and 10 mg/ml for intradermal testing [75].

5.4  Antibiotics
In the early large Australian and French surveys (Sec-
tion 4, Table 3), antibiotics accounted for 8.6% and 12.9%, 
respectively of drugs provoking immediate type I allergic 
reactions. β-Lactams were the dominant culprit antibi-
otics in both surveys with incidences of 86% and 88.5%, 
respectively but while reactions to cephalosporins domi-
nated in Australian patients with an incidence approxi-
mately five times that of penicillins (73.1% to 15.4%), 
penicillins were implicated more often in the French sur-
vey (49% to 37% of reactions to antibiotics). By the time 
of the 2018 UK NAP6 survey [45], antibiotics were the 
dominant culprit drugs in the UK with involvement in 94 
(67 definite and 27 probable reactions) of 192 cases. This 
predominance was also reported in some smaller surveys 
from the US and Europe [160–164]. Of the 94 cases in 
the NAP6 survey, amoxicillin-clavulanic acid accounted 
for 46 reactions (49%) and although teicoplanin made up 
only 12% of antibiotic administrations, it caused 36 reac-
tions (38%). Further indications of teicoplanin’s increas-
ingly high incidence of reactions [165] are seen in the 
figures per 100,000 exposures which were 8.7 for amox-
icillin-clavulanic acid and 16.4 for teicoplanin. However, 
cephalosporins, particularly cefazolin [161–164, 166–
168], are now the antibiotics most often implicated in 
allergic reactions in the perioperative period.

5.5  Chlorhexidine
Since its introduction in 1954 as a disinfectant and anti-
septic, chlorhexidine, a synthetic, stable, water-soluble 

cationic bisbiguanide (as the digluconate, dihydrochloride, 
or acetate salt), found wide and extensive usage in many 
everyday products, domestically and in medicine, industry, 
and the environment. With such broad human exposure, 
there was the potential for occasional adverse reactions in 
some individuals. Surprisingly, except for a few rare early 
reports [169, 170], it was not until the 1980s that hyper-
sensitivities to chlorhexidene started to be well recog-
nized, initially mainly in Japan and Australia [171–173] 
and then gradually more extensively. By the late 1990s after 
numerous reports of hypersensitivity reactions to chlo-
rhexidine in Japan and warnings about its use on mucous 
membranes and wounds [173], the US Food and Drug 
Administration (FDA) issued an alert concerning chlo-
rhexidine-induced anaphylaxis [174]. The first reported 
case of chlorhexidine anaphylaxis elicited via urethral 
exposure [175] was a forerunner of many similar reports 
which served to emphasize the importance of the route of 
exposure, particularly to unsealed wounds, mucous mem-
branes, and impregnated central venous catheters, to the 
possibility of an allergic reaction including systemic ana-
phylaxis. In fact, besides transurethral, parenteral, wound, 
and mucous membrane exposure, reactions may be elic-
ited topically, orally, rectally, vaginally, via the ophthalmic 
route, and even by inhalation [176].

Chlorhexidine’s widespread and often unrecognized 
presence in products, and the fact that it is not admin-
istered by anesthetists, at least partly explains why it has 
often been overlooked as a source of anaphylaxis in the 
perioperative setting. In that setting, it has recently been 
estimated to account for ~9% of hypersensitivities in each 
of the UK, Denmark, and Belgium [45, 167, 177]. In the 
NAP6 audit project, the incidence of reactions was 0.78 
per 100,000 exposures, the third most common cause of 
ADRs [45]. These figures are strikingly different to results 
from the early surveys where chlorhexidene is not men-
tioned. Reactions to chlorhexidine may be immediate, 
which are most common, or delayed, both reactions are 
known to occasionally occur in the same patient, and 
severity can range from mild skin reactions to life-threat-
ening angioedema and anaphylaxis [178–180]. Reactions 
may occur during surgery but also in the postoperative 
period and, in up to 80% of patients with a reaction, ana-
phylaxis may be life-threatening [180]. A survey of chlo-
rhexidene induced anaphylaxis in surgical patients found 
exposure to urinary catheter lubricant, chlorhexidene-
coated central venous catheters, and topical antiseptic 
solutions were the most common sources of allergic sen-
sitization [179]. Immediate allergic reactions after paren-
teral exposure usually appear within a few minutes and 
up to an hour after wound or mucosal exposure. Contact-
induced sensitization may manifest as allergic contact 
dermatitis and stomatitis. Patch testing 7,610 patients in 
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Finland with 0.5% chlorhexidene revealed positive reac-
tions in 0.47% of patients [181]. Allergic reactions to 
chlorhexidine have been reported in the workplace, espe-
cially amongst healthcare workers but it is likely that the 
true prevalence of occupational cases is underestimated 
[182]. Five percent of 92 healthcare workers in Thailand 
responded with cutaneous rashes when exposed to chlo-
rhexidene digluconate 2% and 5% [183].

