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Abstract 

Purpose To present a review of insights gained from investigating the question as to whether red haired individuals 
have altered sensitivity to pain.

Methods A narrative review of the literature.

Results Anecdotal observations from anaesthesiologists have suggested that individuals with red hair require 
more analgesia on average than members of the general population. This observation has been confirmed and the 
redheaded phenotype is associated with an altered sensitivity to pain across a wide range of different pain types. 
Through the use of mouse models, a central mechanism for this altered pain sensitivity has been proposed involving 
both the melanocortin and opioid receptor systems, despite the causative mutation for this phenotype occurring in 
melanocortin 1 receptors (MC1Rs) on peripheral melanocytes.

Conclusions Understanding the endocrine imbalance caused by this loss of function mutation helps us to further 
explore the mechanisms behind pain sensitivity. It also facilitates a discussion about how pharmacogenomics can be 
exploited to personalise and subsequently optimise treatment.
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Graphical Abstract

1 Introduction
Anecdotally it has long been noted that individuals with 
natural red hair often required more anaesthesia than 
other patients, and this has subsequently been confirmed 
for inhalational anaesthesia [1]. Since the determination 
of minimum alveolar concentration (MAC) involves the 
response to a noxious stimulus [2] this also implies that 
redheads are more sensitive to pain. This has now been 
confirmed in several clinical studies, with the proviso 
that the type of pain stimulus may matter [3–6]. Red-
heads may be more sensitive to thermal induced pain 
[3] but have equal sensitivity to ischaemic pain [4]. It is 
important to note that not all studies agree: Gradwohl 
et al. were unable to find any differences between anaes-
thetic or pain sensitivity in a study of patients undergoing 
surgery [5]. While an advantage of their study was that 
it was in a clinical rather than experimental setting, one 
disadvantage was that they used only phenotype and not 
genotype to identify red-haired patients. Other studies 
have in fact reported reduced sensitivity to (capsaicin-
induced) pain, and the interpretation of these contradic-
tory results will be discussed later [6]. In dental surgery, 
no difference in response to local anaesthetic has been 
found [7], but intriguingly the rate of anxiety in the red-
haired is higher than others [7, 8]. Thus, clinical studies 
offer the stimulus to investigate this hypothesis in more 
detail, but do not offer sufficiently clear information 
from which to draw robust conclusions. Not including 
studies that assess potential general anaesthetic sensi-
tivities to red hair (something quite different from, and 

not necessarily related to, pain sensitivity [9]), there are 
relatively few human trials examining this specific ques-
tion. The literature in the animal, genomic and molecu-
lar science of red hair and pain appears wider and is the 
predominant focus of this review. We seek though to link 
results back to the human condition.

2  Genomics of red hair
The redheaded phenotype arises through a mutation in 
the melanocortin 1 receptor (MC1R) [10–12] found on 
epidermal melanocytes, with loss of receptor function 
causing disrupted pigment production. Instead of the 
darker eumelanin, a stable molecule that resists photo-
damage by ultra-violet (UV) radiation [13, 14], sulphated 
pheomelanin, a red/yellow pigment, is instead produced. 
The phenotype is a combination of red hair and fair skin. 
The red-haired phenotype has long been associated with 
Celtic populations, and is mostly concentrated around 
North and Northwest Europe, particularly in Iceland, 
Ireland and Great Britain [15]. The exact number of 
redheads worldwide is debated, with inconsistent data, 
but is frequently quoted to be around 2% of the global 
population.

There are several alleles coding for MC1R, and it is 
debated whether the existence of these confers any sur-
vival advantage. One theory is that these alleles are pre-
sent in European populations to maximise production 
of vitamin D from UV light; the disadvantage being an 
increased risk for developing UV damage-associated 
skin cancers such as melanoma [16, 17]. However, 
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distribution of these alleles do not conform to the Hardy‐
Weinberg equilibrium suggesting that there is a neu-
tral survival advantage [18, 19]. The alleles are virtually 
absent in African populations, indicating large survival 
disadvantage to red hair in that environment.