Type I immediate reaction to chlorhexidene was early 
demonstrated to be mediated by IgE-antibody [172, 184]. 
An immunoassay developed in the author’s laboratory 
showed good specificity and high sensitivity and proved 
to be a useful diagnostic tool. Structure-activity studies of 
the antigen-antibody interaction with respect to the fea-
tures of the complementary structures recognized by the 
antibody combining site remains one of the best-defined 
drug allergies at the molecular level [185]. Subsequently, 
a commercial immunoassay with high sensitivity (84.2%) 
and specificity (93.7%) was developed and shown to be a 
reliable diagnostic method subject to cautionary evalua-
tion in the presence of high total IgE levels [186]. As with 
other drug allergies, diagnosis is aided by employment 
of other in vitro tests (including the BAT [187] and his-
tamine release assays) and in  vivo tests (skin prick and 
intradermal tests and patch tests for delayed reactions). 
To help anticipate perioperative allergic reactions, patient 
histories relevant to chlorhexidene along with specific 
tests are now undertaken routinely in some countries [45, 
75, 177, 186]. Recommended skin test concentrations for 
chlorhexidene are 5 mg/ml (0.5%) for skin prick tests and 
0.002  mg/ml (0.0002%) for intradermal testing [74, 75, 
188]. With lack of exposure, skin test positivity declines 
with time.

5.6  Water soluble blue dyes
Water-soluble blue dyes, with and without isotope 
(e.g., technetium-99  m colloid), selectively localized 
into lymphatics, are increasingly used for diagnos-
tic purposes particularly the identification of sentinel 
lymph nodes in melanoma patients and in other can-
cers including breast, cervical, bladder, and endome-
trial cancer. The triarylmethane dyes, patent blue V and 
isosulfan blue  (Lymphazurin®), are most often used, 
the former in the UK and the latter in the US. Methyl-
ene blue, a thiazine dye, is substantially cheaper but is 
not always approved for sentinel lymph node localiza-
tion [8, 189]. Allergic/adverse reactions to patent blue 
V and isosulfan blue, known for over 60  years, have a 
reported incidence between 0.07% and 2.7% with a 
mean of 0.71% [190]. Symptoms range from mild, e.g., 
erythema and urticaria, to severe and life-threatening 
hypotension, pulmonary edema, and vascular collapse. 
Reactions to blue dyes in the perioperative setting, 

including anaphylaxis, and in particular patent blue 
V, have been increasingly recognized in recent years 
[8, 189], for example, in the NAP6 survey in the UK, 
patent blue V, with an incidence of 1 in 7,000, was the 
fourth most recognized culprit drug. By comparison, 
incidences of the other three main offenders were anti-
biotics 1 in 27,000, NMBDs 1 in 19,000, and chlorhex-
idene 1 in 127,500 [45].

5.6.1  Patent blue V
Allergic reactions may occur following injection of patent 
blue V in the procedure of sentinel lymph node biopsy 
(SLNB) for the detection of cancer cells in women with 
operable breast cancer. Data on side effects of patent 
blue V were collected in a UK-wide SLNB NEW START 
training program and the Axillary Lymphatic Mapping 
Against Nodal Axillary Clearance (ALMANAC) multi-
ccnter trial under the auspices of the Medical Research 
Council of the UK [191, 192]. Adverse reactions were 
seen in 72 of 7,917 (0.91%) patients with breast cancer 
[193]; 4 patients (0.05%) had non-allergic reactions; 23 
patients (0.29%) experienced grade I allergic skin reac-
tions (urticaria, blue hives, pruritus, or generalized rash); 
16 (0.2%) had grade II reactions (transient hypotension/
bronchospasm/laryngospasm); and 5 patients (0.06%) 
developed severe grade III reactions (severe hypotension 
requiring vasopressor support, change or abandonment 
of planned procedure, and/or high dependency unit 
(HDU)/intensive therapy unit (ITU) admission).

A retrospective study of a database of 1247 patients 
who reacted to patent blue V over a 2-year period 2008–
2010, revealed 11 patients (0.88%) who experienced 
immediate hypersensitivity reactions during anesthesia. 
Six patients (0.48%) had minor grade I reactions (urti-
caria, blue hives, pruritis or generalized rash), 4 (0.32%) 
had grade II reactions (transient hypotension/bronchos-
pasm/laryngospasm), and 1 patient (0.08%) experienced 
a grade III reaction (hypotension requiring prolonged 
vasopressor support). Time of reaction onset, which 
often coincided with the induction of anesthesia, ranged 
from 10–45 min, 7 cases (63.6%) were cancelled or post-
poned, and no fatalities occurred [194]. Three patients 
who had systemic reactions including hypotension and 
rash following injection of patent blue V for SLNB, each 
tested skin test-positive to patent blue V but also to 
methylene blue, demonstrating cross-sensitivity between 
the dyes [195].

Symptoms usually occur within a few min to 45  min 
after injection manifesting as shock (including bronchos-
pasm and gastrointestinal symptoms), characteristic large 
blue-green hives, or so-called ‘blue urticaria’, blue-colored 
periorbital angioedema, angioedema of hands and arms, 
erythema, and pruritus [196]. Although some features of 
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reactions suggest direct mast cell activation, positive skin 
tests, passive transfer of the sensitivity, and detection of 
specific IgE antibodies indicate that reactions are gener-
ally type I hypersensitivities [196–198]. Elevated tryptase 
levels in patients’ sera support diagnoses of anaphylaxis 
[196, 199]. Both IgE assays [197] and BAT [200] are a use-
ful aid for diagnosis but their limited availability restricts 
their routine use and, in any case, skin testing has proved 
a reliable diagnostic procedure.

5.6.2  Isosulfan blue
Several US surveys have assessed the incidence of iso-
sulfan blue in allergic/adverse reactions. A combination 
of studies totaling 8,372 patients revealed 119 reactions 
(1.42%). For severe reactions (grade III), the percent-
ages were 0.44% for isosulfan blue and 0.06% for patent 
blue V, respectively [193]. Results from five individual 
surveys revealed allergic/adverse reactions in the range 
0.7–1.9% [201] while adverse events associated with the 
intraoperative injection of isosulfan blue occurred in 28 
of 1,835 patients (1.5%) [202]. Potentially life-threatening 
hypotension occurred in 14 patients, skin reactions in 21, 
and edema in 1 patient. Importantly, onset of reactions 
occurred over a wide time range (1–180  min), in some 
cases with a long reaction duration. Diagnostic methods 
include skin tests (see below), assay for IgE antibodies, 
and tryptase determinations [203–205].

5.6.3  Methylene blue
Methylene blue has been used for sentinel lymph node 
localization but it is not always approved for that pur-
pose. With the aim of assessing the suitability and accu-
racy of SLNB mapped with methylene blue alone in 
breast cancer patients, Li et al. [206] undertook a review 
and meta-analysis of 18 studies to determine the identifi-
cation rate and false negative rate of sentinel node biopsy 
in breast cancer. Although the analysis showed that map-
ping with methylene blue alone provides an acceptable 
identification rate, the false negative rate is excessive, 
indicating that caution is warranted when using the dye 
alone. Reported adverse effects resulting from its use 
include skin necrosis and subcutaneous ulcers, rarely 
seen anaphylaxis, pulmonary edema, spinal cord necro-
sis, and phototoxicity [189, 207–211]. Immediate hyper-
sensitivity reactions to methylene blue are rare although 
several cases of allergic reactions following treatment 
with methylene blue-treated fresh frozen plasma were 
reported from France [212].

5.6.4  Summary of diagnosis of blue dye hypersensitivity
For patent blue V, isosulfan blue, and methylene blue, a 
1:100 dilution of the stock solution (1%) is generally suit-
able for intradermal testing [74]. Skin test guidelines 

issued by ANZAAG are: Patent blue V — prick testing, 
25 mg/ml undiluted; intradermal testing, initial 1–1,000 
dilution (25  μg/ml), final 1–100 dilution (250  μg/ml), 
maximum 2.5 mg/ml. Isosulfan blue 10 mg/ml, — prick 
testing 1–10 (1 mg/ml) and undiluted; intradermat test-
ing, initial 1–1000 dilution (10  μg/ml), then 1–100 
(100  μg/ml), and final dilution 1–10 (1  mg/ml). Meth-
ylene blue — prick testing, 10  mg/ml, undiluted; intra-
dermal testing, initial 1–1,000 (10  μg/ml), final 1–100 
dilution (100 μg/ml), maximum 100 μg/ml [75].