The natural, main ligand of MC1R, α-melanocyte 
stimulating hormone (α-MSH), is a cleavage product 
of adrenocorticotrophin hormone (ACTH), which is 
in turn a product of the prohormone proopiomelano-
cortin (POMC) within the hypothalamic-pituitary sys-
tem (Fig.  1) [20]. Additionally, α-MSH is produced in 
keratinocytes and melanocytes following UV expo-
sure [21], which is clearly an advantage in terms of UV 

protection. α-MSH therefore can arise from melano-
trophs within the pituitary gland or POMC cleavage in 
the periphery, and has been shown to have a high affinity 
with the MC1R receptor in human melanocytes [22, 23].

3  Lessons from animal models
One of the main issues within the literature surrounding 
the study of pain is the significant discrepancy in tests 
used between human and animal models. Often, little 
regard is put into the type of pain that is being elicited, 
and the differences in signalling that will occur as a result 
— this is a likely cause of the contradictory responses 
that exist within the literature [3]. It is important to note 

Fig. 1 Metabolic pathways involving ɑ-MSH (alpha-melanocyte stimulating hormone). ɑ-MSH is a major agonist of the melanocortin system 
including MC1R and MC4R (melanocortin receptors 1 and 4), is a cleavage product of the prohormone POMC (proopiomelanocortin) via another 
product, ACTH (adrenocorticotrophin hormone). PC (proconvertase) 1 and 2 are the enzymes responsible for peptide cleavage to produce 
the active products. POMC is the precursor for a range of different products, with a large range of different effects extending from metabolic 
to pigmentation—some products other than ɑ-MSH have been shown on the diagram below, including N-pro-opiomelanocortin (N-POC 
(pro- γ-MSH)), γ-MSH (gamma-melanocyte stimulating hormone), CLIP (corticotrophin-like intermediate lobe peptide), β-LPH (beta-lipotropin), 
β-END (beta-endorphin), γ-LPH (gamma-lipotropin) and β-MSH (beta-melanocyte stimulating hormone)
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the differences in assays available between human and 
animal studies, as the tests available for the latter have 
more definitive end-points at which results are collated, 
and are also available to investigate a wider range of dif-
ferent pain types.

Clear types of pain were demonstrated by Mogil et al., 
who used 11 random mouse strains to investigate differ-
ences in response across 12 standardised pain tests [24, 
25]. Through genetic analysis, this group was able to 
organise different pain types into clusters which shared 
similar modalities [25]. These concepts were built upon 
to characterise five fundamental types of nociception 
and hypersensitivity; baseline thermal nociception, spon-
taneous responses to noxious chemical stimuli, thermal 
hypersensitivity, mechanical hypersensitivity and affer-
ent input-independent hypersensitivity [26], which can 
all be investigated using different pain assays. For exam-
ple, baseline thermal nociception in rodents can be stud-
ied using tail withdrawal tests [4, 27], where the latency 
to remove the tail from a water bath or hot plate at a set 
‘hot’ temperature is measured. For chemical types of 
pain, 0.9% acetic acid can be injected into the abdomen 
of mice, and the subsequent number of reflexive abdomi-
nal constrictions within a certain timeframe is measured 
to estimate the spontaneous response to pain [27].

In humans, however, endpoints are more subjec-
tive: thermal nociception can be determined by finding 
a ‘nociceptive threshold’ using temperature probes in 
a specific sequence to prevent sensitisation or habitu-
ation of cutaneous receptors [3]. This reinforces a key 
difference in how pain is measured between human and 
animal models, as the conscious determination of a noci-
ceptive threshold can be influenced by a large number of 
different factors, including psychological [28] and even 
placebo [29]. This makes it difficult to compare between 
individuals or draw objective conclusions from human 
data.

Nevertheless, animal models have been largely consist-
ent with many human studies, including the variability 
of response with type of pain stimulus and some incon-
sistencies in results. Thus, MC1R variants in labrador 
dogs result in increased sensitivity to thermal (but not 
mechanical) pain [30]. In both animal and human stud-
ies, two findings have emerged that require further explo-
ration. One is that the potential influence of red hair is 
further modulated by sex; a second is the differential 
influence of red hair on response to opioids.

Delaney et  al. studied mutant mice lacking MC1R 
(termed Mc1re/e) and found an influence as expected, but 
surprisingly this was an increased tolerance, not sensitiv-
ity, to thermal and inflammatory (formalin-induced) pain 
(but not neuropathic pain following peripheral nerve 
injury) which was confined to females. Male mutants 

showed similar responses in all conditions [31]. Note 
that sex differences in pain sensitivity are well established 
[32] with females generally displaying greater sensitivity 
[33, 34], and this is in turn influenced by species strains. 
Thus, male Sprague Dawley rats are more sensitive than 
females to thermal pain, while it is the reverse in Long 
Evans rats [35].

Mogil et al. reported an increased sensitivity to opioid 
analgesia in red hair in a mouse model. Thus even if pain 
sensitivity is increased as many studies report, this seems 
advantageously balanced in therapeutic terms by the 
increased sensitivity to analgesia [4]. They used quantita-
tive locus mapping to indicate that Mc1r allele was associ-
ated with the site of action of the broad κ-opioid agonist, 
U50,488. This association was identified in female mice 
only. They then elegantly translated this finding to study 
women with two variant Mc1r alleles and confirmed a 
greater response to κ-opioids, such as pentazocine, than 
dark-haired controls. This study weaves in the MC1R 
pathway with opioid response and sex [36, 37]. One limi-
tation of their study is that they did not employ positional 
cloning to reduce the confidence interval surrounding 
the quantitative trait locus, eliminating all other genes 
on distal chromosome 8. Quantitative trait locus (QTL) 
analysis is a statistical method that links phenotypic (trait 
measurement) and genotypic data (molecular markers) 
to explain the genetic basis of variation in complex traits, 
and Mogil et al. argued that their success in linking their 
mouse study to human responses superceded the need to 
undertake more exact positional cloning. A second, per-
haps more practical limitation is the κ-opioid system has 
currently limited therapeutic potential in terms of treat-
ing pain, in contrast to the μ-opioid system. Drugs target-
ing these receptors tend to cause significant dysphoric, 
rather than euphoric, psychotomimetic side effects, 
indicating that another major function of this system in 
mood regulation [38]. There are few specific indications 
for pentazocine, a κ agonist, and buprenorphine, another 
commonly used opioid, is in fact a κ antagonist.

However, focus on the endogenous ligand for the 
κ-opioid receptor, dynorphin, may offer more scientific 
insight as it also binds with high specificity and antago-
nises MC1R [39]. Moreover, in addition to their periph-
eral localization, MC1Rs are expressed in brain glial cells 
[40] and the ventral periaqueductal gray [41], which are 
regions putatively relevant to nociception [42].

Mogil et al. later turned attention to the μ-opioid sys-
tem. They studied spontaneous Mc1re/e mice versus 
wild-type controls, and in parallel humans with red and 
dark hair, using a variety of both acute and tonic pain 
assays to confirm that mice mutants mimicking red-
haired humans were less sensitive to pain [27]. They also 
investigated the response to the morphine metabolite 
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morphine-8-glucuronide, M6G, as the μ-opioid receptor 
agonist. Mutants and redheads showed an increased anal-
gesic response, which the authors confirmed was likely 
a true pharmacodynamic, rather than metabolic/phar-
macokinetic effect, as circulating levels of the drug were 
similar in both groups [27]. Interestingly, Mogil et al. did 
not find any sex-dependent effects in mice or humans, in 
contrast to their previous report for the κ-opioid system. 
However, extending the results of MC1R interaction with 
both κ- and μ-opioid systems raises the possibility that in 
dark-haired humans there is an endogenous pain inhibi-
tion system resulting from MC1R activation. Reduced or 
absent in redheads, this results in anti-analgesia.