Immunological cross-reactivity between patent blue 
V and isosulfan blue, is well known [213] especially in 
skin testing, but methylene blue is generally thought to 
be non-cross-reactive (but compare Keller e al. [195]). 
As discussed above, in recent years there has been a sig-
nificant increase in perioperative cases of anaphylaxis 
to blue dyes, reflected for example in results of the first 
multicenter survey of anaphylaxis during general anaes-
thesia in the UK, 2005–12 [44] and the 2018 UK NAP6 
[45] surveys. Positive skin tests and some IgE antibody 
studies suggest an IgE antibody-mediated mechanism 
of reactions but there may be more than one mecha-
nism, for example, direct actions on mast cells and baso-
phils. An importance for diagnosis and treatment is 
the observation of a large time gap (~ 30 min) between 
dye injection and symptom onset and the need in some 
patients for prolonged (several hours) epinephrine 
treatment [199]. Biphasic anaphylactic reactions have 
been reported for both patent blue V and isosulfan blue 
[213–215].

5.7  Colloids
5.7.1  Gelatin
Gelatin as a blood volume expander is marketed as 
 Haemaccel®, a cross-linked preparation with urea, 
MW ~ 35,000  Da and  Gelofusine®, which is succinate-
linked with a mean MW ~ 30,000  Da. Use of IV gelatin 
has increased in recent years due to safety concerns with 
starch-based colloids. Gelatin carries the highest inci-
dence of anaphylaxis and is more likely to cause anaphy-
laxis than albumin and other colloids [216–218], Allergic 
reactions to gelatin colloids occur with symptoms of 
anaphylaxis, sneezing, bronchospasm, and urticaria. 
Relative to other drugs used in anesthesia, the incidence 
of reactions to gelatin is equal to that of rocuronium at 
6.2 per 100,000 administrations [45]. A survey of 19,593 
patients in France of anaphylactoid reactions to colloid 
plasma substitutes 48.1% of whom were given gelatin, 
revealed a reaction incidence of 0.345% [216]. In a recent 
retrospective review of 12 patients with severe anaphy-
laxis to gelatin-based solutions [219], 3 reacted within 
5 min of administration while 6 reacted 10–70 min later, 
an unusual similar time course seen with anaphylaxis 
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to chlorhexidine and blue dyes [45]. The most common 
symptoms were hypotension, cutaneous signs, tachycar-
dia, and bronchospasm. Three patients suffered cardiac 
arrest. Allergic reactions in 11 patients were confirmed 
by skin testing and by IV provocation in one patient. 
Serum tryptase levels were elevated in all patients. Skin 
prick test concentrations were succinylated gelatin 
undiluted and 1:10 dilution; intradermal solutions were 
1:10,000 starting dose to undiluted. Undiluted solu-
tions were shown to be non-irritant in 10 control sub-
jects. Usually recommended skin test concentrations for 
 Gelofusine® and  Haemaccel® are 35 mg/ml for prick test-
ing and dilutions of from 1 in 1,000 to 1 in 10 for intra-
dermal testing. The authors concluded that given the risk 
of severe allergy and absence of evidence of clinical bene-
fit, the use of gelatin-based solutions in the perioperative 
setting should be reassessed [219].

5.7.2  Hydroxyethyl starch
In the French study mentioned above [216], the inci-
dence of reactions to starch-based colloids was 0.058%. 
The relative risk of anaphylactoid reactions to starches 
compared to gelatins was sixfold less and less than 
dextrans and albumin for adverse reactions. Adverse 
reactions to hydroxyethyl starch (HES) include ana-
phylaxis, erythema, urticaria and, in particular, pru-
ritus, the latter occurring with an incidence of up to 
40%, Pruritus is usually so severe it has a major impact 
on patients’ quality of life [220]. All HES solutions, 
regardless of different molecular weights and substitu-
tion, are generally refractory to treatments, resulting 
in pruritus persisting for up to 2  years. The underly-
ing mechanism of pruritus appears to be tissue depo-
sition of HES mainly in macrophages. On the basis 
that the risks of HES outweigh the benefits, in 2013, 
the Pharmacovigilance Risk Assessment Committee of 
the European Medicines Agency (EMA) recommended 
that the marketing authorization of HES infusions be 
withdrawn. On the recommendation of the UK Com-
mission on Human Medicines, HES preparations were 
also withdrawn from the UK. Although HES has not 
been withdrawn completely in the US, the US FDA 
recommended that it should not be used in critically ill 
patients or in those with pre-existing renal dysfunction 
[221].

5.7.3  Dextrans
Dextrans are polysaccharides composed of D-glucose 
units linked α-(1-6) with branches linked α-(1-3). Two 
intravenous solutions containing the high molecular 
weight dextrans 40 and 70 are used for plasma volume 
expansion. Dextran-induced anaphylactic reactions 
(DIAR) range in severity from mild erythema (grade I) 

to death (grade V). Reactions are caused by pre-existing 
circulating antibodies to dextran, mainly IgG, forming 
immune complexes with the injected dextran. Dextran 
1 (molecular weight 1,000 Da), administered as a hapten 
immediately before dextran 40, inhibits the formation 
of immune complexes and subsequent hypotension and 
produces a 35-fold reduction in the incidence of severe 
DIAR. With an incidence of anaphylactoid reactions of 
0.273% [216], dextrans 40 and 70 are now the safest of 
all the volume expanders in clinical use. Since dextran 
antibodies cross the placenta and cases of neurological 
impairment and death can occur in neonates, dextran 
should not be administered to pregnant women. Skin test 
concentrations for diagnosis are dextran 6–10 mg/ml for 
prick testing and up to a 1 in 100 dilution of this solution 
for intradermal testing.

5.8  Drugs more rarely involved in preoperative, 
perioperative, and postoperative adverse reactions

Opioids may provoke respiratory depression [222] and 
ST [14] (Section 2) but are rarely involved in type I IgE 
antibody/FcεRI-mediated allergic responses although 
cutaneous wheal and flare reactions and some hemo-
dynamic effects of histamine-releasing opioids such as 
morphine, codeine, and meperidine may lead to an ana-
phylactoid response and false diagnoses of an IgE-medi-
ated reaction [8, 223–225]. The histamine releasing effect 
can affect the reliability of skin testing although this can 
be successfully undertaken by using suitably diluted test 
solutions, for example, 1  mg/ml of morphine for prick 
testing and 5–10 μg/ml intradermally [8, 226]. Skin tests 
with suitable concentrations of morphine complemented 
with the tryptase determination, a reliable immunoas-
say for morphine plus suitable inhibition studies, and/or 
BAT, can lead to a confident diagnosis [8, 108, 226–229]. 
Involvement of MRGPRX2 in a morphine-induced reac-
tion might be expected but for this receptor and an IgE/
FcεRI-mediated reaction the clinical presentation is the 
same [137]. It should be noted that opioids do not fea-
ture prominently in many of the surveys of perioperative 
drug reactions, in fact, there is no mention of them in the 
NAP6 report [45].

Heparin and related agents used medicinally range 
from unfractionated polymers with molecular weights 
in the range 12–20 kDa to low molecular weight (LMW) 
heparins (4–6  kDa) that include, amongst others, 
dalteparin [230] and enoxaparin [231]. Often admin-
istered to patients during cardiac surgery including pul-
monary bypass surgery and for acute coronary syndrome, 
atrial fibrillation, deep vein thrombosis, and pulmonary 
embolism, heparin acts an anticoagulant, preventing clots 
by binding to antithrombin III and inactivating throm-
bin and factor  Xa. The incidence of adverse reactions 
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to heparins is ~0.2%. The most common reactions are 
thrombocytopenia [232], anaphylactoid reactions and 
immediate hypersensitivity including anaphylaxis [233], 
skin necrosis, some cutaneous reactions, and a few 
delayed reactions. In thrombocytopenia, heparin binds 
platelet factor 4 (PF4) on the platelet surface and this 
complex in turn binds IgG, an antibody common after 
heparin administration. The resultant complex causes 
the release of microparticles that promotes thrombin 
formation. Classified as a type II cytotoxic hypersensitiv-
ity response, the formation of immune complexes on the 
platelet surface also suggests a type III mechanism. Up to 
about 50% of heparin-treated patients may form antibod-
ies reactive with the heparin-PF4 complex.