Mc1r is not the only member of the melanocortin 
receptor family to be investigated in the context of pain, 
as there have been explorations into rat models and the 
involvement of allele for melanocortin 4 receptor (Mc4r) 
in centralised pain phenomena, such as allodynia [43, 
44]. Allodynia is the experience of a painful response to 
a non-nociceptive stimulus and can involve both periph-
eral sensitisation and central maladaptation, depending 
on the mode [45]. The co-localisation of μ-opioid and 
melanocortin receptors in the spinal cord, and their sup-
posed antagonistic relationship, has led to the considera-
tion of melanocortin 4 receptor (MC4R) action in this 
central sensitisation response. Starowicz et al. compared 
the anti-allodynic effects of melanocortin receptor antag-
onist SHU-9119 and μ-opioid receptor agonist morphine, 
finding that targeting the melanocortin system had a 
more significant response [43]. This further implicates 
other members of the melanocortin in the control of pain 
responses and suggests an important interplay with our 
endogenous opioid system.

4  Confounders and more complex genomics
When reporting that red-haired women were signifi-
cantly more sensitive to thermal nociception, Liem 
et  al. also found an increased resistance to subcutane-
ous lidocaine [3]. This is unexpected as this drug should 
act primarily on the voltage gated sodium channels of 
peripheral C fibres. One possibility is that anti-nocicep-
tive actions of lidocaine are recognised via other putative 
systems [46], although this is at different concentrations 
from those achieved by subcutaneous injection [46, 47]. 
It is conceivable that the MC1R system acts in a more 
complex way in respect of the analgesia conferred by 
lidocaine block of peripheral nerves (e.g., a modulation of 
sodium channel sensitivity).

The study of pain has been recognised to be com-
plex [48]. Pain being a subjective sensation is difficult 
to measure, and as studies cited above show, responses 
can depend on the stimulus type being used. The stim-
ulus intensity that can be administered in humans is 

understandably limited, as also it is in animal studies. 
Pain is ultimately a bio-psycho-social condition where 
immeasurable factors ideally need to be considered. 
Acute pain can evolve into chronic pain, which under-
lines these issues and therefore, pain can exist or con-
tinue in the absence of any apparent noxious stimulus. 
Moreover, the necessary treatment of pain can lead to 
complexities created by dependence or hyperalgesia 
[49]. Research has indicated that genotype can at least 
somewhat determine an individual’s response to differ-
ent types of pain assay [24–26]. Animal studies offer the 
advantage of creating genomic variants and more inva-
sive techniques, but animals cannot report pain, so all 
measures are surrogates [50].

Another confounding factor within less genotypically 
controlled human groups could be the exact mutation in 
the MC1R gene: within the ‘red-haired’ human pheno-
type, there is a wide degree of variation which is under-
standably reflected by a high degree of polymorphism in 
this gene [51, 52] and variable expression. This concept 
was further explored through a retrospective study by 
Zorina-Lichtenwalter et  al. who used the data from an 
orofacial pain study with full genotyping to investigate 
the correlation between 17 specific polymorphisms in 
MC1R and the prevalence of chronic pain conditions. 
While red hair per se was associated with a greater 
sensitivity to pain, the association between the poly-
morphisms and experience of pain was more complex. 
Individuals with the most common missense variants 
in alleles for MC1R statistically had fewer chronic pain 
conditions than those with no such mutation [53]. Thus, 
mutation in the MC1R allele is associated with an altera-
tion in pain sensitivity, irrespective of hair colour.

5  Redheads and pain: an imbalance in opioid 
signalling?

Robinson et  al. [54] recently conducted an extensive 
series of experiments presented within a single paper, and 
it is worth presenting their results in the logical sequen-
tial order they undertook them to unravel the relation-
ships between red hair, MC1R and opioid signalling. For 
a summary of the different mouse models used by Robin-
son et al., see Table 1.

They first excluded skin pigment per se as an influence 
on pain sensitivity in normal and Mc1re/e mice, by cross-
ing these with albino mice (Tyrc/c), in whom melanocyte 
numbers were unaltered but lacked pigment. Mutant 
Mc1re/e always exhibited higher pain tolerance than other 
types, regardless of the actual skin and coat colour, indi-
cating that melanocytes were important rather than the 
eumelanin pigment. Next, they assessed whether mel-
anocyte numbers were influential by studying geneti-
cally matched (C57BL/6J) mouse models that differed 
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in melanocyte numbers. Mice with increased epidermal 
melanocytes (K14-SCF) were more sensitive to pain than 
mice lacking melanocytes (Mitf mi−wh/mi−wh), who in turn 
displayed higher pain tolerance than wild type  (WT), 
WT mice (i.e., the pain sensitivity was K14-SCF (most 
sensitive) > WT > Mitf mi−wh/mi−wh). This indicates that 
the number of epidermal melanocytes—independent of 
MC1R function—modulates pain sensitivity.

Then, they crossed red-haired (Mc1re/e) mice with the 
Mitf mi−wh/mi−wh mice lacking melanocytes, to test the 
potential role of MC1R function in nonmelanocytic cells. 
Genetic absence of melanocytes now inhibited the ability 
of MC1R to influence pain sensitivity, suggesting that this 
is dependent on MC1R function in melanocytes rather 
than in other cell types.

Robinson et  al. then considered β-endorphin as a 
potential modulator of pain sensitivity. β-endorphin is 
a posttranslational cleavage product of proopiomelano-
cortin (POMC), expressed in melanocytes; POMC is 
induced by adenosine 3′,5′-monophosphate (cAMP) 
in other cell types and low cAMP levels in red-haired 
Mc1r mutant melanocytes may affect POMC expression 
and in turn, β-endorphin levels. They confirmed that 
red-haired mice did indeed exhibit lower plasma levels 
of β-endorphin. However, this appeared contrary to the 
higher pain tolerance found in these mice as β-endorphin 
promotes rather than diminishes analgesia. Moreo-
ver, they discovered that β-endorphin levels were also 
inversely associated with pain thresholds in the other 
mouse genotypes: K14-SCF mice (more melanocytes; 
more sensitive to pain) and Mitfmi−wh/mi−wh mice (absent 
melanocytes; more tolerant to pain). Thus, overall, mel-
anocyte numbers and MC1R function were inversely 
correlated with pain sensitivity, despite themselves being 
directly related to plasma β-endorphin levels.

Next, to determine whether the reduced pain sensitiv-
ity to pain was a result of compensation for—or adapta-
tion to—the lower β-endorphin levels, Robinson et  al. 
employed mice carrying homozygous POMC muta-
tion that expresses all melanocortin peptides except 
β-endorphin (β-end−/−), and a strain lacking μ-opioid 
receptor for β-endorphin (Oprm1−/−). There was no 
effect of the knockout on the pain threshold differences 
in black versus red-haired mice. Lack of μ-receptor had 
no effect on the pain thresholds in black mice, consist-
ent with previous studies [55]. However, the absence of 
μ-receptor abolished the elevated nociceptive thresholds 
in red-haired mice. Separately, opioid receptor antago-
nists (naloxone and cyprodime) both altered pain sensi-
tivity of red-haired mice to those of black mice.

All these results suggested that pain thresholds in 
red-haired mice are not dependent on a β-endorphin-
opioid receptor signalling pathway. The increased 

μ-opioid receptor signalling in the context of low plasma 
β-endorphin levels could be due to (a) increased expres-
sion of some other endogenous opioid, (b) μ-receptor 
adaptation, or (c) reduction of a pathway that is antago-
nistic to opioid signalling. The first (a) was excluded by a 
finding of similar dynorphin, enkephalin, and endomor-
phin levels between red-haired and black mice.