Besides unfractionated heparin, a large array of other 
anticoagulants find common usage [234]. In addition 
to the LMW heparins, these include the semisynthetic 
heparinoids like danaparoid; the naturally occurring 
polypeptide hirudin and recombinant forms desirudin 
and lepirudin [235]; fondaparinux, a synthetic pen-
tasaacharide with structural identity to a sequence of 
five sugar units of heparin; pentosan polysulfate, is a 
semi-synthetic heparin-like polysulfated xylan; and syn-
thetic direct inhibitors of thrombin, argatroban and 
dabigatran.

Skin test concentrations for both heparins (heparin 
sodium, nadroparin, dalteparin, enoxaparin) and hepa-
rinoids (danaparoid, fondaparinux) in the ENDA/EAACI 
guidelines are undiluted for prick testing, 1–10 dilutions 
for intradermal testing, and undiluted for patch testing 
[236].

Some polypeptides have a history of anaphylaxis 
related to their use in anesthesia and surgery. The inci-
dence of allergic sensitivity to natural rubber latex in 
the population is estimated to be 2.1–3.7% but it can be 
higher in certain groups, e.g., dentists and spina bifida 
patients. Beginning in the 1980s and extending into the 
1990s, the number of reports of anaphylaxis due to latex 
increased alarmingly, in some surveys reaching up to 
~20% of all perioperative cases of anaphylaxis (Table  3) 
Increased awareness and changes plus widespread adop-
tion of measures to institute latex-free protocols in 
operating, treatment and recovery rooms alleviated the 
situation such that cases of anaphylaxis to latex in recent 
surveys are now rare [45].

Protamine is used to reverse the anti-coagulant effect 
of heparin during cardiac catheterization and cardiopul-
monary bypass. It provokes a number of adverse effects 
including flushing, rash, urticaria, angioedema, wheez-
ing, hypotension, bronchospasm, cardiovascular collapse, 
and sometimes death. Protamine releases histamine and 
tryptase from human basophils, heart mast cells and 

synovial mast cells but not from lung mast cells [237]. 
Incidence rates of protamine reactions in patients under-
going cardiopulmonary bypass range from 0.1% to 13% 
[238, 239] while mortality is estimated at 2% [240]. Insu-
lin-dependent diabetics show a higher incidence of ana-
phylaxis to protamine than patients not receiving insulin 
[241], suggesting sensitization by protamine in neutral 
protamine Hagedorn (NPH)-insulin preparations. Pro-
tamine intradermal skin tests show poor specificity with 
false positives and irritant responses in normal controls. 
Both skin and antibody tests have proved unsuitable for 
screening patients before administration of protamine.

Aprotinin, a serine protease inhibitor from bovine 
lung, promotes fibrinolysis, reduces thrombin genera-
tion, and maintains platelet function, accounting for its 
use in cardiac surgery, organ transplantations and hip 
surgery where reductions in bleeding, blood loss and 
transfusion needs are important. Anaphylactic reactions 
to aprotinin are almost invariably seen after previous 
exposure to the drug [242]. Aprotinin’s protein nature 
and bovine origin can lead to the production of IgG and 
IgE antibodies as well as cases of anaphylaxis. Analysis 
of aprotinin-induced anaphylaxis in over 12,000 patients 
exposed to the drug in cardiac surgery, revealed hyper-
sensitivity reaction incidences of 4.1%, 1.9% and 0.4% 
in less than 6  months, 6–12  months, and more than 
12 months re-exposure intervals, respectively [243]. Skin 
test concentrations used are 10,000  IU/ml in prick tests 
and up to a maximum of 100 IU/ml intradermally.

Ondansetron, a selective 5-HT3 serotonin antagonist 
used as an antiemetic is known to provoke both IgE-anti-
body- and non-IgE-mediated reactions including cases 
of anaphylaxis which are uncommon [244–246]. For skin 
testing, the drug is used at a concentration of 2  mg/ml 
for the prick test and 0.02  mg/ml for intradermal test-
ing. Control subjects proved positive at concentrations of 
0.2–2 mg/ml (compare concentrations in [244, 245]).

6  Outlook and some important developments
ADRs are influenced by, obviously first and foremost, 
drugs, but also by a wide range of factors including age, 
sex, ethnicity, patient pathologies, route of adminis-
tration, drug interactions, and importantly, genotype. 
The importance of the latter factor is being increasingly 
realized although application of pharmacogenomics to 
ADRs seen during anesthesia and surgery continues to 
be hampered for a number of reasons including lack of 
education and training of health care professionals; the 
still limited knowledge of the pathophysiology of many 
ADRs and drug pharmacogenomics; the need for wider 
genotyping and understanding of its benefits; the impor-
tance of pharmacogenomic drug labeling; and need for 
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more guidance from regulatory authorities. Although 
an extended consideration of the place of pharmacog-
enomics in drug reactions experienced in the peri- and 
postoperative periods is beyond the scope of the present 
review, attention is drawn to the increasingly recognized 
associations of CYP enzymes and HLA genotypes with 
an increasing number of disease states [247]. By way of 
examples, are the associations of HLA genotypes with 
cutaneous ADRs (Table 1) and CYP enzyme associations 
with analgesics (Table 2), tramadol with CYP2D6, and the 
anticoagulant prodrug clopidogrel with CYP2C19. Clopi-
dogrel is a good example to consider here. CYP2C19 
converts the prodrug to its active metabolite but some 
individuals are poor metabolizers (PM) while others may 
be intermediate metabolizers (IM). PM individuals have 
two non-functioning copies of the CYP2C19 gene while 
IM individuals have one non-functioning and one func-
tional CYP2C19 gene. Individuals of CYP2C19 PM phe-
notype do not therefore receive the full antiplatelet effect 
while the effect is diminished in CYP2C19 IM individu-
als. Ethnicity plays a part, for example, only 2% of Cauca-
sians and 4% of African American are PMs but the figures 
for Chinese and Oceanians are 14% and 57%, respec-
tively. In 2022 the FDA issued a boxed warning on the 
diminished antiplatelet action of clopidogrel in CYP2C19 
patients and the Clinical Pharmacogenetics Implemen-
tation Consortium (CPIC) recommended substitute 
drugs such as ticagrelor or prasugrel for patients with a 
number of different conditions including acute coronary 
syndrome [248]. A similar situation exists for patients 
taking tramadol where CYP2D6 converts the prodrug 
to its active metabolite and different allelic variants pro-
duce different enzyme functions from no, to normal, to 
increased activity [25–27] (Section 3). The anticoagulant 
warfarin provides another interesting pharmacogenomic 
example of an ADR. Greek Hellenes and Greek Cypriots 
show differences in allele frequency of VKORC1 com-
pared to other Caucasians, Africans, and Asians, and no 
differences in CYP2C9 and CYP3A5 allele frequencies 
compared to Caucasians but significant differences when 
compared with Asians and Africans. About 50% of Greek 
Cypriots carry at least two risk alleles associated with 
warfarin sensitivity and a potential high risk of bleeding 
after normal doses of anticoagulants [249].

The above considerations of ADRs and pharmacog-
enomics emphasize the need for clinicians to know the 
relevant genotype when prescribing some drugs, to 
understand the pathophysiology of the life-saving and 
life-prolonging drugs they prescribe, and for the safe 
management of patients.

Although NMBDs and antibiotics have remained as 
the main culprit drugs provoking anaphylaxis during 
anesthesia since the earliest sufficiently large, and well 

conducted and executed surveys (Table  3), recent find-
ings [45] of the increased incidence of anaphylaxis to 
blue dyes and antibiotics, in particular teicoplanin, dem-
onstrates the need for vigilance in the increasing use of 
some previously generally unrecognized sources of severe 
reactions. By contrast, the spectacular increase in the 
number of cases of latex-induced anaphylaxis in the dec-
ade 1980–1990, rapidly declined following recognition of 
the increasing use of rubber-based materials, particularly 
rubber gloves, and the introduction of latex-free proto-
cols in operating, treatment, and recovery rooms [8].

Following the early years of colloid use, there has been 
a reassessment by some clinical investigators and regu-
latory agencies of the risks associated with their use, in 
particular the protein gelatin (usually cow or pig) due to 
increasing reports of allergic reactions, including ana-
phylaxis [217–219], and hydroxyethyl starch for severe, 
protracted pruritus refractory to treatment and the risk 
of kidney injury [220, 221]. Again, these developments 
emphasize the need to remain aware of changed recom-
mendations based on extended experiences with drug 
usage.