Robinson et  al. noted that plasma levels of α-MSH (a 
melanocortin agonist, like β-endorphin, also encoded 
within POMC) varied across different-pigmented mice, 
paralleling β-endorphin levels (i.e., higher α-MSH 
levels in mice with more melanocytes; lower in red-
haired mice). This variation is therefore consistent 
with the respective changes in pain thresholds, unlike 
β-endorphin which is inversely related. To test whether 
the relationship could be causative, Robinson et al. ‘res-
cued’ low endogenous α-MSH levels in red-haired mice 
pharmacologically: melanotan II, (that mimics α-MSH 
action) increased (i.e., reversed) pain sensitivity in red-
haired but not black mice, in a sex-independent man-
ner. Thus, loss of function in MC1R signalling results in 
increased tolerance to pain, but an MSH receptor other 
than MC1R is likely involved.

Robinson et  al. noted that the different melanocortin 
receptor, MC4R has been implicated in pain control [56]. 
The peptide SHU‐9119 antagonizes MC4R, despite being 
an MC1R agonist, and was found to be analgesic in black 
mice, mimicking the red-haired (Mc1re/e) genotype. This 
was also the case in the cross of K14-SCF with Mc1re/e 
mice. Since these mice have wild-type pain thresholds, 
and levels of all POMC products, but lack MC1R func-
tion, these results strongly suggest that the analgesic 
effects of SHU‐9119 are MC1R independent and likely 
due to ligand effects on MC4R (or MC3R, another related 
receptor). Thus, MC4R signalling may balance opioid sig-
nalling in modulating responses to pain.

Robinson et  al. undertook a series of experiments to 
explore the putative MC4R system: (i) Mc4r null mice 
exhibited reduced pain sensitivity; (ii) the absence 
of MC4R on a genetically black background resulted 
response to opioid antagonists similar to red-haired 
mice, suggesting that pain threshold may be a balance 
between Mu opioid receptor 1 (OPRM1) and MC4R sig-
nalling; (iii) naloxonazine, a specific μ-receptor antago-
nist restores nociceptive thresholds in both Mc4r null 
and red-haired mice; (iv) melanocortin agonist treat-
ment reduced the elevated pain thresholds of red-haired, 
but not Mc4r null mice, suggesting that MC4R is the key 
melanocortin target for MSH; (v) intraperitoneal admin-
istration of naltrexone, an opioid receptor antagonist 
that crosses the blood–brain barrier (BBB) reduces dif-
ferences between black and red-haired mice, but admin-
istration of methylated naltrexone that does not cross 
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the BBB does not, suggesting the influence on opioid 
signalling in red-haired mice is a central, not peripheral 
phenomenon – this implicates α-MSH balanced opioid 
receptor–mediated regulation of central nociception; (vi) 
in rat primary hypothalamic neurons the melanocortin 
agonist [Nle4,D-Phe7]-α-MSH increased cAMP content, 
whereas morphine significantly inhibited this melanocor-
tin-induced cAMP elevation suggesting a mutual antago-
nistic interaction in these cells.

The detailed work of Robinson et  al. suggests that 
the reduced pain sensitivity in the red-haired arises 
from reduced α-MSH levels caused by a reduced 
POMC production in melanocytes, in turn lead-
ing to diminished MC4R signalling. The antagonism 
of opioid signalling within the central nervous sys-
tem (CNS) is thereby reduced which occurs despite 
a reduced β-endorphin production consequent on 
the reduced POMC production. The theory is a ‘net 
melanocortin deficiency’, relative to opioid signal-
ling, altering the balance to favour μ-opioid receptor–
induced analgesia in the red-haired (Fig. 2). Note that 
these conclusions are entirely compatible with the 
suggestions of Zorina-Lichtenwalter et al. that it is the 
underlying genotype, not the phenotype of red hair, 

that is the relevant influence and therefore, this work 
may be revealing of a more generalised mechanism in 
responses to pain.