Recent research on the immune response to hepa-
rin adds a new and interesting aspect to our knowledge 
of antibodies to the anticoagulant. As discussed above 
(Section 5.8), in thrombocytopenia, heparin binds plate-
let factor 4 (PF4) on the platelet surface and together 
with anti-heparin IgG, the resultant complex promotes 
thrombin formation. With the recent interest in vaccine-
induced immune thrombotic thrombocytopenia (VIITT) 
caused by anti-PF4 antibodies activating platelets and 
the finding of these antibodies in patients infected with 
Covid-19, concerns were raised that antibodies induced 
by vaccination might cause thrombosis by cross-reacting 
with PF4. SARS-CoV-2 spike protein and PF4 share a 
similar epitope(s). Investigations revealed that immune 
responses to PF4 and the SARS-CoV-2 spike protein are 
independent and antibodies in patients with VIITT and 
thrombosis do not cross-react with the spike protein 
indicating that the immune response to the spike protein 
does not induce VIITT [250].

Despite a long-standing belief by many, opioids are 
rarely involved in type I IgE antibody/FcεRI-mediated 
allergic responses and this is reflected in the more 
recently published surveys of perioperative drug-induced 
anaphylaxis (Sections  4 and 5.8). There are few reports 
of anaphylaxis to opioids [8, 251]; most of the reactions 
elicited by morphine for example, are pruritus, urticaria, 
and pain with the involvement of released histamine and 
activation of the mast cell receptor MRGPRX2 [137, 252, 
253] (Section 5.3).

Clinicians should be aware of the similarity between 
drug-induced true allergic type I IgE/FcεRI- and 
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pseudoallergic MRGPRX2-mediated ADRs, the clinical 
features of each, and their distinguishing characteristics 
[8, 137, 252–254]. Activation of MRGPRX2 provokes 
responses clinically similar to IgE/FcεRI-mediated reac-
tions of itch, inflammation, and pain without the involve-
ment of antibody priming. A negative skin test does not 
necessarily preclude MRGPRX2 involvement and the 
absence of specific IgE antibody tests for many of the 
drugs that activate both receptors also makes it difficult 
to distinguish the two reactions [137, 252, 253, 255]. 
In addition, some agents, for example, tetrahydroiso-
quinolone NMBDs and fluoroisoquinolone antibiotics 
may activate both receptors [137, 253]. Ruling out the 
involvement of any other nonimmune mechanism and 
immune processes but particularly IgE/FcεRI-mediated 
degranulation of mast cells, has been suggested as a 
way of overcoming the problems of confidently iden-
tifying MRGPRX2 activation and diagnosing resultant 
pseudoallergic reactions [255]. However, such a process 
of exclusion is, at best, a fall-back approach to the pre-
ferred methodology of direct implication of MRGPRX2 
activation.

As for most GPCRs, MRGPRX2 signals via β-arrestin 
[256], and this property can be employed in the form 
of a β-arrestin recruitment assay [138, 257–259] to aid 
diagnosis by discriminating between pseudoallergic 
MRGPRX2- and true allergic IgE-mediated reactions. 
Following a clinical assessment which includes a tryptase 
determination, skin and IgE testing are undertaken. The 
BAT, mast cell activation test (MAT), and T-lymphocyte 
activation test (TAT) [255] may be used to check nega-
tive skin and IgE tests or in the absence of IgE assays. 
Using MRGPRX2-transfected cells (e.g., HEK293 or 
CHO-K1) [138, 254, 257–259], MRGPRX2 activation is 
assayed for both β-arrestin (G-protein-independent) and 
 Ca2+ (G- protein-dependent) endpoints [259] and results 
compared to a reference histamine release assay or other 
degranulation assay (e.g., β-hexosaminidase assay or 
flow cytometric measurement of cell surface CD107 and 
CD63) [138, 255, 259]. Note that some ligands activate 
one (e.g., G-protein biased icatibant), or both (G- pro-
tein-dependent and independent), pathways (e.g., com-
pound 48/80) [138, 260].

The stepwise application of skin and specific IgE 
antibody tests together with MRGPRX2 activa-
tion and histamine assays provides a sensitive and 
rapid approach for distinguishing pseudoallergic 
from true allergic reactions and identifying ago-
nists. The methodology also provides the means 
to investigate the safety of known and newly intro-
duced small molecule drugs as well as biologically 
active peptides [138, 259].
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