6  So, what can we learn from the study 
of redheads in context of pain?

Understanding how polymorphisms interact with vari-
ous pharmacological agents is the core concept of phar-
macogenomics, with the aim of personalising therapy as 
mainstream practice. This will make therapy more effec-
tive and reduce side-effects. That said, Mogil (whose 
work has been cited above), writing more than 10 years 
before the Robinson et  al. study, bemoaned the state 
of genomics in pain [57]. He cited Max and Stewart as 
writing that ‘pain has come late to the genetics party’ 
[58] and observed that transgenic, linkage mapping and 
microarray studies in rodents might predict the existence 
of many hundreds of pain-relevant genes, yet focus has 
been on just a handful: COMT (encoding catechol-O-
methyltransferase), GCH1 (encoding guanosine triphos-
phate (GTP) cyclohydrolase 1), and OPRM1 (discussed 
above). His summary of the general results applies to the 
discussion above: poor replicability of genetic association 
studies, conclusions have become less straightforward 

Fig. 2 Diagrammatic summary of the proposed mechanism for altered pain sensitivity in redheads. The details and adaptation is from Robinson 
et al.’s paper [54], with proposed conclusions considered in the above discussion
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than initially imagined—there is no binary yes/no associ-
ation or influence on pain—and subsequent studies after 
the initial have reported no association, or sex-depend-
ent association, or significant associations but of differ-
ent single nucleotide polymorphisms or haplotypes, and 
significant associations, but of different phenotypes than 
those initially suspected. All this is attributed variously to 
data set heterogeneity, stratification of populations, and 
genomic statistical underpowering. Both selective pub-
lication and at times scientific fraud have had their part 
to play in pain therapy research [59, 60]. If pointing to 
one gene as ‘responsible for pain’ is oversimplistic, then 
widening to net to include many more—whilst acknowl-
edging the reality that pain is indeed a complex bio-
psycho-social phenomenon—then runs the risk that all 
genes are ‘pain genes’. Mogil cites as Goldstein: ‘‘in point-
ing at everything, genetics would point at nothing” [61].

That said, the elegant work of Robinson et al., and oth-
ers cited, represents an incremental advance and does 
indeed push forward the genomic understanding of pain, 
albeit from this limited perspective of the influence of 
red hair. Examples of the success of genomics include 
the use of abacavir in HIV treatment, where the presence 
of a specific human leukocyte antigen (HLA) allele can 
cause severe side effects [62], preventable by prior geno-
typing [63, 64]. Particular low-function mutations in the 
cytochrome P450 2D6 metabolic enzyme (CYP2D6) are 
thought to limit the metabolic pathway that forms 
codeine’s physiologically active metabolite, morphine 
[65], resulting in lack of analgesic effect. Because the phe-
notype associated with MC1R mutation is self-evident, 
identification of these individuals with potentially altered 
nociceptive sensitivity, and perhaps anaesthetic efficacy, 
is easy (at the expense of making blinded trials difficult).

7  Conclusions
Although the model proposed in Fig.  2 represents pro-
gress, there remain fundamental questions that require 
resolution before results can be translated to clinical 
practice. One is that the direction of influence of red 
hair/MC1R remains unclear, with some studies report-
ing increased pain sensitivity and others the reverse (or 
none). The influence of sex remains unresolved. And of 
the opioid receptors the δ- or ζ-receptors, or their spe-
cific subtypes have not been investigated. Whilst the 
model presented by Robinson et al. nicely demonstrates 
the influence of red hair/MC1R on the balance between 
opioid tone and melatonin signalling, it is possible that 
other unknown factors may affect input from the opioid 
system. These other factors may have nothing to do with 
red hair or the melanocortin system but may lead to con-
founding results in redhaired individuals. We are a long 

way off from specific therapies, but the work shows that a 
simple question about redheads can lead to unravelling of 
complex pain-relevant pathways within the body.
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